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TESIS DOCTORAL

ADVANCES IN THE STUDY OF TOPOLOGICAL

PROPERTIES OF ANALYTIC FLOWS ON SURFACES

AVANCES EN EL ESTUDIO DE PROPIEDADES
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ResumenResumen

A grandes rasgos, este trabajo se propone investigar el efecto de la analiticidad en

el campo de los sistemas dinámicos continuos en dimensión 2, es decir, qué fenómenos

dinámicos aparecen cuando la función que define un sistema de este tipo es anaĺıtica. Más

concretamente, se trata de avanzar en la investigación de la naturaleza topológica de los

flujos anaĺıticos sobre superficies en los siguientes cuatro ámbitos:

1. la clasificación topológica de los atractores globales inestables para flujos polinómicos

en el plano;

2. la caracterización topológica de los conjuntos ω-ĺımite para flujos anaĺıticos en abier-

tos de la esfera y el plano proyectivo;

3. la caracterización topológica de los conjuntos periódicos ĺımite para familias de flujos

polinómicos en el plano;

4. el estudio de los flujos anaĺıticos en superficies con todas sus órbitas densas.

En lo que sigue, sin pretensión alguna de ser escrupulosos en el rigor y la formalidad,

resumimos de forma somera lo que entendemos por cada uno de los cuatro puntos previos,

remarcando cuál ha sido nuestra contribución en cada caso.

Empezamos introduciendo algo de notación y algunas definiciones.

Llamaremos superficie a todo espacio topológico conexo, Hausdorff y segundo axioma

de numerabilidad, S, tal que cada punto p ∈ S posee un entorno homeomorfo a un

subconjunto abierto y conexo de R2. Un flujo en una superficie S es una aplicación

continua Φ : R × S → S tal que, para cada p ∈ S y cada t, s ∈ R, Φ(0, p) = p y

Φ(t+ s, p) = Φ(t,Φ(s, p)). A veces, por abreviar, escribiremos simplemente que (S,Φ) es

un flujo, entendiendo impĺıcitamente que S es una superficie y que Φ es un flujo en S.

Dado un flujo (S,Φ) y un punto p ∈ S, decimos que ϕΦ(p) = Φ(R × {p}) (y también

que su parametrización t 7→ Φp(t) = Φ(t, p)) es la órbita de p. Cuando la órbita ϕΦ(p)

es un conjunto unipuntual, decimos que p (o ϕΦ(p)) es singular ; un punto que no es

singular se dice que es regular. Si ϕΦ(p) es una circunferencia topológica (esto es, un

subconjunto de S homeomorfo a la circunferencia unidad S1 = {(x, y) ∈ R2 : x2 + y2 =
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1}), decimos que ϕ(p) es una órbita periódica. Si una órbita ϕΦ(p) no es ni singular ni

periódica, su parametrización Φp : R→ S es un embebimiento (una aplicación continua e

inyectiva). Notemos que cualesquiera dos órbitas o bien coinciden o bien son disjuntas: el

flujo folia a la superficie S en una unión de circunferencias topológicas, puntos singulares

y embebimientos de la recta real en S. Por otro lado, asociado a cualquier órbita podemos

considerar una dirección temporal para la misma (la dada por su parametrización por Φ);

cuando S se ve como la unión de sus órbitas cada una con su dirección temporal, decimos

que S es el retrato de fases del flujo.

Estamos principalmente interesados en los flujos que no son solo continuos sino también

anaĺıticos. Una aplicación f : O → R (y = f(x) con x = (x1, . . . , xn)), definida en un

abierto O de Rn, se dice que es anaĺıtica si, para cada x0 = (x0,1, . . . , x0,n) ∈ O, f se

puede representar como una serie de potencias convergente en las variables x1, . . . , xn en

algún entorno de x0. Una función vectorial f : O ⊂ Rn → Rm se llama anaĺıtica si cada

una de sus componentes es una aplicación anaĺıtica en el sentido anterior. La noción

de analiticidad se puede extender de forma natural a funciones definidas en superficies —

presentaremos más abajo la definición formal de lo que entendemos por superficie anaĺıtica

y por función anaĺtica sobre una superficie anaĺıtica (véase Section 1.4.1).

El concepto de flujo sobre superficies esta directamente relacionado con el de ecuaciones

diferenciales autónomas. Para ilustrar este hecho, centrémonos por un momento en el caso

S = R2. Supongamos que f : R2 → R2 es una función vectorial anaĺıtica y consideremos,

para cada z0 ∈ R2, la única solución maximal t 7→ Φz0(t) de la ecuación autónoma ż(t) =

f(z(t)) verificando z(0) = z0. Si todas las órbitas están definidas en toda la recta real,

la función Φ(t, z) = Φz(t) es un flujo anaĺıtico en R2. Rećıprocamente, si Φ es un flujo

anaĺıtico en R2 y definimos f(z) = ∂Φ
∂t (0, z), entonces para cada z0 ∈ R2, t 7→ Φz0(t) es la

solución maximal z(t) de la ecuación ż(t) = f(z(t)) verificando z(0) = z0.

En general, la solución maximal de una ecuación diferencial no tiene por qué estar

definida en todo R. Sin embargo, como veremos más abajo en el cuerpo de la tesis, siem-

pre podemos modificar cualquier ecuación diferencial autónoma dada para conseguir una

segunda ecuación que tiene exactamente el mismo conjunto de imágenes de soluciones pero

con todas las nuevas soluciones definidas en la recta real. En este trabajo, la mayor parte

de las veces vamos a estar exclusivamente preocupados por las propiedades topológicas

de los conjuntos de órbitas y el “cambio” anterior se puede hacer sin alterar el “contexto

topológico”. Para simplificar nuestra discusión en este resumen introductorio, asumiremos

que, cada vez que nos refiramos a una ecuación diferencial autónoma, todas las soluciones

están definidas en toda la recta real.

Nuestro primer resultado destacable en este trabajo concierne al estudio de la estruc-

tura de los conjuntos de ceros de funciones anaĺıticas (definidas en abiertos del plano

eucĺıdeo). Dado un abierto O ⊂ Rn, decimos que el conjunto A ⊂ O es un conjunto

anaĺıtico (en O) si A es el conjunto de ceros de alguna función anaĺıtica con O como do-
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minio, esto es, si existe una función anaĺıtica f : O → R tal que A = {x ∈ O : f(x) = 0}.
Como tendremos ocasión de comprobar a lo largo de la tesis, conocer la estructura

topológica de los conjuntos anaĺıticos planos (esto es, de los conjuntos anaĺıticos en abier-

tos de R2) es de tremenda importancia cuando se trabaja con dinámica topológica de flujos

anaĺıticos bidimensionales.

En 1971, Dennis Sullivan probó que, salvo en algunos casos triviales, un conjunto

anaĺıtico plano es localmente una unión finita de un número par de arcos que dos a dos

se cortan en un solo punto (un extremo común para cada uno de los arcos), esto es, un

conjunto homeomorfo a {z ∈ C : zm ∈ [0, 1]} para algún m — véase [79].

Para describir la estructura topológica de los conjuntos anaĺıticos planos, se puede

proceder en dos etapas: primero se prueba la estructura local de estrella, sin importar la

paridad (esto es el conocido como el Teorema de Lojasiewicz [52, Theorem 6.3.3, p. 168]);

posteriormente se prueba que el número de ramas de la estrella es par (Teorema de Sulli-

van). El Teorema de Lojasiewicz es un corolario de dos resultados clásicos de analiticidad

real: el Teorema de preparación de Weierstrass y el Lema de Hensel. Sus demostraciones,

aunque algo tediosas (especialmente la del lema de Hensel), son elementales, véase [52].

Por contra, todas las pruebas del Teorema de Sullivan que conoćıamos, incluida la origi-

nal, requieren de herramientas avanzadas de la topológica algebraica [15, 16, 32, 41], y por

ende son dif́ıciles de seguir para el lector no especialista en la materia. En [25], en cola-

boración con V. Jiménez, presentamos una nueva prueba, de ambos pasos en la discusión

anterior, basada en argumentos elementales y bien conocidos de la teoŕıa cualitativa de

las ecuaciones diferenciales ordinarias en el plano. En el caṕıtulo 2 exponemos con detalle

esta prueba.

Como en otros campos de las matemáticas, uno de los problemas más importantes en

el campo de la teoŕıa cualitativa de las ecuaciones diferenciables es el que concierne a la

“clasificación” de los sistemas. Dar una “clasificación completa” de todos los flujos que

se pueden definir sobre una superficie concreta es una tarea de extrema dificultad. En

particular, clasificar completamente los flujos polinómicos en el plano, esto es, aquellos

flujos asociados a sistemas de la formax′ = P (x, y),

y′ = Q(x, y),

con P (x, y) y Q(x, y) polinomios en las variables x y y, es un problema clásico (quizás

el problema por excelencia de la teoŕıa cualitativa de las ecuaciones diferenciables) que,

de cerrarse, daŕıa, como subproducto, respuesta a la segunda parte del famoso problema

dieciséis de Hilbert (en el que se pregunta por la existencia y, en su caso su cómputo, de

una cota H(n) para el número máximo de ciclos ĺımite que un sistema polinómico puede

tener en función del máximo de los grados n de los polinomios P (x, y) y Q(x, y) — por
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ciclo ĺımite se entiende a cualquier órbita periódica aislada de otras órbitas periódicas en el

diagrama de fases. Hasta el presente, esta cota es desconocida incluso para el caso n = 2;

de hecho, aunque se conjetura que H(2) = 4, ni se ha podido probar la finitud de H(2).

En consecuencia, los investigadores en el área han ido añadiendo restricciones dinámi-

cas y/o anaĺıticas para abordar el problema. Por cierto, “clasificar” significa aqúı que dos

flujos son “lo mismo” si son topológicamente equivalentes. (Dos flujos (S1,Φ1) y (S1,Φ) se

dicen topológicamente equivalentes cuando existe un homeomorfismo h : S1 → S2 llevando

órbitas a órbitas y preservando la dirección temporal.)

Hasta donde nosotros conocemos, la clasificación topológica de los sistemas polinómicos

presentando un punto singular como atractor global, esto es, los sistemas cuyas órbitas

tienden todas en tiempo positivo a un mismo punto singular, no se ha estudiado aún. En

el caṕıtulo 4 atacamos este problema. Este contenido se corresponde con el art́ıculo [28],

en colaboración con V. Jiménez. Con esto cubrimos el primero de los puntos en la lista

de arriba.

Para resolver el anterior problema, en particular para encontrar buenas condiciones que

garanticen que dos sistemas con un punto singular atractor global sean topológicamente

equivalentes, nos vimos en la necesidad de aplicar el Teorema de Markus-Neumann (véase

el Teorema 3.2 abajo). En términos informales, este resultado dice que dos flujos en una

superficie S son topológicalmente equivalentes si, y solo si, existe un homeomorfismo de

S en S preservando órbitas y direcciones de un conjunto particular de órbitas destacadas

de ambos flujos (las conocidas como configuraciones por separatrices). Intentando ajus-

tar este resultado a nuestro contexto de trabajo, encontramos de forma inesperada varios

contraejemplos. En el caṕıtulo 3 discutimos algunos de estos contratiempos y presenta-

mos una versión correcta y generalizada del teorema. Este caṕıtulo está basado en el

art́ıculo [26], que también se hizo en colaboración con V. Jiménez.

El caṕıtulo 5 trata del estudio del segundo de los puntos en la lista de arriba. Se

trabaja alĺı con la noción de los conjuntos ω-ĺımite. Dado un flujo (S,Φ) y un punto

p ∈ S, definimos el conjunto ω-ĺımite de p como

ωΦ(p) = {q ∈ S : ∃tn →∞; Φp(tn)→ q} .

Posiblemente, el resultado más conocido de la teoŕıa cualitativa de las ecuaciones diferen-

ciales sea el Teorema de Poincaré-Bendixson.

Teorema (Teorema de Poincaré-Bendixson). Consideremos un flujo de clase C1, Φ, en R2

y un punto p ∈ R2 cuya órbita está acotada (es decir, ϕΦ(p) está contenida en algún

compacto de R2). Entonces o bien ωΦ(p) contiene algún punto singular o bien ωΦ(p) es él

mismo una órbita periódica.

Ña importancia de este resultado está justificada no solo por su significado como he-
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rramienta en el campo de la teoŕıa cualitativa de las ecuaciones diferenciales sino también

por la cantidad de matemáticas que ha motivado; [18] es un buen tratado sobre el tema.

H. Poincaré fue el primero en demostrar el resultado para el caso de los flujos anaĺıticos,

más tarde I. Bendixson lo extendió al caso de flujos de clase C1. Destaquemos que el

teorema describe los conjuntos ω-ĺımite de una órbita acotada que no contienen puntos

singulares en dos sentidos: desde un punto de vista dinámico, dice que ωΦ(p) es una

órbita periódica; desde el punto de vista topológico, dice que ωΦ(p) es una circunferencia

topológica. Por otra lado, también es importante remarcar que el resultado está lejos de

presentar una caracterización de todos los conjuntos ω-ĺımite: solo da restricciones para

una subfamilia de estos conjuntos. En esta dirección, y hasta donde nosotros sabemos, fue

R. E. Vingroad el primero en dar una caracterización topológica global de los conjuntos

ω-ĺımite asociados a los flujos (continuos) en la esfera.

Teorema (Vinograd, [82]). Sea Φ un flujo en la esfera euclidea S2 y p ∈ S2. Entonces ωΦ(p)

es la frontera de un conjunto conexo no vaćıo y propio O ⊂ S2 tal que S2 \ O también es

conexo.

Rećıprocamente, si Ω es la frontera de un conjunto conexo no vaćıo y propio O ⊂ S2

con complementario S2 \O conexo, entonces existe un flujo (Φ,S2) y un punto p ∈ S2 tal

que ωΦ(p) = Ω.

En [43], V. Jiménez y J. Llibre presentaron caracterizaciones topológicas de los con-

juntos ω-ĺımite para los flujos anaĺıticos en el plano, la esfera y el plano proyectivo (y en

sus abiertos). Por ejemplo, en el caso de la esfera prueban que:

Teorema (Llibre-Jiménez). Sea Φ un flujo anaĺıtico en S2 y p ∈ S2. Entonces ωΦ(p) es

o bien un conjunto unipuntual (un punto singular) o bien la frontera de un cactus en la

esfera (por cactus entendemos una unión finita y simplemente conexa de discos).

Rećıprocamente, para cada cactus A ⊂ S2, hay un flujo anaĺıtico Φ en S2 y un home-

omorfismo h : S2 → S2 tal que h(BdA) es un conjunto ω-ĺımite para Φ.

En [43], se distinguen dos etapas. Primeramente, se caracterizan los conjunto ĺımites

para flujos definidos en todo el plano, toda la esfera y todo el plano proyectivo; seguida-

mente se extienden estos resultados a los abiertos de estas superficies. En el caṕıtulo 5

revisaremos estas caracterizaciones y veremos que, mientras que los resultados enunciados

en la primera de las dos anteriores etapas son correctos, las caracterizaciones presentadas

en la segunda de las etapas no corren igual suerte. Más aún, ambas caracterizaciones

(incluyendo aquellas dadas para flujos definidos en todo el plano, toda la esfera o todo el

plano proyectivo) están basadas en un lema auxiliar que hemos probado ser incorrecto. Sin

ánimo de ser pulcros en rigor aqúı, este resultado auxiliar viene a decir que en cualquier

superficie anaĺıtica, todo flujo anaĺıtico tiene la siguiente propiedad: si una órbita visita

ambos lados de un arco de puntos singulares contenido en su conjunto ω-ĺımite, el flujo

debe tener la misma orientación en ambos lados. En la sección 5.1, mostraremos algunos
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contraejemplos a este lema auxiliar (y probaremos que las demostraciones de caracteri-

zaciones enunciadas en [43] se pueden corregir para el caso del plano, de la esfera y del

plano proyectivo); por su parte, en la sección 5.2, lidiaremos con el problema de carac-

terizar los conjuntos ω-ĺımite para flujos anaĺıticos en abiertos cualesquiera de la esfera.

Estas dos secciones se corresponden, respectivamente, con los art́ıculos [30] y [27], am-

bos en colaboración con V. Jiménez. Destaquemos que, en el caso de los abiertos de la

esfera, hemos sido capaces de encontrar restricciones que debe verificar un subconjunto

de la esfera para poder ser el conjunto ω-ĺımite de algún flujo anaĺıtico en un abierto

de la esfera dado (véase el Teorema F). Creemos que estas restricciones son suficientes

para caracterizar topológicamente esos conjuntos ĺımite: en este sentido, en la sección 5.2

conjeturamos lo que creemos que es el rećıproco del Teorema F y damos ya un primer

paso para su prueba (Proposición 5.24). La caracterización de los conjuntos ω-ĺımite para

flujos anaĺıticos en abiertos del plano proyectivo (y en general en superficies arbitrarias)

es todav́ıa un problema abierto que esperamos poder atacar a corto y medio plazo.

El tercero de los puntos en la lista que presentamos al inicio de este resumen versa

sobre el concepto de los conjuntos periódicos ĺımite. Dada una familia {Φλ}λ∈R de flujos

polinómicos planos, decimos que Γ ⊂ S2 es un conjunto periódico ĺımite para {Φλ}λ si

existen sucesiones (λn)n en R y (pn)n en R2 tales que, para cada n, la órbita ϕΦλn
(pn)

es un ciclo ĺımite para Φλn y la sucesión de circunferencias (ϕΦλn
(pn))n converge (en la

métrica de Hausdorff) a Γ.

El estudio de la estructura de los conjuntos periódicos ĺımite para los flujos polinómicos

planos es recurrente en la teoŕıa de bifurcaciones y en el tratamiento del problema dieciséis

de Hilbert (véase [72]). Por ejemplo, el programa propuesto por F. Dumortier, R. Roussarie

y C. Rousseau para resolver la parte existencial del problema dieciséis de Hilbert para

sistemas polinómicos cuadráticos se divide en el análisis de 121 casos basados en esta

noción de conjunto periódico ĺımite.

En el caṕıtulo 6, basado en un trabajo en colaboración con A. Belotto (véase [11]),

presentamos una caracterización topológica de todos los conjuntos periódicos ĺımites para

familias de flujos polinómicos planos.

Finalmente, en el caṕıtulo 7 abordamos el estudio del cuarto y último de los puntos lis-

tados al principio del resumen. Este caṕıtulo recoge una colaboración con D. Peralta-Salas

y G. Soler donde estudiamos las superficies admitiendo flujos anaĺıticos teniendo a todas

sus órbitas como conjuntos densos (véase [29]). Estas superficies se llaman minimales. Las

superficies minimales orientables quedaron totalmente caracterizadas por J.C. Benière in

1998, dejando abierto el caso no orientable. El caṕıtulo 7 cierra la discusión para el caso

de superficies de género finito. También se construye un ejemplo de una superficie minimal

de género infinito y se conjetura que cualquier superficie no orientable de género infinito

es minimal.
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In broad terms, this dissertation intends to investigate the effect of analyticity in the

field of continuous dynamical systems of dimension 2, that is, what dynamical phenomena

appear when the function defining such a system is analytic. Being more concrete, we aim

to advance in the study of the topological nature of the analytic flows on surfaces in the

following four areas:

1. the topological classification of unstable global attractors for polynomials flows on

the plane;

2. the topological characterization of the ω-limit sets for analytic flows on open subsets

of the sphere and the projective plane;

3. the topological characterization of the limit periodic sets for families of polynomial

flows on the plane;

4. the study of the analytic flows on surfaces with the property of having all their orbits

dense.

In what follows we summarize what we mean by each of the previous four points,

highlighting what our contribution in each case has been.

We first start introducing some needed notation and definitions.

By a surface we mean a connected, second countable, Hausdorff space S such that

every point p ∈ S possesses a neighbourhood homeomorphic to a connected open set of

R2. A flow on a surface S is a continuous map Φ : R× S → S such that, for every p ∈ S
and every t, s ∈ R, Φ(0, p) = p and Φ(t + s, p) = Φ(t,Φ(s, p)). Sometimes, for short, we

will simple write that (S,Φ) is a flow, understanding implicitly that S is a surface and

that Φ is a flow on S.

Given a flow Φ on a surface S and a point p ∈ S, we say that ϕΦ(p) = Φ(R × {p})
(and also its parametrization t 7→ Φp(t) = Φ(t, p)) is the orbit through p. When the orbit

ϕΦ(p) is a singleton, we say that p (or ϕΦ(p)) is singular ; when a point is not singular, it

is said to be regular. If ϕΦ(p) is a topological circle (that is, a subset of S homeomorphic

to the euclidean unit circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}), then we say that ϕΦ(p) is a
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periodic orbit. If an orbit ϕΦ(p) is neither singular nor periodic, then its parametrization

Φp : R → S is an embedding (a continuous inyective map). Notice that any two orbits

either coincide or do not meet so the surface S is foliated as union of circles, singular

points and injective continuous images of the real line. On the other hand, any orbit has

an associated time direction (that one given by its parametrization under Φ); when S is

seen as the union of its orbits with their time directions, we say that S is the phase portrait

of the flow.

We are mainly interested in flows which are not only continuous but also analytic. A

map f : O → R (y = f(x) with x = (x1, . . . , xn)), defined on an open set O of Rn is said

to be analytic if, for every x0 = (x0,1, . . . , x0,n) ∈ O, f can be represented as a convergent

power series in the variables x1, . . . , xn in some neighbourhood of x0. A vector map

f : O ⊂ Rn → Rm is called analytic if each of its components is analytic in the previous

sense. The notion of analyticity can be extend to maps defined on analytic surfaces —

the formal definition for what we understand by analytic surface and by analytic map on

an analtytic surface will be presented below (see Section 1.4.1).

The concept of flow over a surface is directly related to that of autonomous differential

equation. To illustrate this fact, let us focus on the case S = R2. Suppose f : R2 → R2 is

an analytic vector map and consider, for every z0 ∈ R2, the only (maximal) solution Φz0(t)

of the autonomous equation ż(t) = f(z(t)) such that z(0) = z0. If all of those solutions

are defined on the whole real line, then the function Φ(t, z) = Φz(t) is an analytic flow

on R2. Reciprocally, if Φ is an analytic flow on R2 and we define f(z) = ∂Φ
∂t (0, z), then

for every z0 ∈ R2, t 7→ Φz0(t) is the maximal solution z(t) of the equation ż(t) = f(z(t))

satisfying z(0) = z0.

In general, the maximal solution of a differential equation needs not be defined on the

whole R. Nevertheless, as we will show later in the dissertation, given any autonomous

differential equation, we can always modify the equation to get a second one having exactly

the same set of images of solutions but with all of those solutions defined on the whole real

line. In most of the cases, we are only interested in the topological properties of the set of

orbits and the previous “change” can be done without altering the “topological context”.

To simplify our discussion in this introductory abstract, we will always assume that, when

referring to a differential system, all solution are defined on the whole real line.

Our first remarkable result in the thesis deals with the structure of the set of zeros

of analytic maps (on open subsets of the euclidean plane). Given an open set O ⊂ Rn,

we say that a subset A ⊂ O is an analytic set (in O) if A is the set of zeros of some

analytic map with O as domain, that is, if there exists an analytic map f : O → R
such that A = {x ∈ O : f(x) = 0}. As will transpire along this thesis, knowing the

local topological structure of planar analytic sets (that is, analytic sets in open subsets of

R2) is of paramount importance when dealing with topological dynamics of bidimensional

analytic flows.
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In 1971, Dennis Sullivan proved that any planar analytic set is locally, up to some

trivial cases, a finite union of evenly many arcs which pairwise meet at an only point (a

common endpoint for each arc); that is, a set homeomorphic to {z ∈ C : zm ∈ [0, 1]} for

some m — see [79].

To describe the topological structure of planar analytic sets, one can proceed in two

steps: first, the local star structure is proved (this is the so-called Lojasiewicz Theorem

[52, Theorem 6.3.3, p. 168]); then one shows (Sullivan’s Theorem) that the number of

branches is even. Lojasiewicz’s Theorem is a corollary of two classical results on real

analyticity: the Weierstrass preparation theorem and the Hensel lemma. Their proofs,

if somewhat cumbersome (especially in the case of Hensel’s lemma), are elementary, see

[52]. In contrast, all proofs of Sullivan’s Theorem we are aware of, including the original

one, require advanced tools of algebraic topology [15, 16, 32, 41], and hence are hard to

follow for the non-specifically trained reader. In [25], in collaboration with V. Jiménez,

we presented a simple and dynamically based proof of both steps. Chapter 2 is devoted

to the exposition of that proof.

As in other fields of mathematics, one of the most important problems in the field

of continuous dynamical systems is that concerning the “classification” of the systems.

Finding a “complete classification” for all flows in a particular surface is an exceedingly

difficult task. In particular, classifying completely the plane polynomial flows, that is,

those flows associated with systems of the formx′ = P (x, y),

y′ = Q(x, y),

with P (x, y) and Q(x, y) polynomials in the variables x and y, is a classical problem (many

would say the problem par excellence) of the qualitative theory of differential equations

which, if completed, would provide, as a by-product, an answer to the famous (second part

of the) Hilbert 16th problem asking for a bound H(n) on the number of limit cycles of the

system in terms of the maximum degree n of P (x, y) and Q(x, y) — by a limit cycle we

mean a periodic orbit which is isolated from other periodic orbits. Presently, this bound

is unknown even in the quadratic case n = 2; in fact, although there are strong reasons to

conjecture H(2) = 4, not even the finiteness of H(2) has been established.

Understandably, researchers in this area have added dynamical and/or analytic re-

strictions to try and tackle the problem. In this context, by the way, “classifying” means

that two flows are “the same” if they are topologically equivalent. (Two flows (S1,Φ1)

and (S1,Φ) will be said to be topologically equivalent when there exists a homeomorphism

h : S1 → S2 taking orbits onto orbits and preserving the time directions.)

As far as we know, the problem of classifying, up to topological equivalence, the poly-

nomial systems with a globally attracting singular point, that is, those whose orbits tend
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in positive time to the same singular point, has not been studied yet. In Chapter 4 we dealt

with this problem. This piece of work corresponds with the paper [28], in collaboration

with V. Jiménez. With this we cover the first of the items in the list above.

To solve the previous problem, in particular to find good conditions guaranteeing that

two given systems with a globally attracting singular point are topologically equivalent we

need to apply the Markus-Neumann Theorem (see Theorem 3.2 below for a rigorous state-

ment). Roughly speaking, this result says that two flows on a surface S are topologically

equivalent if and only if there is a homeomorphism of S onto itself preserving the orbits

and time directions of particular sets of orbits from both flows (the so-called separatrix

configurations). While trying to apply this result to our context of work, we unexpectedly

found some counterexamples to it. In Chapter 3 we discuss those counterexamples and

present a corrected (and generalized) version of the theorem. The contents of this chapter

are based on the paper [26], also in collaboration with V. Jiménez.

Chapter 5 is dedicated to the study of the second item in the list above. It deals with

the notion of ω-limit sets. Given a flow (S,Φ) and a point p ∈ S we define the ω-limit set

of p as

ωΦ(p) = {q ∈ S : ∃tn →∞; Φp(tn)→ q} .

Arguably, the most celebrated and well-knwon result in the field of qualitative theory of

differential equations is the Poincaré-Bendixson Theorem.

Theorem (Poincaré-Bendixson Theorem). Let Φ be a C1 flow on R2 and p ∈ R2 be a point

whose orbit is bounded (i.e. ϕΦ(p) is contained in some compact subset of R2). Then

either ωΦ(p) contains some singular point or ωΦ(p) is itself a periodic orbit.

The importance of this result has to do not only with its usefulness as a tool in the

field of the qualitative theory of plane differential equations but also with the amount of

mathematics which has motivated; [18] is a good survey on the topic.

The theorem was first proved by Poincaré for the case of analytic flows, later Bendixson

extended the result to the C1 case. We remark that the theorem describes the ω-limit

set of a bounded orbit whose ω-limit set contains no singular points in two senses: from

a dynamical point of view, it says that ωΦ(p) is a periodic orbit; from a topological point

of view, it says that ωΦ(p) is homeomorphic to the euclidean unit circle S1. On the other

hand, it is also important to highlight that the result is far from being a characterization of

ω-limit sets: it only gives constrains about a subfamily of ω-limit sets. It this direction, and

as far as we know, R. E. Vingroad was the first one being able to give a global topological

characterization for ω-limit sets associated with (continuous) flows on the sphere:

Theorem (Vinograd [82]). Let Φ be a flow on the euclidean sphere S2 and let p ∈ S2. Then

ωΦ(p) is the boundary of a nonempty proper open connected subset O ⊂ S2 such that

S2 \O is also connected.
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Reciprocally, if Ω is the boundary of a nonempty proper open connected subset O ⊂ S2

such that S2 \O is also connected, then there exists a (continuous) flow (Φ,S2) and a point

p ∈ S2 such that ωΦ(p) = Ω.

In [43], V. Jiménez and J. Llibre presented characterizations, up to homeomorphism,

of the ω-limit sets for analytic flows on the plane, the sphere and the projective plane (and

their open subsets). For example, for the case of the sphere they found that:

Theorem (Llibre-Jiménez). Let Φ be an analytic flow on S2 and let p ∈ S2. Then ωΦ(p)

is either a singleton (a singular point) or the boundary of a cactus in the sphere (here a

cactus means a finite simply connected union of disks).

Conversely, for every cactus A ⊂ S2, there are an analytic flow Φ on S2 and a homeo-

morphism h : S2 → S2 such that h(BdA) is the ω-limit set for some orbit of Φ.

In [43], the authors distinguished two different stages. Firstly, they characterized

those limit sets for flows defined on the whole sphere, the whole plane and the whole

projective plane; afterwards, they extended the results to open subsets of these surfaces.

In Chapter 5 we will check those characterizations and see that, while the results given for

flows on the whole three surfaces are correct, the characterization for their open subsets

need to be redone. Even more, both characterizations (including those for the whole

surfaces) are based on an incorrect auxiliary result which says, roughly speaking, that on

any general analytic surface all analytic flows have the following property (stated here

without intention of being rigorous): if an orbit meets both sides of an arc of singular

points contained in its ω-limit set, then the flow must be equally oriented in both sides.

In Section 5.1 we show some counterexamples to that auxiliary lemma (and show how the

prove of the characterizations in [43] can be amended for the cases of the plane, the sphere

and the projective plane); then, in Section 5.2, we deal with the problem of characterizing

ω-limit sets for analytic flows on general open subsets of the sphere. This two sections

correspond, respectively, with the articles [30] and [27], both in collaboration with V.

Jiménez. We remark that, in the case of the open subsets of the sphere, we have been

able to find some restrictions which a subset of a given open subset of the sphere must

satisfy to be an ω-limit set for some analytic flow on the given open set (see Theorem F).

We do believe that these restrictions are enough to characterize, from a topological point

of view, these limit sets: in this sense, in Section 5.2, we conjecture what we believe is

a converse of Theorem F and we already give a first step of its proof (Proposition 5.24).

The characterization of the ω-limit sets for analytic flows on proper open subsets of the

projective plane (and, in general, on general surfaces) is still an open problem.

The third of the items listed above refers to the concept of limit periodic sets. Given a

family {Φλ}λ∈R of plane polynomial flows, we say that a set Γ ⊂ S2 is a limit periodic set

for {Φλ}λ if there exist sequences (λn)n in R and (pn)n in R2 such that, for every n, the

orbit ϕΦλn
(pn) is a limit cycle for Φλn and the sequence of circles (ϕΦλn

(pn))n converges
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(in the Hausdorff topology) to Γ.

The study of the structure of the limit periodic sets of planar polynomial flows is a

central object in bifurcation theory and in the treatment of the Hilbert 16th problem (see

R. Roussarie’s book [72]). For example, the program of F. Dumortier, R. Roussarie and

C. Rousseau [23] to solve the existential part of the 16th Hilbert problem for quadratic

polynomial systems requires the analysis of 121 cases based on the limit periodic sets.

In Chapter 6, which is based on a collaboration with A. Belotto (see [11]), we present a

topological characterization for all limit periodic sets of families of plane polynomial flows.

Finally, the aim of Chapter 7 is to study the fourth, and last, item of the list above.

That chapter collects a collaboration with D. Peralta-Salas and G. Soler where analytic

minimal surfaces are taken into consideration (see [29]).

Surfaces admitting flows with every orbit being dense are called minimal. Minimal

orientable surfaces were characterized by J.C. Benière in 1998, leaving open the nonori-

entable case. Chapter 7 fills this gap in the finite genus case: a characterization of analytic

minimal nonorientable surfaces of finite genus is given. We also construct an example of a

minimal nonorientable surface with infinite genus and conjecture that any nonorientable

surface is minimal.



Chapter 1

Basic results and notions on analytic

flows on surfaces

Basic results and notions on analytic

flows on surfaces

T he aim of this first chapter is to introduce some of the more basic notions which we

will be using during the rest of the dissertation. Among others, we have used as main

references [22, 43, 52, 54, 55] and [66].

1.1 Some basic notation and topological notions

A number of standard topological notions will be of repeated use along the thesis; we

collect in this section some of them. Good references containing all the more basic notions

not included here are, for example, [53] and [62].

Given a topological space X and a subset A ⊂ X, we will write IntX(A), ClX(A) and

BdX(A) to denote, respectively, the interior, the closure and the boundary of A in X; if

there is no possible confusion, we will omit the sub-index X to simply write Int(A), Cl(A)

and Bd(A).

We say that a topological space is an arc (respectively, open arc, circle, disk , an open

disk , a sphere) if it is homeomorphic to [0, 1] (respectively, R, the unit circle S1 = {(x, y) ∈
R2 : x2 + y2 = 1}, the unit disk D1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}, the real plane R2, the

euclidean sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}). Sometimes, we will add the

adjective “topological” to clarify we are using the concept up to homeomorphism. If L is

a (topological) arc, and h : [0, 1]→ L is a homeomorphism, then h(0) and h(1) are called

the endpoints of L.
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In general, neighbourhoods will not be considered to be open sets. Given a topological

space X, a point p ∈ X (respectively a set P ⊂ X) and A a subset of X, we will say that

A is a neighbourhood of p (respectively of P ) if there exists an open set B containing p

(respectively of P ) and contained in A. A point p ∈ X is said to be isolated (in X) if {p}
is a neighbourhood of p, that is, if {p} is an open subset of X. By a discrete set we mean

a subset Y ⊂ X consisting of isolated points.

1.1.1 Some notions on connectedness

A topological space is said to be locally connected at a point p if every open neighbour-

hood of p contains a connected neighbourhood of p; the space is locally connected if it is

locally connected at every point.

We say that X is pathwise connected if for any x, y ∈ X there is a continuous map

ϕ : [0, 1]→ X such that ϕ(0) = x and ϕ(1) = y. Such a map (as well as its range ϕ(I), if

no confusion arises) is called a path (from x to y). If additionally, for any x, y ∈ X, there

is an arc in X having x and y as its endpoints, then X is called arcwise connected . When

X is Hausdorff, these turn out to be equivalent notions, see [85, Corollary 31.6, p. 222].

A compact connected Hausdorff space is called a continuum; if a subspace of a contin-

uum X, with the induced topology, is itself a continuum, then it is called a subcontinuum of

X. A locally connected metric continuum is called a Peano space. The Hahn-Mazurkiewicz

theorem establishes that a (nonempty) continuum is a Peano space if and only if it is the

continuous image of the interval [0, 1] [54, Theorem 2, p. 256]. Hence any Peano space is

pathwise (arcwise) connected.

Given a topological space X and a continuous map F : [0, 1]× [0, 1]→ X, we will say

that F is a homotopy between the paths ϕ,ϕ′ : [0, 1] → X given by ϕ(t) = F (t, 0) and

ϕ′(t) = F (t, 1) for every t; the paths ϕ and ϕ′ are also said to be homotopic.

A pathwise connected space X whose fundamental group is trivial (that is, any path

ϕ : [0, 1]→ X with ϕ(0) = ϕ(1) is homotopic to the constant path ϕ′ : [0, 1]→ X given by

ϕ′(t) = ϕ(0) = ϕ(1) for any t) is called simply connected . As shown in [36, Proposition 3.2,

p. 10]), simply connectedness is equivalent to contractibility: X is said to be contractible

if there are p ∈ X and a continuous map G : [0, 1] ×X → X such that G(0, x) = x and

G(1, x) = p for any x. It is well known (see, e.g, [73, Theorem 13.11, p. 274]) that if

∅ $ X $ S2 is a region (that is, an open connected set), then X is simply connected if and

only S2 \X is connected and if and only if X is an open disk. The equivalence between

simply connectedness of X and connectedness of S2 \X holds as well when X ⊂ S2 is a

Peano space, see [47, Proposition 4.1].

A set of a topological space is said to be closed-open if it is open and closed at the

same time. Let X be a topological space and A and B two subsets. Then X is connected
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between A and B if there is no closed-open set F such that A ⊂ F and F ∩ B = ∅; X is

said to be totally disconnected if the space is not connected between any pair of singleton

subsets.

The last definition is taken from [54]. We have noticed that other authors define a

topological space as totally disconnected if the space has no connected subsets apart from

the singleton subsets and the empty set. It is then natural to ask ourselves if both notions

coincide. In order to fix our notation we are going to keep the term “totally disconnected”

to refer to the spaces as defined in the paragraph above; on the other hand, and following

again [54], we reserve the term hereditarily disconnected to the latter notion.

In general every totally disconnected space is also hereditarily disconnected. Indeed,

suppose that a totally disconnected space X possesses a connected subset C ⊂ X which is

neither the empty set not a singleton subset. Take two different points in C, say p and q.

Since C is connected its only closed-open subsets are itself and the empty set so C (and

therefore X) is connected between p and q. However, there exist hereditarily disconnected

spaces which are not totally disconnected (see [54, Remark (ii), p. 152]). Both notions

coincide in the context of compact metric spaces (see [54, p. 189]).

1.1.2 Some notions on metric spaces

The euclidean spaces Rn with the standard euclidean distance will play a prominent

role along the dissertation. Unless explicitly stated, if we refer to any notion related to a

distance on Rn, we will always understand that such a distance is the euclidean one. For

example, if we talk about an open ball of center p ∈ Rn and radius r we will be meaning

the set B(p, r) := {q ∈ Rn : ‖q − p‖ < r} where by ‖p‖ we denote the euclidean norm of

p; that is, if p := (p1, . . . , pn), ‖p‖ =
√
p2

1 + · · ·+ p2
n. We will use 0 to refer in short to the

origin of Rn.

In general, if (X, d) is a metric space, we will write Bd(a, r) to denote the open ball

(for d) of center a and radius r; that is, Bd(a, r) := {b ∈ X : d(a, b) < r}. A subset of X is

then said to be bounded (for d) if it is contained in some open ball (for d). Given any two

subsets A,B ⊂ X, we define the distance between A and B as the real number d(A,B) :=

inf{d(a, b) : a ∈ A, b ∈ B} and the diameter of A as diam(A) := sup{d(a, b) : a, b ∈ A}.
Notice that, while d(A,B) equals always a real number, diam(A) is only a well-defined

real number when A is bounded; otherwise we write diam(A) =∞.

We close this subsection presenting a characterization of the topological spaces which

are metrizable (we recall that a topological space X, with T as its set of open subsets,

is called metrizable when it is possible to define a distance on X such that the open sets

generated by the topology on X associated with that distance are exactly the sets in T ).

A topological space X is regular if for every point p ∈ X and every closed subset

C ⊂ X there exist disjoint open subsets U, V ⊂ X such that p ∈ U and C ⊂ V . A family
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of subsets of a topological space X is said to be locally finite if every point of X possesses

a neighbourhood which only meets finitely many subsets of the family.

Theorem 1.1 (Nagata-Smirnov metrization Theorem). A topological space is metrizable

if and only if is it is regular and has a basis which can be written as the countable union

of locally finite collections.

Proof. See, for example, [62, Theorem 40.3, p. 250].

1.1.3 One-point compactifications

A topological space X is said to be locally compact at a point p ∈ X if p has a compact

neighbourhood in X; X is called locally compact if it is locally compact at all its points.

The proof of the following classic result can be found, for example, in [54, Theorem 5,

p. 43].

Theorem 1.2 (Alexandrov’s one-point compactification Theorem). Every locally compact

metric space X is homeomorphic to a subset Y of a compact metric space X∞ such that

X∞ r Y consists of a single point.

Given a set X∞ as in the statement, we will say that X∞ is the one-point compact-

ification of X. Notice that we are here committing a small abuse of notation: one-point

compactification are not unequivocally defined but they are unique up to homeomorphism

(if X∞ and X∗∞ are two compact metric spaces as in the previous statement, then it is

direct to check that they must be homeomorphic).

Example 1.3. The one-point compactification of the euclidean plane R2
∞ = R2 ∪ {∞} is

homeomorphic to the euclidean sphere S2 (see the details in Section 1.4.3 below) — we

will also refer to R2
∞ (and to S2) as the Bendixson compactification of R2.

1.1.4 Homeomorphisms on the sphere

Homeomorphic copies of the sphere

Proposition 1.4. Let {Ci}i be a family of pairwise disjoint continua in S2. Assume that

S2 \ Ci is connected for any i and, additionally, that one of the following conditions is

satisfied:

(i) There is a region O such that {Ci}i is the family of connected components of S2 \O.

(ii) The family {Ci}i is countable and (if infinite) the diameters of the sets Ci tend to

zero.
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Then, after defining the equivalence relation ∼ in S2 by x ∼ y if either x = y or there is

i such that both x and y belong to Ci, the quotient space Σ := S2/ ∼ is homeomorphic to

S2.

Proof. Let Π : S2 → Σ be the projection map, when recall that U is open in Σ if and only

if Π−1(U) is open in S2. In view of [54, Theorem 8, p. 533] we are left to show:

(*) Σ is Hausdorff;

(**) Σ \ {X} is connected for any X ∈ Σ.

(***) Π−1(C) is connected for any connected set C ⊂ Σ.

To prove (*) we assume first that (i) holds. Let X,Y ∈ Σ, X 6= Y . We must find

disjoint open neighbourhoods U(X) and U(Y ) of X and Y in Σ. If X and/or Y is a point

from O this is trivial because O is open, so assume that both X and Y are components of

S2 \O. Since O is open [54, Theorem 2, p. 169] implies that X it is the intersection of all

open closed sets of S2\O (with respect to the topology of S2\O) including it. In particular,

it is possible to find disjoint compact sets A,B with A ∪B = S2 \O, X ⊂ A, Y ∩B 6= ∅.
The connectedness of any set Ci implies that either Ci ⊂ A or Ci ⊂ B. Therefore, Y ⊂ B.

Find pairwise disjoint open sets V ⊃ A and W ⊃ B. Since, for any i, either Ci ⊂ V or

Ci ⊂ W , we get that U(X) = Π(V ) and U(Y ) = Π(W ) are the neighbourhoods we are

looking for.

Now we prove (*) assuming that (ii) holds. Given X,Y ∈ Σ, X 6= Y , we first find

disjoint open sets V,W in S2 with X ⊂ V , X ⊂W . Realize that the resultant set V ′ after

removing from V the points from the components Ci such that Ci ∩BdV 6= ∅ is also open

(here we need that the diameters of the sets Ci go to zero), and the same is true for the

analogously defined set W ′. Then U(X) = Π(V ′) and U(Y ) = Π(W ′) are disjoint open

neighbourhoods of X and Y in Σ.

Statement (**) is immediate: since S2 \X is connected by hypothesis, and Π is con-

tinuous, Π(S2 \X) = Σ \ {X} is connected as well.

Note finally that Π is a closed map by (*). Then (***) follows from [54, Theorem 9,

p. 131] and the fact that any X ∈ Σ is a connected subset of S2.

Extending homeomorphism from subsets to the whole sphere

The study of conditions under which a homeomorphism between two subsets of a

manifold M can be extended to a homeomorphism of M onto itself has a long tradition

(see references in [4, 51]). A well-known example is the so-called Schoenflies Theorem

which states that any homeomorphism between two circles in R2 can be extended to
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a homeomorphism of R2 onto itself (see for example [54, Theorem 1, p. 535]). Many

authors have treated the particular case of the plane and the sphere: [1, 3, 2, 34, 35] and

[54, Section 61.V].

For the purposes of this dissertation, we are mainly interested in the case of Peano

spaces in the euclidean sphere. In [3], necessary and sufficient conditions ensuring that a

homeomorphism h between two Peano spaces A1, A2 ⊂ S2 can be extended to a homeo-

morphism H : S2 → S2 are given. The final part of this subsection is devoted to present

such characterization.

We call a triplet (A,B,C) of arcs in R2
∞ sharing a common endpoint p (and no other

point) a triod. The point p is called the vertex of the triod, the other endpoints of the

arcs A,B,C being called its endpoints. We say that the triod (A,B,C) is positive, when,

after taking an open euclidean ball U of center p and radius ε > 0 small enough, there

is θ0 ∈ R such that the first intersection points of these arcs with BdU can be written

as p + εeiθA , p + εeiθB , p + εeiθC , with θ0 = θA < θB < θC < θ0 + 2π. We say that the

triod is negative when it is not positive. Observe that the definition above excludes the

case when the common endpoint p is ∞. We then say that (A,B,C) is positive when

(G(A), G(B), G(C)) is negative, G : R2
∞ → R2

∞ being defined by G(z) = 1/z (here we

identify R2 with C and mean 1/∞ = 0, 1/0 = ∞). If C ⊂ R2 is a circle around 0 and

(q, q′, q′′) is a triplet of distinct points in C, then we call it positive or negative according

to whether it is counterclockwise or clockwise oriented in C, that is, there is a positive

(negative) triod (A,A′, A′′) in the disk enclosed by C with vertex 0 and endpoints q, q′, q′′.

Let P, P ′ ⊂ R2 (respectively, P, P ′ ⊂ R2
∞). We say that P and P ′ are R2-compatible

(respectively, R2
∞-compatible) if there is a homeomorphism H from R2 (respectively,

from R2
∞) onto itself mapping P onto P ′. Clearly, R2-homeomorphisms amount to R2

∞-

homeomorphisms mapping ∞ to itself. If H : R2
∞ → R2

∞ is a homeomorphism, then, as it

is well known, either it preserves the orientation, that is, all pairs of triods (A,B,C) and

(H(A), H(B), H(C)) have the same sign, or it reverses the orientation, that is, all pairs

of triods (A,B,C) and (H(A), H(B), H(C)) have opposite sign. As it turns out, see [3],

this is the key property to identify compatibility:

Theorem 1.5. Two Peano sets P and P ′ in R2
∞ are R2

∞-compatible if and only if there

is a homeomorphism h : P → P ′ either preserving or reversing the orientation, in the

former sense, for all pair of triods (A,B,C) and (h(A), h(B), h(C)) in P and P ′ (when h

can indeed be homeomorphically extended to the whole R2
∞).

The former result can be adapted to the R2-setting as follows. We say that P ⊂ R2

is nice if it is unbounded, P∞ = P ∪ {∞} is a Peano subset of R2
∞, and for any triod

(A,B,C) in P∞ with vertex ∞ there is a θ-curve in P∞ including A, B and C (by a

θ-curve we mean a union of three arcs intersecting exactly at their endpoints). Then

we get: two nice sets P, P ′ are R2-compatible if and only if there is a homeomorphism
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h : P → P ′ either preserving or reversing the orientation for all pair of triods (A,B,C) and

(h(A), h(B), h(C)) in P and P ′ (when, again, h can indeed be homeomorphically extended

to the whole R2).

1.2 Analytic Functions: definition and basic results

We will denote by N and N∗ the sets of positive and non-negative integers, respectively.

Given any n ∈ N (respectively n = ∞) we will write Nn to denote the set {1, 2, . . . , n}
(respectively N); sometimes, in order to unify the notation, we will also put∞ =∞+ 1 =

∞− 1 so in particular N∞ = N∞+1 = N∞−1 = N.

Given any n ∈ N, any z = (z1, . . . , zn) ∈ Rn and any α = (α1, . . . , αn) ∈ Nn∗ , we write

zα = zα1
1 . . . zαnn and |z|α = |z1|α1 . . . |zn|αn .

A real power series in n real variables centered at z0 ∈ Rn is a formal expression of the

type ∑
α∈Nn∗

aα(z − z0)α, (1.1)

with aα ∈ R. We say that the series (1.1) is absolutely convergent at z ∈ Rn if for a bijection

φ : N→ Nn∗ the series
∑∞

n=1

∣∣aφ(k)

∣∣ |z − z0|φ(k) is convergent (as a numerical series). Recall

that if a numerical series converges absolutely then it also converges unconditionally; hence,

if the series (1.1) is absolutely convergent, then the numerical series
∑∞

n=1 aφ′(k)(z−z0)φ
′(k)

converges for any bijection φ′ : N→ Nn∗ and its sum does not depend on the rearrangement.

Thus, if a power series like (1.1) converges absolutely at a point z, then we can naturally

speak about its sum at that point.

Analytic functions are those which can be expressed as a power series around any point

in their domain.

Definition 1.6. Let f : U → R be a function defined on an open subset U ⊂ Rn. The

function f is said to be analytic at a point z0 ∈ U if there exist an open neighbourhood

of z0, V ⊂ U , and a sequence of real numbers (aα)α∈Nn , such that the power series∑
α∈Nn∗ aα(z− z0)α is absolutely convergent at any z ∈ V and its sum coincides with f(z).

We say that f is analytic (on U) if it is analytic at any point of U ; we will also say that

f is of class Cω (on U) or that f ∈ Cω(U).

Functions f : U ⊂ Rn → Rm are described as vectors f = (f1, f2, . . . , fm), with each

fi : U → R being a real function. Given any of the components functions fi, we will

write ∂fi
∂xj

(p) to denote, when it exists, the partial derivative of fi with respect to xj (for

1 ≤ j ≤ n). In general, given any α = (α1, α2, . . . , αn) ∈ Nn∗ and any p ∈ U , we will write
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|α| = α1 + α2 + · · ·+ αn and, when it makes sense,

Dαfi(p) =
∂|α|fi

∂xα1
1 ∂xα2

2 · · · ∂xαnn
(p).

When α = 0, the previous expression will simply denote the value of fi(p). Then, we will

say that the function fi is of class Cr, for some r ∈ N (respectively for r =∞), if for every

α ∈ Nn∗ with |α| ≤ r (respectively for every α ∈ Nn), the derivative Dαfi(p) exists and is

continuous for every p ∈ U . Finally, we say that f is analytic or of class Cω (respectively

of class Cr for some 0 ≤ r ≤ ∞) if all its components fi are analytic (respectively of class

Cr) according to the above definition.

Recall that given any of the indexes 1 ≤ i ≤ n, if fi is of class C1, we say that the

vector map ∇fi : U → Rn given by ∇fi(p) =
(
∂fi
∂x1

(p), . . . , ∂fi∂xn
(p)
)

for every p ∈ U is the

gradient of f .

Analytic functions behave well under algebraic operations: the sum, the product, the

division and the composition of analytic functions, when well-defined, are analytic. The

same can be said about their calculus: any analytic function is continuously differentiable

and any partial derivative of first order at any point of its domain can be computed

differentiating formally each term of its representation as an absolutely convergent power

series, and we obtain again an absolutely convergent power series. In particular, any

analytic function is of class C∞. We refer the reader to [52] for the details.

Two important and elementary properties of analytic functions are presented below;

we will used them repeatedly in the sequel. The first of them works for analytic functions

defined on any open subset of Rn, the second one is true only in the one-dimensional case.

Proposition 1.7. If f : U → R is an analytic function, U ⊂ Rn is a region and f vanishes

at an open subset V of U , then it vanishes at the whole U .

Proof. It follows, after using a standard connectedness argument, from the relation be-

tween the coefficients of a power series representing an analytic function and its partial

derivatives, see [52, Remark 2.2.4].

Proposition 1.8. Let f : I → R be an analytic function defined on an open interval

I ⊂ R. If f vanishes at a sequence of points accumulating in I, then f vanishes at the

whole interval I.

Proof. This is a direct application of Rolle’s Theorem, see [52, pp. 11–14].

The following result is, while still elementary, of an altogether different calibre. It

relies on the fact that the ring of local convergent power series is a unique factorization

domain; a detailed proof can be found, for instance, in [43, Appendix A].
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Theorem 1.9. Let f = (f1, f2) : U ⊂ R2 → R2 be an analytic function and w ∈ U be a

zero of f . Then there are an open neighbourhood of w, W ⊂ U , and analytic functions

k, h1, h2 : W → R such that:

(i) f1 = kh1 and f2 = kh2 on W ;

(ii) h = (h1, h2) has no zeros in W r {w}.

We finally highlight a result which will allow to extend analytic maps defined on open

sets of Rn to the whole Rn still retaining C∞ regularity.

1.2.1 Extension of analytic maps

Theorem 1.10. Let U ⊂ Rn be open. Given any analytic map F : U → R, there exists

a C∞ map ρ : Rn → (0,∞), which is analytic at U and vanishes outside U , such that ρF

(after being extended as zero outside U) is C∞ in the whole Rn.

The last result is a consequence of [83, Lemma 6]: we devote the rest of the section to

justify this statement is true.

We start rewriting [83, Lemma 6] with our notation:

Lemma 1.11. Let U ⊂ Rn be an open set and {Um}m∈N∗ be an open cover of U (in

general, given a topological space X we say that a family of subsets of X covers X if the

union of those subsets equals X) such that for every m ∈ N∗, Cl(Um) is a compact subset

of Um+1. If g : U → R is a function of class C∞ and (εm)m∈N∗ is a sequence of positive

real numbers, there exists an analytic function G : U → R such that, for every m ∈ N∗,

|DαG(p)−Dαg(p)| < εm for every p ∈ U r Um and every α ∈ Nn∗ with |α| ≤ m.

The combination of this lemma with the theory of Partitions of Unity will allow us to

build the type of functional extensions we are interested in. We state, without proof, the

list of results we need (proofs can be found, for example, in [55, Chapter 2]).

Definition 1.12. Let U ⊂ Rn be open and {Ui}i∈I be an open cover of U . A C∞ partition

of unity subordinate to {Ui}i∈I is a family {ϕi}i∈I of functions ϕi : U → R of class C∞

verifying:

1. for every i ∈ I, 0 ≤ ϕi ≤ 1 in U with supp(ϕi) = Cl({p ∈ U : ϕi(p) 6= 0}) being

compact;

2. every p ∈ U possesses an open neighbourhood Vp such that supp(ϕi) ∩ Vp 6= ∅ for

finitely many indexes i;
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3. the functional series
∑

i∈I ϕi gives a well-defined function which is constant and

equals 1;

4. supp(ϕi) ⊂ Ui.

Theorem 1.13 (Existence of Partition of Unity). If U is an open set in Rn and {Ui}i∈I
is an open cover of U , then there exists a C∞ partition of unity subordinate to {Ui}i∈I .

Finally, an elementary topological result.

Lemma 1.14. Every open set U ⊂ Rn possesses an open cover {Um}m∈N∗, with U0 = ∅,
such that, for every m ∈ N∗, Cl(Um) is a compact subset of Um+1.

Let us now fix a function F : U → R analytic on an open set U ⊂ Rn, consider an open

cover {Um}m∈N∗ as in the previous lemma and take a C∞ partition of unity {ϕm}m∈N∗
subordinate to this cover (hence ϕ0 is constantly zero).

For every m ∈ N∗, find positive real numbers Km, Lm such that for every p ∈ Cl(Um),

every α ∈ Nn∗ with |α| ≤ m and every j ∈ N∗ the following inequalities hold:

|DαF (p)| ≤ Km,

|Dαϕj(p)| ≤ Lm.

We emphasize that the numbers Lm are well-defined because there are finitely many

maps ϕj whose support intersect Cl(Um) (otherwise we would contradict condition 2 in

Definition 1.12). We can assume, without loss of generality, that both (Km)m and (Lm)m

are increasing.

Consider now the function φ : U → R given by φ(p) =
∑∞

m=0 φm(p) with

φm =
ϕm

LmKm22m
.

This function is well-defined and of class C∞ on U because φ can be locally written as a

finite sum of C∞ functions. Also, observe that if p ∈ Cl(Um+1) \ Um, then the functions

φ0, . . . , φm vanish at p, and therefore

|Dαφ(p)| ≤ 1

Lm+12m2m+1

whenever |α| ≤ m+ 1. In particular,

|Dαφ(p)| ≤ 1

Lm2m2m+1

for any p ∈ U \ Um and any |α| ≤ m.
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On the other hand, observe that φ is positive in U . Hence, the numbers

εm =
1

2
min

{
1

Lm2m2m+1
,min{φ(p) : p ∈ Cl(Um+1)}

}
are positive as well. Applying Lemma 1.11 to the map φ and the numbers εm, we find an

analytic function Φ : U → R verifying, for every m ∈ N∗, the inequality

|DαΦ(p)−Dαφ(p)| < εm for every p ∈ U r Um and every α ∈ Nn∗ with |α| ≤ m.

This implies two things:

|DαΦ(p)| ≤ 1

Lm2m2m

for every p ∈ U \Um and |α| ≤ m, and Φ(p) > 0 for every p ∈ Cl(Um+1) \Um. The second

one means, indeed, that Φ is positive in U (recall U0 = ∅).

Now it is easy to check that the analytic product function G = Φ · F satisfies the

inequality

|DαG(p)| ≤ 1

2m

for every p ∈ U r Um, every m ∈ N∗ and every α ∈ Nn∗ with |α| ≤ m. From here, it

is already obvious that after extending G to Rn r U as the zero function, we get a C∞

function on the whole Rn.

1.3 Flows on metric spaces

A local flow on a metric space (X, d) is a continuous map Φ : Λ ⊂ R × X → X

satisfying:

• Λ is open in R×X; moreover, for any z ∈ X the set of numbers t for which Φ(t, z)

is defined is an open interval Iz := (az, bz), with −∞ ≤ az < 0 < bz ≤ ∞;

• Φ(0, z) = z for any z ∈ X;

• if Φ(t, z) = u, then Iu = {s−t : s ∈ Iz}; moreover, Φ(r, u) = Φ(r,Φ(t, z)) = Φ(r+t, z)

for every r ∈ Iu.

In the particular case Λ = R×X, we call Φ a flow on X.

Given a local flow Φ on X we sometimes refer to it as the 2-uple (X,Φ). We write

Φz(t) = Φt(z) = Φ(t, z) whenever it makes sense, when observe that if Φ is a flow, then

the map Φt : X → X is a homeomorphism for every t. We call ϕΦ(z) := Φz(Iz) the orbit

of Φ through the point z. Here (as for the subsequent notions) we sometimes omit Φ in the

subindex and write ϕ(z) instead. If ϕ(z) = {z} (when Iz = R), then we call z a singular
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point of Φ (by Sing(Φ) we will denote the union set of all those points); otherwise the

orbit, and its points, are called regular . Since orbits foliate the space, that is, distinct

orbits are disjoint, no point can be regular and singular at the same time — we also say

that the union of all orbits of Φ is a foliation of S and that every orbit is a leaf of the

foliation. When the orbit ϕ(z) is a circle (equivalently, the map Φz(t) is periodic), it is

called periodic. If I ⊂ Iz is a interval, then we call Φz(I) a semiorbit of ϕ(z) (by an interval

we understand a set of the form (a, b), (a, b], [a.b) or [a, b] for some real numbers a < b;

the empty set and any singleton subset of the real line will be said to be a degenerated

interval). In the particular cases I = [a, b] (with Φz(a) = p, Φz(b) = q), I = [0, bz) or

I = (az, 0], we rewrite Φz(I) as ϕ(p, q), ϕ(z,+) or ϕ(−, z), respectively.

Let z be a regular point of Φ and I ⊂ Iz such that Φz|I is an injective map. Then,

if J ⊂ R is open interval and ρ : J → Φz(I) a homeomorphism, then ρ−1 ◦ Φz|I is either

strictly increasing (when we say that ρ preserves the time direction of Φz(I)) or strictly

decreasing (when we say that ρ reverses the time direction of Φz(I)).

Typically, flows are represented geometrically by drawing a set of the plane representing

X and decomposing that set in leaves (the orbits of the flow), indicating with an arrowhead

the time direction of each of them; we then say that the picture is the phase portrait of

the flow.

Given Ω ⊂ X let us consider for every p ∈ Ω the maximal connected subset Jp ⊂ Ip

containing 0 and such that Φp(Jp) ⊂ Ω. If Jp is an open interval for every p, then the

restriction of Φ to ∆Ω := {(t, p) ∈ ∆ : t ∈ Jp} gives a local flow on Ω, which we will also

called (with an abuse of notation) the restriction of Φ to Ω. This is always the case if, for

example, Ω is invariant for Φ, that is, if it is the union of some orbits of Φ.

We say that two (local) flows (X1,Φ1) and (X2,Φ2) are locally topologically equivalent

at the points p1 ∈ X1, p2 ∈ X2, if there is a homeomorphism h : U1 → U2 between

open neighbourhoods of p1 and p2, with h(p1) = p2, carrying semiorbits onto semiorbits

and preserving time directions — meaning by the latter that the for every regular point

z ∈ U1 of Φ1 and every open interval I making Φ1,z|I injective and Φ1,z(I) ⊂ U1, the map

ρ = h◦ Φ1,z|I preserves the time direction of h(Φ1,z(I)). When the homeomorphism maps

the whole X1 onto X2 (hence carrying orbits onto orbits), then we call it a topological

equivalence between (X1,Φ1) and (X2,Φ2) and say that the flows (X1,Φ1) and (X2,Φ2)

are topologically equivalent.

If X is additionally assumed to be locally compact and X∞ is its one-point compact-

ification (see Theorem 1.2), then there exists a (global) flow (Φ∞, X∞), having ∞ as a

singular point, whose restriction (X,Φ∞) is a flow topologically equivalent to (X,Φ) (in

fact, the orbits are the same) — for the details, see, e.g., [44, Lemma 2.3].
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We define the ω-limit set of the orbit ϕ(z) (or the point z) as the set

ωΦ(z) := {u ∈ X : ∃tn → bz; Φz(tn)→ u} .

Remark 1.15. For every z the equality ωΦ(z) =
⋂

0<t<bz
Cl ({Φp(s) : t < s < bz}) holds.

The α-limit set αΦ(z) is analogously defined (now tn → az). Also, we write α′Φ(z) =

αΦ(z) \ ϕΦ(z) and ω′Φ(z) = ωΦ(z) \ ϕΦ(z). When these sets coincide, that is, the orbit

belongs neither to its α-limit set not its ω-limit set, we call it non-recurrent . If ϕΦ(z) ⊂
αΦ(z) (respectively ϕΦ(z) ⊂ ωΦ(z)) we say that ϕΦ(z) is an α-recurrent orbit (respectively

an ω-recurrent orbit). Then, an orbit is recurrent if it is either α-recurrent or ω-recurrent

(or both). Obviously all singular and all periodic orbits are recurrent: we call these orbits

trivial recurrent orbits.

In general, both the α-limit and the ω-limit set of an orbit are invariant for Φ. Also,

notice that if X is compact, every limit set must be nonempty. In particular, if, given a

point z ∈ X, the ω-limit (respectively α-limit) set of ϕΦ(z) is empty, then ωΦ∞ = {∞}
(respectively αΦ∞ = {∞}).

When, given a point z ∈ X, the ω-limit set (respectively the α-limit set) of the orbit

ϕΦ∞(z) is a singleton, say ωΦ∞(z) = {u} (respectively αΦ∞(z) = {u}) , then u must be

necessary a singular point for Φ∞ and limt→bz Φz(t) = u (respectively limt→az Φz(t) = u).

If αΦ∞(z) = ωΦ∞(z) = {u}, we say that ϕΦ(z) (or ϕΦ∞(z)) is an homoclinic orbit; if

{u} = αΦ∞(z) 6= ωΦ∞(z) = {v}, ϕ(z) is called heteroclinic.

Finally, let u ∈ X be a singular point for (X,Φ). If {u} is the ω-limit (respectively

the α-limit) set of all the orbits, the we say that u a globally attracting singular point or

a global attractor (respectively globally repelling singular point or a global repeller). If u

possesses a neighbourhood U such that all the orbits in U \ {u} are periodic, we say that

u (and also U) is a center .

1.4 Flows on surfaces

1.4.1 Surfaces: definition and some topological properties

Definition

By a surface (respectively a surface with boundary or a ∂-surface) S we mean a con-

nected, second countable, Hausdorff space such that every point in S possesses an open

neighbourhood homeomorphic to some open connected subset of the euclidean plane R2

(respectively to some open connected subset of the half-space H2 = R× [0,+∞)).

In a ∂-surface S, we call interior points to those points which have a neighbourhood

homeomorphic to some open connected subset of R2. On the other hand, the points p ∈ S
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for which there are an open neighbourhood U of p in S, an open connected subset V ⊂ H2

and a homeomorphism f : U → V with f(p) ∈ V ∩ (R × {0}) are called combinatorial

boundary points. We denote by ∂S the set of all combinatorial boundary points. Notice

that a surface S is just a ∂-surface with ∂S = ∅. Every point in a ∂-surface is either an

interior point or a boundary point but not both at the same time ([55, Theorem 1.37, p.

26]).

More generally, we can talk about manifolds. An n-manifold (respectively a n-manifold

with boundary) M is a Hausdorff, second countable space such that every point in M has

an open neighbourhood homeomorphic to an open connected subset of Rn (respectively

to some open connected subset of the half-space Hn = Rn−1 × [0,+∞)).

A surface (with boundary) is a connected 2-manifold (with boundary). If S is a ∂-

surface, then ∂S is a 1-manifold [55, p. 27]; therefore, any of the components of ∂S is

either homeomorphic to R or to S1 [55, p. 398].

Let S be a surface or a ∂-surface. A coordinate chart on S is a pair (U,ϕ) where U ⊂ S
is open and ϕ : U → ϕ(U) ⊂ R2 is an homeomorphism with ϕ(U) being open in R2 (if S

is a surface) or in H2 (if S is a ∂-surface). We say that U is a coordinate domain and ϕ

a coordinate map; if we write ϕ in components, ϕ(p) = (x(p), y(p)) we say that (x, y) are

local coordinates on U .

Given two coordinate charts on S, (U1, ϕ1) and (U2, ϕ2), such that U1 ∩ U2 6= ∅ we

call transition map from ϕ1 to ϕ2, respectively from ϕ2 to ϕ1, to the homeomorphism

ϕ2◦ϕ−1
1 = ϕ1(U1∩U2)→ ϕ2(U1∩U2) (respectively ϕ1◦ϕ−1

2 = ϕ2(U1∩U2)→ ϕ1(U1∩U2)).

We say that (U1, ϕ1) and (U2, ϕ2) are Cr compatible (with 0 ≤ r ≤ ∞ or r = ω) if either

U1 ∩U2 = ∅ or if the associated transitions maps are of class Cr. (A real function defined

on an open subset U ⊂ H2, f : U → R, is said of class Cr if for every p ∈ U there exists

an open subset Vp ⊂ R2 containing p and a map g : Vp → R of class Cr which agrees

with f on Vp ∩H2.) We define an atlas for S to be a collection of coordinate charts whose

domains cover S. When any two charts of an atlas are Cr compatible we call it a Cr

atlas (or a Cr structure) and we say that S is a Cr surface (or a Cr ∂-surface if S has

a nonempty combinatorial boundary). Two atlas of a surface S are Cr compatible if the

union of both atlas is itself a Cr atlas.

Example 1.16. The euclidean plane R2 has a trivial structure of Cω surface with the

identity map defining a chart for it. We can also easily endow S2 with an analytic structure

using as charts the stereographic projections πN : S2 \{pN} → R2 and πS : S2 \{pS} → R2

defined, respectively, by πN (x, y, z) = (x/(1 − z), y/(1 − z)) and πS(x, y, z) = (x/(1 +

z),−y/(1 + z)) (here pN = (0, 0, 1) and pS = (0, 0,−1) are the north and south poles).

Let S and M be two Cr surfaces (with or without boundary). A map F : S → M

is said to be of class Cr, or a Cr map, (for 0 ≤ r ≤ ∞ or r = ω) if for every point

p ∈ S, there are coordinate charts (U,ϕ) of S and (V, ψ) of M with p ∈ U , F (p) ∈ V
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and F (U) ⊂ V such that ψ ◦ F ◦ ϕ−1 is a map of class Cr in the real euclidean standard

sense (as a map from ϕ(U) ⊂ R2 to ψ(V ) ⊂ R2) — again, a map whose domain is a

subset of H2 is understood to be of class Cr if it admits an extension to a Cr map in an

open neighbourhood (in R2) of each point, and a map whose codomain is a subset of H2

is of class Cr if it is of class Cr as a map into R2. A bijection map F : S → M is a Cr

diffeomorphism (for 0 ≤ r ≤ ∞ or r = ω) if both F and F−1 are maps of class Cr. A

map F : S → M is a local Cr diffeomorphism if every point p ∈ S has a neighbourhood

U such that F (U) is open on M and the restriction of F to U on domain and to F (U) on

codomain is a Cr diffeomorphism.

Remark 1.17. Any surface (compact or not, with or without boundary) has, up to Cr

diffeomorphism (with r =∞ or r = ω), a unique Cr structure and given any two surfaces

(or any two ∂-surfaces) they are homeomorphic if and only if they are Cr diffeomorphic

(see [43, p. 685] and [44, p. 112] for some references). Therefore, whenever we deal with a

surface or with a ∂-surface we can always consider it equipped with a compatible analytic

structure.

Remark 1.18. Every surface (with or without boundary) is metrizable. Indeed, let S be

a ∂-surface. Since S is Hausdorff and locally homeomorphic to an open connected subset

of R2 or of H2 it follows that it is also regular [62, Lemma 3.1]. Furthermore, because S

is second countable, S clearly possesses a basis which is a countable union of locally finite

families of subsets and Theorem 1.1 gives the metrizability of S.

Quotient surfaces

Let (G,+) be a group with additive notation for its operation + (we will denote by

0G its identity element) and S be a set. An application A : G × S → S is said to be an

action of G on S if for every g, h ∈ G and every p ∈ S we have A(g,A(h, p)) = A(g+h, p)

and A(0G, p) = p.

Associated with an action we can consider an equivalence relation on S relating any

two elements p, q ∈ S if A(g, p) = q for some g ∈ G. It is standard to denote the quotient

under this equivalence relation as S/A.

Let us now suppose that S is a Cω surface and Let A : G× S → S be an action of G

on S. We say that A is smooth (respectively analytic) if for every g ∈ G, the application

A(g, ·) : S → S is of class C∞ (respectively of class Cω). We say the action A is free (or

that G acts on S freely) if for every p ∈ S, A(g, p) = p if, and only if, g = 0G. Finally the

action is called a proper action if the map B : G×S → S×S given by (g, p) 7→ (A(g, p), p)

is a proper map; that is, if K is a compact subset of S × S, then B−1(K) is also compact

(where in G we are considering the discrete topology).

For a given action with an explicit formula, it is easy in general to guarantee that the

action is smooth and free; however, proving that the action is proper can be difficult or
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at least not an evident task. An interesting characterization of proper actions for some

special cases (enough for our purposes) is the following. If A : G×S → S is a smooth and

free action of a countable (finite or infinite) group G (equipped with the discrete topology)

over a surface S, then the action is proper if, and only if, for any given sequences (pn)n

in S and (gn)n in G such that (pn)n and (A(gn, pn))n are convergent (in S), then (gn)n

possesses a constant subsequence (in G) — see [55, Lemma 21.5, p. 543].

Theorem 1.19 (Quotient Surface Theorem). Suppose G is a countable (finite or infinite)

group acting smoothly (respectively analytically), freely and properly on a Cω surface S.

Then the quotient S/G is a C∞ (respectively Cω) surface for which the quotient map

π : S → S/G is a local C∞ (respectively Cω) diffeomorphism.

Proof. See [55, p. 549, Theorem 21.13] (this reference shows the proof for the case r =∞
but the same proof works word by word for the analytic case).

Example 1.20 (Torus). It is an easy exercise to check that the application A : Z2×R2 →
R2 given by A((l, k), (x, y)) = (x + k, y + l) is a free analytic proper action of the group

Z2 (with the sum and with (0, 0) as identity element) on R2. The analytic surface given

by the quotient T2 := R2/Z2 is known as the torus. When using the torus along this

dissertation, we will frequently represent it geometrically. To do so, we will draw a unit

square [0, 1] × [0, 1] where the points (x, 0) and (x, 1) (respectively (0, y) and (1, y)) are

identified for every 0 ≤ x ≤ 1 (for every 0 ≤ y ≤ 1).

Example 1.21 (Projective plane). Let us now consider the group G = {−1, 1} (with the

multiplication as operation and with 1 as identity element). The real projective plane can

be defined as the quotient P2 := S2/Z2 associated with the action A : Z2 × S2 → S2 given

by G(1, p) = p and G(−1, p) = −p for every p ∈ S2. Again, it is trivial to show that A is

analytic, free and proper and, consequently, P2 is an analytic surface for which the quotient

map π : S2 → P2 associated with the quotient S2/Z2 is a local analytic diffeomorphism.

Orientation of a surface: a topological definition

We recall that any ∂-surface homeomorphic to S1×[−1, 1] (respectively to P2\U where

U is the interior of a disk D ⊂ P2) is said to be a closed annulus (respectively a Möbius

band).

We say that a circle α in a surface S is nonorientable (respectively orientable) if it has

a neighbourhood A ⊂ S with Cl(A) being a closed annulus (respectively a Möbius band).

It is a well-known fact that a circle in a surface is either orientable or nonorientable: we

present an elementary proof of this fact based on the classification of surfaces below, see

Corollary 1.30.



1.4 Flows on surfaces 17

Given a surface S, we say that S is orientable if it does not contain any nonorientable

circle; otherwise, S is called nonorientable. A surface with boundary S is said orientable

(respectively nonorientable) if the surface Sr∂S is orientable (respectively nonorientable).

Example 1.22. It is direct to check that all the circles on the plane, the sphere or the

torus are orientable. On the other hand, the projective plane is a nonorientable surface.

Indeed, with the notation of Example 1.21, then π({(x, y, z) ∈ S2 : z = 0}) is clearly a

nonorientable circle on P2.

Remark 1.23. Notice that it is a direct consequence of the definition that any two nonori-

entable circles in P2 must meet.

Classification of surfaces

We collect in this section some classification theorems for surfaces. In order to write

this section we have consulted mainly the following references: [60, Chapter 1], [33], [71]

and [69].

Definition 1.24. Given a surface S, we say that a compact subset T ⊂ S is a triangle of S

if there exists an homeomorphism φ : T ′ → T with T ′ being a standard euclidean triangle

of straight edges in R2 (i.e. a compact subset of R2 bounded by three distinct straight

lines). The images, under the homeomorphism φ, of the vertexes (respectively the edges)

of the triangle T ′ are called the vertexes (respectively the edges) of T . A triangulation of

S is a finite cover of S by triangles of S, T , such that any two different triangles are either

disjoint, meet in exactly one vertex or meet in a whole edge (c.f. [60, p. 16]).

It is a well-known result in the field of Topology, although it is not easy to prove,

that every compact surface has a triangulation (see [80, Theorem 4.1]). The notion of

triangulation can be extended to noncompact surfaces (c.f. [60, p. 47]): a extended trian-

gulation for a (noncompact) surface S is a (possibly infinite) cover of S by triangles of S,

T , such that any two different triangles are either disjoint, meet in exactly one vertex or

meet in a whole edge and, furthermore, each point has a neighbourhood that meets only

finitely many triangles. With this extended definition it can be proved that every surface

(compact or not) admits a triangulation (see [60, Chapter 1, Section 13]).

Definition 1.25 (Euler characteristic). Let S be a compact surface and T be a triangu-

lation of S. Call χ2 the number of triangles in T and χ0 and χ1 the number of vertexes

and edges of these triangles, respectively. We define the Euler characteristic of S as

χ(S) = χ0 − χ1 + χ2. (1.2)

The formula (1.2) does not depend on the triangulation ([50, Theorem 5.13, p. 105]).
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Definition 1.26 (Genus). Let S be a compact surface. The genus of S is defined as an

integer g(S) according to the following rule:

g(S) =

1
2(2− χ(S)) if S is orientable,

2− χ(S) if S is nonorientable.
(1.3)

Clearly, the Euler characteristic, and therefore the genus, of a surface stays constant

under homeomorphisms.

Example 1.27. It is a trivial exercise to check that g(S2) = 0 and g(T2) = g(P2) = 1.

Given two compact surfaces, S1 and S2, we define their connected sum, denoted by

S1#S2, as follows. We first choose disks D1 ⊂ S1 and D2 ⊂ S2 and a homeomorphism

f from ∂D1 to ∂D2. Call S′1 = S1 r Int(D1) and S′2 = S2 r Int(D2). Finally S1#S2

is defined as the quotient space of S′1 ∪ S′2 by identifying any point with itself and the

points x ∈ ∂D1 with f(x) ∈ ∂D2. S1#S2 is a compact surface with the quotient topology

(see [55, Attaching Smooth Manifolds Along Their Boundaries]). Moreover, it can also be

proved that the topology of S1#S2 does not depend either on the disks D1 and D2 or on

the homeomorphism f used in its definition (that is, if one chooses two different pairs of

disks in the given surfaces and builds two quotients as above, then both resultant surfaces

are homeomorphic). A formula to compute the Euler characteristic of the connected sum

of S1 and S2 is ([60, Theorem 8.1]):

χ(S1#S2) = χ(S1) + χ(S2)− 2.

We already have all the ingredients we need to state the classification of compact

surfaces.

Theorem 1.28 (Classification of compact surfaces). Two compact surfaces surfaces are

homeomorphic if and only if they have the same Euler characteristic and the same genus

(equivalently, if they have the same character of orientability, and either they have the

same Euler characteristic or they have the same genus).

With more detail:

1. If S is a compact orientable surface of genus g then S is homeomorphic to a connected

sum of g tori (g = 0, 1, 2 . . .);

2. If S is a compact nonorientable surface of genus g then S is homeomorphic to a

connected sum of g projective planes (g = 1, 2 . . .);.

An orientable compact surface of genus g is a sphere with g ‘handles’; a nonorientable

compact surface of genus g has g cross-caps (i.e., if S is written as a connected sum of
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projective planes, then that sum consists of exactly g of these projective planes). Equiv-

alently, for any 2k < g, S has k handles and g − 2k cross-caps. In other words, on a

nonorientable surface a pair of cross-caps is equivalent to a handle (as long as at least one

cross-cap is left).

In what follows, for every non-negative (respectively positive) integer g, Mg (respec-

tively Ng) denotes the only, up to homeomorphisms, orientable (respectively nonori-

entable) compact surface of genus g. Recall that the Euler characteristic, χ(·), can be

computed as χ(Mg) = 2− 2g and χ(Ng) = 2− g.

With this notation, M0 (respectively M1, N1) equals, up to homeomorphisms, the

sphere S2 (respectively, the torus T2, the projective plane P2). We also represent by B2

the surface N2, the Klein bottle.

If we select a finite number of disjoint disks in a compact surface and remove their

interiors, then we obtain a surface with boundary. The number of boundary components

is equal to the number of subtracted disks. Conversely, if S is a compact surface with

boundary and the boundary has k components (k circles), it is clear that, after gluing k

disks to these circles we obtain a standard compact surface (see [55, Attaching Smooth

Manifolds Along Their Boundaries]). Summarizing, the collection of compact surfaces

with boundary coincide with the collection of compact surfaces from which we subtract a

finite number of disks has been removed.

If S is a compact surface with boundary which has exactly k boundary components and

S̄ is the compact surface we obtain S after gluing k disks to these boundary components,

then we define the Euler characteristic of S as the integer χ(S) = χ(S̄)− k. The genus of

S is, however, defined as the genus of S̄: with this convention, an orientable (respectively

nonorientable) surface with boundary still has as many handles (respectively cross-caps)

as its genus indicates.

Theorem 1.29 (Classification of compact surfaces with boundary). Let S1 and S2 be

compact surfaces with boundary, and assume that their boundaries have the same number

of components. Then S1 and S2 are homeomorphic if and only if the obtained compact

surfaces after gluing a disk to each boundary component are homeomorphic. In other

words, two compact surfaces with boundary are homeomorphic if and only if they have the

same number of boundary components, the same Euler characteristic, and both of then are

either orientable or nonorientable.

As a consequence of this classification, we are now ready to prove that any circle in a

surface is either orientable or nonorientable.

Corollary 1.30. Any circle in a surface possesses a neighbourhood which is homeomorphic

either to a compact annulus or to a Möbius band.



20 Basic results and notions

Proof. Let α be a circle in a surface S. The compactness of α and the properties of S and

α as manifolds allow us to consider a finite cover for α by open coordinate neighbourhoods

{(Ui, ϕi)}mi=1, for some m ≥ 2, such that for every i, α meets every Ui is a unique open

arc and ϕi(Ui) = B(0, 1).

Associated with any i ∈ {1, 2, . . . ,m}, we call i− and i+ the only two integers in

{1, 2, . . . ,m} such that i− + 1 = i = i+ − 1 (mod m). Without loss of generality, taking

a smaller coordinate neighbourhood if necessary, we may assume that for every i, j ∈
{1, 2, . . . ,m}:

• ϕi extends to a homeomorphism ϕ̄i : Cl(Ui)→ Cl(B(0, 1));

• Vi,j = Cl(Ui) ∩ Cl(Uj) is nonempty if and only if j ∈ {i−, i+}; moreover, in such a

case, Vi,j is a disk and Vi,j ∩ α is also nonempty (and consists of an arc).

We notice that both D = ∪1≤i≤m−1 Cl(Ui) and Cl(Um) are disks whose intersection

consists in two connected components: two disks. Hence, A = D ∪ Cl(Um) is a compact

∂-surface of Euler characteristic χ(A) = χ(D)+χ(Cl(Um))−χ(D∩Cl(Um)) = 1+1−2 = 0.

Moreover, it is easy to see that ∂A has either two or one components (circles in any

case). After attaching disks to A along the components of its combinatorial boundary we

get a compact surface. In the former (respectively latter) case, we get a compact surface

M with Euler characteristic given by χ(M) = 2 (respectively by χ(M) = 1) so M is

homeomorphic to S2 (respectively to P2).

In order to introduce an analogous classification for noncompact surfaces we first need

some notation.

Let S be a ∂-surface. A subset T ⊂ S which, with the induced topology of S, has itself

structure of ∂-surface is said to be a ∂-subsurface of S (or simply a subsurface if ∂T = ∅).
A ∂-surface S is said to be planar if every compact ∂-subsurface T ⊂ S has genus

zero. Every planar surface is necessarily orientable (every nonorientable surface has genus

greater than zero). A ∂-surface S is said to be of finite genus if there exists a compact

∂-subsurface T ⊂ S such that S r T is planar; in such a case we define the genus of S to

be the genus of T .

A ∂-surface S is said of infinite genus (respectively infinitely nonorientable) if there

is no compact subset A of S such that S r A is of genus zero (respectively orientable).

Clearly an infinitely nonorientable surface is also of infinite genus.

A subset of a noncompact ∂-surface S is said bounded (respectively unbounded) if its

closure (in S) is compact (respectively noncompact).

Definition 1.31 (Generalized boundary components). Let S be a noncompact surface.

A generalized boundary component of S is a nested sequence P1 ⊃ P2 ⊃ · · ·Pn ⊃ · · · of

unbounded regions in S such that:
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1. the boundary of Pn in S is compact for all n;

2. for any bounded subset A of S, Pn ∩A = ∅ for n sufficiently large.

In what follows, S is supposed to be a fixed noncompact surface. Two generalized

boundary components P1 ⊃ P2 ⊃ · · · and P ′1 ⊃ P ′2 ⊃ · · · of S are equivalent if, for any

n ∈ N, there are n1, n2 ∈ N such that Pn1 ⊂ P ′n and P ′n2
⊂ Pn. This relation between

generalized boundary components induces an equivalence relation. If p = {P1 ⊃ P2 ⊃ · · · }
is a generalized boundary component of S, we will denote by [p] its equivalence class. Any

of these equivalence classes is called an end of a generalized boundary component of S.

Given any U ⊂ S whose boundary in S is compact, we define U∗ to be the set of all

ends [p], represented by some p = {P1 ⊃ P2 ⊃ · · · }, such that Pn ⊂ U for all sufficiently

large n. It is clear that this is a good definition: it does not depend on the representative of

[p]. We collect all these sets U∗ in a collection B(S); it is an easy exercise to see that B(S)

is the basis for some topology. The ideal boundary B(S) of S is the set of all equivalence

classes of generalized boundary components of S equipped with the topology having B(S)

as basis.

Let p = {P1 ⊃ P2 ⊃ · · · } be a generalized boundary component of S. We say that [p]

is planar (respectively orientable) if the sets Pn are planar (respectively orientable) for all

sufficiently large n. It is obvious that these notion does not depend on the representative

member of [p].

Two important subsets of B(S) are:

B′(S) = {[p] ∈ B(S) : [p] is not planar} ,
B′′(S) = {[p] ∈ B(S) : [p] is nonorientable}.

It can be proved that B′′(S) ⊂ B′(S) ⊂ B(S) is a nested sequence of totally discon-

nected, separable and compact (metric) spaces.

Suppose now that S is neither orientable nor infinitely nonorientable. Then every

sufficiently large compact subsurface of S has genus of the same parity: if that parity is

even (respectively odd), then we say that S if of even (respectively odd) orientability type.

So among the class of noncompact surfaces we distinguish four classes: the orientability,

the infinitely nonorientability, the odd orientability and the even orientability classes.

Theorem 1.32 (Kerékjártó Theorem). Ñet S1 and S2 be two surfaces of the same genus

and orientability class. Then S1 and S2 are homeomorphic if, and only if, there is an

homeomorphism h : B(S1) → B(S2) such that h(B′(S1)) = B′(S2) and h(B′′(S1)) =

B′′(S2).

I. Richards, in [71], proved that any triple nested sequence of compact, separable,

totally disconnected spaces Z ⊂ Y ⊂ X occurs as the ideal boundary of some surface: he
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explicitly built such a surface as a sphere, punctured by a certain set of points and open

disks, with specified boundary identifications for the disks.

Theorem 1.33 (Richards). Every surface is homeomorphic to a surface obtained from the

sphere S2 by first removing a compact totally disconnected set X from S2, then removing

the interior of a finite or infinite sequence (Di)i of disjoint disks in S2 r X, and finally

suitably identifying the boundaries of these disks in pairs (it may be necessary to identify

the boundary of one disk with itself to produce a cross-cap). Moreover, when the sequence

(Di)i is infinite, we have that for any open subset U ⊂ S2 containing X, all but a finite

number of the Di are contained in U .

The proof of this theorem in [71] is such that the genus of the built surface only depends

on the identifications between the boundaries of the subtracted disks of the sphere. This

fact allows us to give a more descriptive result for the case of finite genus surfaces.

Corollary 1.34. Let S be an orientable (respectively nonorientable) surface of finite genus

g. Then, for any compact orientable (respectively nonorientable) surface of genus g, M ,

there exists a totally disconnected subset K ⊂M such that M \K is homeomorphic to S.

Moreover, if L is a totally disconnected subset of M which is homeomorphic to K, then

M \ L is also homeomorphic to S.

Proof. This is a direct consequence of the previous theorem and the Kerékjártó Theorem

after noticing that in a surface of finite genus all equivalent classes of generalized boundary

components are planar.

Remark 1.35. This corollary shows that every noncompact surface of finite genus possesses

a compactification which is itself a surface. In general, given a noncompact surface S, an

embedding h : S → M of S into a topological space M is said to be a compactification

of S if M is compact and h(S) is an open and dense subset of M . Given a noncompact

orientable (respectively nonorientable) surface S of finite genus g, Corollary 1.34 says that

there exists an embedding h : S → M with M = Mg (respectively M = Ng) such that

K = M \ h(S) is totally disconnected. So, in particular, h is a compactification of S.

The set M is also locally connected and Hausdorff (it is a surface) and K is nonseparating

on M (i.e., for any region U ⊂ M , the set U \ K is also connected). This additional

property implies that the compactification h is unique in the following sense. If M ′ is any

other compact Hausdorff and locally connected space for which there exists an embedding

h′ : S →M ′ making K ′ = M ′ \h′(S) being totally disconnected and nonseparating on M ′,

then there exists a homeomorphism F : M → M ′ such that (h′)−1 ◦ F ◦ h is the identity

map on S.
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1.4.2 Some differentiable properties of surfaces

Tangent spaces and vector fields

Let us fix for the whole section a Cr surface (with or without boundary), S, for some

1 ≤ r ≤ ∞ or r = ω. We will denote by Cr(S) the set of all functions f : S → R of class

Cr.

Given any p ∈ S, we will say that a R-linear map v : Cr(S)→ R is a derivation at p if

it satisfies the equation v(fg) = f(p)v(g) + g(p)v(f) for every f, g ∈ Cr(S). The set of all

derivations at p, denoted by TpS, is called the tangent space of S at p, the elements of TpS

being the tangent vectors of S at p, and the union set TS = ∪pTpS is called the tangent

bundle of S . It can be proved that, for every p, TpS is a R-vector space of dimension 2

and that TS has structure of Cr surface (with boundary if ∂S 6= ∅).

If (U,ϕ) is a coordinate chart on S with p ∈ S and x, y : U → R are the associated

local coordinates, we consider two derivations ∂
∂x

∣∣
p
, ∂
∂y

∣∣∣
p
∈ TpS given by the formulas

∂

∂x

∣∣∣∣
p

(f) :=
∂(f ◦ ϕ−1)

∂x
(ϕ(p)),

∂

∂y

∣∣∣∣
p

(f) :=
∂(f ◦ ϕ−1)

∂y
(ϕ(p)),

for every f ∈ Cr(S). It can be proved that

{
∂
∂x

∣∣
p
, ∂
∂y

∣∣∣
p

}
is a base for TpS; given any

derivation at p, v, it can be expressed as a linear combination as

v = v(x)
∂

∂x

∣∣∣∣
p

+ v(y)
∂

∂y

∣∣∣∣
p

.

A Cr vector field on S is a map X : S → TS with X(p) ∈ TpS for every p ∈ S and such

that for every coordinate chart (U,ϕ = (x, y)), the functions q 7→ Xq(x) and q 7→ Xq(y)

are of class Cr on U , where, for every q ∈ U , Xq(x) and Xq(y) are the only two real

numbers verifying

X(q) = Xq(x)
∂

∂x

∣∣∣∣
q

+Xq(y)
∂

∂y

∣∣∣∣
q

,

that is, Xq(x) := (X(q))(x) and Xq(y) := (X(q))(y).

Let us now fix a Cr vector field on S, X, and take a curve γ : I → S of class Cr defined

in an open interval I ⊂ R. Given any s ∈ I, we define the velocity of γ at s, denoted as

γ′(s), as the derivation at γ(s) given by the formula

γ′(s)(f) :=
d

dt
(f(γ(t)))

∣∣∣∣
t=s

, for every f ∈ Cr(S).
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We then say that γ is an integral curve of X if for every s ∈ I we have γ′(s) = X(γ(s)).

Remark 1.36. Finding the integral curves associated with a given Cr vector fields is equiv-

alent to solving autonomous systems of differential equations. Indeed, let X be a Cr vector

field on S and γ : I → S be a curve of class Cr defined on an open interval I ⊂ R. Let

s ∈ I and consider a coordinate chart (U,ϕ = (x, y)) with γ(s) ∈ U , and an εs > 0 such

that γ((s − εs, s + εs)) ⊂ U and name as γ1 and γ2 the coordinates of the composition

ϕ ◦ γ|(s−ε,s+ε) (i. e. ϕ(γ(t)) = (γ1(t), γ2(t)) for every t ∈ (s − εs, s + εs)). Hence, the

condition γ′(s) = X(γ(s)) translates to solving the equation

γ̇1(s)
∂

∂x

∣∣∣∣
γ(s)

+ γ̇2(s)
∂

∂y

∣∣∣∣
γ(s)

= Xγ(s)(x)
∂

∂x

∣∣∣∣
γ(s)

+Xγ(s)(y)
∂

∂y

∣∣∣∣
γ(s)

,

or what it is the same, to resolving the system

γ̇1(s) = Xγ(s)(x),

γ̇2(s) = Xγ(s)(y),
(1.4)

(where, if f : I → Rm is a C1 function on an open interval of R, we use ḟ(s) to denote its

derivative at s).

This last remark is the key to transfer the theory of ordinary differential equations on

the plane to general surfaces. For example the existence and uniqueness of solutions for

Cr planar autonomous differential equations is translated into the following result.

Theorem 1.37. Let X be a Cr vector field on a Cr surface (for some 1 ≤ r ≤ ∞ or

r = ω). For every point p ∈ M , there exists a unique maximal Cr curve γp : Ip → S,

defined in an open interval Ip ⊂ R containing 0, which is an integral curve of X starting

at p (that is, a integral curve of X with γp(0) = p and such that, if γ̄ : Ī → S is also an

integral curve of X with 0 ∈ Ī and γ̄(0) = p, then Ī ⊂ I and γ̄(t) = γ(t) for every t ∈ Ī).

With the notation of this last theorem, we will say that γp is the (maximal) integral

curve of X starting at p.

The details for the proof of this theorem (for the cases 1 ≤ r ≤ ∞) can be found, for

example, in [55, Chapter 8]. But the proof also work for the analytic case: we just have

to highlight that the existence of uniqueness results for Cr planar autonomous differential

equation also hold for r = ω (for example, see [56, pp. 43–45] for a discussion on the

details needed to adapt the C∞ proof to this case; in [24] we presented a self-included

proof of this fact).
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Differentials and embeddings

Let S and M be two Cr surfaces with or without boundary (for some 1 ≤ r ≤ ∞ or

r = ω) and F : S → M be a map of class Cr. Given any p ∈ S and any derivation at p,

v, it is direct to check that the map dpF (v) : Cr(M)→ R given by dpF (v)(f) := v(f ◦ F )

for every f ∈ Cr(M) is a derivation at F (p). We then define the differential of F at p as

the R-linear map dpF : TpS → TF (p)M associating, to any v, the derivation dpF (v). The

map dF : TS → TM given by dF (v) := dpF (v) is then said to be the differential of F .

The map F is said to be a Cr embedding if it is a topological embedding (that is, an

injective continuous map which becomes a homeomorphism after restricting its codomain

to its range F (S)) and, for every p, dpF is injective.

Orientation of a surface: a differentiable definition

We introduce here a definition of orientability for surfaces (or ∂-surfaces) based on

the notion of vector fields. This new definition is equivalent to that one introduce in

Section 1.4.1.

We start by recalling the analogous concept of orientability for real vector spaces.

Suppose that V is vector space over R of finite dimension n ≥ 1 and let B1 = (v1, . . . , vn)

and B2 = (w1, . . . , wn) be two (ordered) bases for V . Given any base B of V and any

v ∈ V we will denote by [v]B the vector in Rn giving the coordinates of v respect the

base B. Fix any base of V , B, and let T : V → V be the unique linear automorphism

satisfying T (vi) = wi for all 1 ≤ i ≤ n and call MT its matrix representation with

respect a base B (i.e. MT is the unique square matrix of order n satisfying that for every

v ∈ V , [T (v)]tB =MT [v]tB where [v]tB is simply the vector [v]B written in column notation).

We say that B1 and B2 are consistently oriented if MT has positive determinant. Being

consistently oriented defines in the family of bases for V an equivalence relation; we defined

an orientation for V as an equivalence class of that relation. A real vector space V together

with a choice of orientation is called an oriented vector space.

Given a surface (or a ∂-surface) S, we define a point-wise orientation on S, O, to

be a choice of orientation of each of its tangent spaces (i.e. Op is an orientation of the

2-dimensional real vector space TpS for each p ∈ S). We say that a point-wise orientation

O is continuous if for every point p of S there exist an open neighbourhood U ⊂ S

of p and two C1 vector fields on U , X1 and X2 such that (X1|p , X2|p) is a positively

oriented basis for TpS (that is, (X1|p , X2|p) belongs to the equivalence class of Op). An

orientation of S is simply a continuous point-wise orientation; S is said to be orientable if

there exists an orientation for it and nonorientable otherwise. An orientable surface with

a fixed orientation is called an oriented surface.

A coordinate chart (U,ϕ), with ϕ = (x, y), of an oriented surface (or ∂-surface) S
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is said to be positively oriented if for every p ∈ U the 2-uple of the coordinate tangent

vectors

(
∂
∂x

∣∣
p
, ∂
∂y

∣∣∣
p

)
is positively oriented. An atlas for S is said consistently oriented

if every two non-disjoint coordinate chars have associated transition maps with positive

Jacobian determinant everywhere on its domains. A surface is orientable if, and only if,

it possesses a consistently oriented Cω atlas ([55, Proposition 15.6, p. 382]) — the result

just cited is given and proved for C∞ regularity but everything is clearly extended in an

obvious way to the Cω class.

A helpful criterion for establishing the orientability of a particular surface is the fol-

lowing one. A surface (or a ∂-surface) S is orientable if, and only if, it admits an ordered

2-upla of linearly independent continuous vector fields (X,Y ) with domain the whole sur-

face S (i.e. if Xp and Yp are linearly independent vectors of TpS for every p ∈ S) —

see [55, Theorem 15.17].

The previous characterization could of course be used as a nonorientability criterion

but it is easy to understand that it is almost not practical at all: it can be easy to, for a

given surface, find a particular pair of linearly independent continuous vector fields defined

on the whole surface but proving that such a pair cannot exists can be a extremely tough

task. A standard alternative can be trying to find a nonorientable circle in the surface,

that is, to use the definition of orientability given in the previous section.

Poincaré-Hopf index Theorem

In general, computing the Euler characteristic of a given surface using the definition

can be a very tedious task. We present here a very useful alternative for surfaces where

a C1 vector field with finitely many singularities is defined: the so-called Poincaré-Hopf

index Theorem. In order to present a precise statement, we begin by introducing some

needed notions, definitions and auxiliary results.

Let X and X̃ be arcwise connected and locally arcwise connected spaces and let p :

X̃ → X be continuous. The pair (X̃, p) is called a covering space of X if for every x ∈ X
there exists an open neighbourhood U of x such that p−1(U) is a disjoint union of open

sets, each of which is mapped homeomorphically onto U by p. In such a case we also say

that p is a covering map between X̃ and X and that X̃ is a covering for X.

Remark 1.38. With the notation above:

1. p is an open map and a local homeomorphism;

2. Since X is connected, if p−1({x0}) has k ∈ N elements for some x0 ∈ X, then

p−1({x}) has also k elements for every x ∈ X. In such a case, we say that (X̃, p) is

a k-fold covering of X;
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3. If S is a surface (or more in general a n-manifold), then so is S̃. Moreover, if (S̃, p) is

a k-fold covering of a surface S, then the Euler characteristics of S and S̃ are related

by the formula χ(S̃) = kχ(S) (see [50, Theorem 7.19, p. 167]).

Example 1.39. Two easy examples:

1. If X = S1 = {z ∈ C : |z| = 1}, the pair (R, p), with p : R → S1 given by p(t) =

exp(2πi), is a covering space for X;

2. Let X = P2 be the projective plane and. Let us call X̃ = S2 and take p : X̃ → X

defined by p(z) = {z,−z}. The pair (X̃, p) is a covering space of X.

Theorem 1.40 (Double covering of nonorientable surfaces). Every (compact) nonori-

entable surface (respectively ∂-surface) S has a 2-fold covering space (S̃, p) with S̃ being a

(compact) orientable surface (respectively ∂-surface).

Proof. See for example [55, pp. 393–395].

The 2-fold covering of the previous theorem is in fact achieved as a Cω locally diffeo-

morphic map and is essentially unique in the sense that if (S̃, p) and (S′, q) are two 2-fold

covering spaces as in the previous statement such that p and q are locally diffeomorphisms,

then there exists a unique orientation-preserving diffeomorphism ϕ : S′ → S̃ such that

ϕ ◦ p = q ([55, Proposition 15.42, p. 396]).

Corollary 1.41. If Ng denotes the nonorientable compact surface of genus g, then there

exists a covering map between Mg−1 and Ng.

Proof. According to Theorem 1.40, Ng has a 2-fold covering space (Ñg, p) with Ñg being

a compact orientable surface. Remark 1.38 says then that χ(Ñg) = 2χ(Ng) = 2(2− g) =

2(1− (g − 1)). By the classification theorem for compact surfaces we conclude that Ñg is

homeomorphic to a connected sum of g − 1 torus.

Let S be an oriented compact surface, X be a C1 vector field on S and p be an isolated

singular point of X. Associated with p we can take a small disk such that p is the only zero

of X in Int(Bp) and Int(Bp) is a coordinate domain — let ϕ = (x, y) be a coordinate map

associated with Int(Bp). For every q ∈ Int(Bp), let V (p) ∈ R2 be the coordinates of X(q)

with respect to the basis

{
∂
∂x

∣∣
q
, ∂
∂y

∣∣∣
q

}
of TqS. The Gauss map on Bp (associated with X)

is then defined to be the map gp : Int(Bp) r {p} → S1 given by gp(q) = 1
‖V (q)‖V (q). The

index of the point p (with respect to the vector field X), denoted as indX(p), is defined as

the degree of the map gp. This last number coincides with the winding number of the map

gp when is restricted to ∂Bp (for a formal definition see [21, p. 112]). When the point p

is a non-degenerate singularity of X (that is, when the determinant of the Jacobian of X
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in p, computed with respect to any compatible chart, does not vanish), then the index of

p can be computed simply as the sign of the product of the eigenvalues of the Jacobian of

X in p (see [21, Theorem 14.4.3.]).

Example 1.42. The index of an isolated critical point which has a neighbourhood with

a finite sectorial decomposition with exactly h hyperbolic sectors, e elliptic sectors and p

parabolic sectors is given by the formula 1
2(2− h+ e) (see [7, Theorem 4.1, p. 36]) — for

the definition of finite sectorial decomposition, see p. 35 below.

Theorem 1.43 (Poincaré Index Theorem). Let S be a compact orientable surface of genus

g and X be a C1 vector field on S. If X possesses only finitely many singular points, say

p1, . . . , pn, then 2− 2g = χ(S) =
∑n

i=1 indX(pi).

Proof. See [21, Theorem 15.2.7].

Corollary 1.44 (Poincaré-Hopf Index Theorem). If a C1- vector field X on a nonori-

entable compact surface S of genus g has only finitely many singular points, say p1, . . . , pn,

then the Euler characteristic of S must verify the relation 2− g = χ(S) =
∑n

i=1 indX(pi).

Proof. Let (S̃, p) be a double covering of S. The surface S̃ is a connected compact ori-

entable surface of genus g − 1 and p : S̃ → S is a local diffeomorphism.

The map p allows us to defined a C1 vector field over S̃ in a natural way. Let q′ ∈ S̃,

q = p(q′) ∈ S and U and V be open neighbourhoods of q′ and q respectively such that

by restricting p to U one obtains a diffeomorphism from U to V . Let dpq′ denote the

isomorphism that p generates between the tangent space of U on q′, Tq′U , and of V on q,

TqV . Then we define X̃(q′) = (dpq′)
−1(X(q)). It is then clear that X̃ is a C1 vector field

on S̃ with exactly 2n isolated singular points (every pi generates two singular points for

Ṽ , say p̃i and p̃n+i). Moreover, for every 1 ≤ i ≤ n, indX̃(p̃i) = indX̃(p̃n+i) = indX(pi).

Applying Theorem 1.43 to X̃, we have 2χ(S) = χ(S̃) =
∑2n

i=1 indX̃(p̃i) = 2
∑n

i=1 indX(pi)

as was required.

Some useful deeper results on analyticity on open subsets of a surface

Let S be an analytic surface and fix a region O ⊂ S. We say that a set A ⊂ O is

analytic (in O) if it is the set of zeros of some analytic map f : O → R. Later in the

dissertation we will consider unions of analytic sets in open subsets of the sphere. In

general, the union of an arbitrary family of analytic sets in O may not be analytic. As we

will see below, there are strict restrictions for a set to be an analytic set (see Theorem A);

for instance, the union of an infinite countable family of circles in R2 which pairwise meet

in the origin cannot be analytic (and such a family of circles can be easily chosen with all

the circles being analytic sets). Nevertheless, the following is proved in [84, p. 154]:
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Theorem 1.45. If F is a locally finite family of analytic sets in O, then the union of the

sets from F is also an analytic set in O.

Throughout this dissertation we will be frequently interested in extending analytic

maps f : O → R to the whole surface S keeping at least Cω regularity in O and C∞

regularity in S r O. The work is done by Theorem 1.10 in Section 1.2.1. For example,

if S = S2, it is be enough to apply Theorem 1.10 to the map F : U → R given by

F (u) = f(u/‖u‖) for every u ∈ U = {v ∈ R3 r {(0, 0, 0)} : v/‖v‖ ∈ S2}. In general,

it suffices to recall that any analytic surface S can be analytically embedded into some

Rm and thus its associated tangent vector spaces can be seen as subsets of Rm (with m

depending on the surface) — see [52, Section 6.4] for the details. The combination of this

latter fact with Theorem 1.10 implies:

Theorem 1.46. Given any analytic map F : O → R defined on a region O of an analytic

surface S, there exists a C∞ map ρ : S → (0,∞), which is analytic at O and vanishes

outside O, such that ρF (after being extended as zero outside O) is of class C∞ on the

whole S.

1.4.3 Flows associated with vector fields

Many of the more basic and important results in qualitative theory of planar ordinary

differential equations transfers naturally to surfaces, via Remark 1.36.

Some good references where the qualitative theory of ordinary differential equations is

well studied are, among others, [78], [56], [19], [66], [68], [5] or [22]. We devote this section

to highlight the translation of some of the main results from this theory to surfaces.

Let r ≥ 1, r = ∞ or r = ω. Local flows are associated, in a natural way, with vector

fields (and then to autonomous systems of differential equations via Remark 1.36) defined

on Cr surfaces S. Namely, if Φ : Λ ⊂ R×S → S is a local flow (on S) which is of class Cr

as map, then the map X : S → TS given by X(p) = ∂Φ
∂t (0, p) (the associated vector field

with Φ) is a Cr−1 vector field on S and satisfies ∂Φ
∂t (t, p) = X(Φ(t, p)) for every t ∈ Ip, that

is, Φp is an integral curve of X starting at p (where by C∞−1 and Cω−1 we are denoting,

respectively, C∞ and Cω). Conversely, if X : S → TS is a Cr vector field, and γp(t)

denotes the maximal integral curve of X staring at p, then Φ(t, p) = γp(t) is a local flow

on S of class Cr.

Remark 1.47. When S = R2 we typically use the identification of TR2 with R2. Con-

sequently, by a Cr vector field on R2 we will simply mean a vector map f : R2 → R2

of class Cr (sometimes, instead of using the vector notation f = (f1, f2), we will write

f = f1∂x + f2∂y to emphasize the role of vector field played by f).

Some specific flows will be mentioned along this dissertation following this identifica-

tion. Let fs, fa, and fr be the planar vector fields given by fs(x, y) = (1, 0), fa(x, y) =



30 Basic results and notions

(−y, x) and fr(x, y) = (−x,−y), and associate to them the corresponding planar flows

Φs,Φa and Φr. Also, let fv1(x, y) = (x2, 0), fv2(x, y) = (x, 0), fv3(x, y) = (−x, 0),

fh1(x, y) = (y2, 0) and fh2(x, y) = (y, 0), being Φv1 , Φv2 , Φv3 , Φh1 and Φh2 , respectively,

their associated planar flows.

Let (S,Φ) be local flow and p be a singular point of Φ. We say that it is vertical

(respectively, horizontal) if there is a local topological equivalence between Φ and either

Φv1 , Φv2 or Φv3 (respectively, Φh1 or Φh2) at p and 0 = (0, 0). A singular point which is

neither vertical, nor horizontal, is called essential . Among the essential singular points

we distinguish the subset of trivial ones as those points which admit a neighbourhood of

singular points.

Remark 1.48. Let S be a Cr surface with r = ∞ (respectively r = ω) and (G,+) a

countable group and A : G × S → S a smooth (respectively analytic) free proper action

on S (see Section 1.4.1). Let X be a Cr vector field on S, Φ be its associated local flow

and assume that for every p ∈ S and every g ∈ G the equality X(p) = X(A(g, p)) holds.

Given any p ∈ S, denotes by [p] the equivalence class of p (i.e., [p] = {A(g, p) : g ∈ G}).
It is then easy to prove that the map Ψ defined by Ψ(t, [p]) := Φ(t, p) is a local flow on

S/G. For example, let us fix an irrational real number α ∈ (0, 1) and consider the planar

vector field fα(x, y) = (1, α). After identifying points (x, y) and (x′, y′) in R2 when both

x−x′ and y− y′ are integers, the vector fields fs and fα induce respectively flows Φss and

Φα on the torus T2. Any flow (S,Φ) topologically equivalent to (T2,Φss) (respectively to

(T2,Φα)) is called a torus rational flow (respectively a torus irrational flow).

Let us fix for the rest of section a Cr surface (for some r ≥ 0 or r = ω), S.

If the local flow associated with a C1 vector field on S is a global flow, then we say

that the vector field is complete. For example, any C1 vector field on a compact surface

is complete [55, Theorem 9.16, p. 216]. On the other hand, if S is a noncompact surface,

the flow Φ associated with a vector field is in general only a local flow. However, one can

always work with an well-associated (global) flow in the following terms. Since S is locally

compact metric space, we can consider S∞ the one-point compactification of S which is

itself a metric space — see Theorem 1.2. By compactness, all the distances on S∞ are

equivalent; we fix one of those distance and denote it by d∞. Now, associated with any

local flow (S,Φ), there exists a (global) flow on S∞, Φ∞, having ∞ as a singular point,

whose restriction (S,Φ∞) is a flow topologically equivalent to (S,Φ). In this dissertation,

the typical case is S = R2. In this case S∞ is homeomorphic to S2 and the flow (S,Φ∞)

can be supposed to be of class C∞. This last facts follows from the combination of

Theorem 1.49 below with the fact that the only recurrent orbits of a flow on S2 are the

singular points and the periodic orbits [7, Lemma 2.5, pp. 56].

Let Ω ⊂ S be a nonempty compact invariant set of Φ. If Ω contains no compact

nonempty proper subsets invariant for Φ, Ω is called a minimal set (of Φ). A minimal set
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Ω ⊂ S is said to be trivial if it is either a periodic orbit or a singular point or else the

whole surface S, provided that (Ω = S,Φ) is a torus irrational flow. In [38], C. Gutierrez

established the following important result:

Theorem 1.49 (Smoothing Theorem). Assume that S is a compact C∞ surface and let

Φ : R × S → S be a flow. Then there exists a C1 flow Ψ on S which is topologically

equivalent to Φ. Furthermore, Φ is topologically equivalent to a C∞ flow on S if and only

if every minimal set of Φ is trivial.

We say that an orbit ϕ(p) (seen as an orbit of (S∞,Φ∞)) is positively stable (respec-

tively negatively stable) if for any ε > 0 there is a number δ > 0 such that d∞(p, q) < δ

implies that all points from ϕ(q,+) (respectively ϕ(−, q)) stay at a distance less than ε

from ϕ(p,+) (respectively ϕ(−, p)). An orbit is said to be stable if it is both positively

and negatively stable, and it is called unstable otherwise.

Let (S,Φ) be a local flow on S and p ∈ S. If there is a local topological equivalence

between Φ and Φs at p and 0 (recall definitions in Remark 1.47), with corresponding

homeomorphism h : U1 → U2 = (−ε, ε) × (−ε, ε), then we say that U1 is a tubular neigh-

bourhood (or a flow box ) of p and call h−1({0} × (−ε, ε)) a transversal to p for Φ (or just

a transversal to Φ —or simply a transversal— when no emphasis on p is required). It is

a well-known fact that every regular point p of Φ admits a tubular neighbourhood (this

is the so-called Flow Box Theorem, see, e.g., [13, Theorem 2.9, p. 50]). Moreover, the

following stronger result also holds for regular points (see, e.g., [13, Theorem 2.11, p. 51]):

Lemma 1.50 (Long Flow Box Theorem). Let p be a regular point of Φ and Γ ⊂ ϕ(p) be

a compact semiorbit which is not a circle. Then there exists a tubular neighbourhood of p,

Up, such that Γ ⊂ U1.

A set M ⊂ S is said to be a lateral tubular region (or a semi-flow box ) at p if there is

a homeomorphism h : M → [−1, 1] × [0, 1] such that h−1([−1, 1] × {s}) is a semiorbit of

Φ for every s ∈ (0, 1] and p = h−1((0, 0)). We call the arc h−1([−1, 1]× {0}) (respectively

the semi-open arc h−1({0} × (0, 1])) the border of the semi-flow box M (respectively

lateral transversal at p). We also say that h−1((−1, 1) × [0, 1)) is a semi-open flow box .

The continuity of Φ implies that, although the border of a semi-flow box need not be a

semiorbit of Φ, it is the union of some of its semiorbits. For example, if p is a horizontal

singular point, there exists a neighbourhood of p which can be decomposed as the union

of two semi-flow boxes which meet exactly at their border.

If µ : R → S is a continuous injective map with the property that, for any s ∈ R,

there is εs > 0 such that µ((s − εs, s + εs)) is a transversal to µ(s), then we call µ(R) a

transversal to the flow (S,Φ).

Let r ≥ 1, r = ∞ or r = ω. When we are dealing not only with a (continuous) local

flow but with a Cr local flow (for some r ≥ 2, r = ∞ or r = ω), Φ, and its associated
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Cr−1 vector field (where we understand ∞− 1 =∞ and ω− 1 = ω), X, we can also work

with a differentiable version of the Flow Box Theorem. We first give a restricted notion

of transversal in this context.

A Cr embedding λ : I → S of an open interval I ⊂ R is called a Cr transversal section

for X if the vectors λ′(s) and X(λ(s)) are linearly independent for any s ∈ I. For example,

if S = R2, w ∈ R2 is a regular point of X and X(w) is linearly independent to v ∈ R2,

then λ : (−ε, ε)→ R2 defined by λ(s) = w+ sv is an analytic transversal section provided

that ε > 0 is small enough.

Let X1 : S1 → TS1, X2 : S2 → TS2 be two Cr vector fields and let Φ1 : ∆1 → S1 and

Φ2 : ∆2 → S2 be their associated flows. We say that X1 is Cr conjugate to X2 if there is

a Cr diffeomorphism h : S1 → S2 such that the domains I1,p for Φ1,p and I2,h(p) for Φ2,h(z)

are equal and h(Φ1(t, p)) = Φ2(t, h(p)) for every (t, p) ∈ ∆1.

Theorem 1.51 (Cr Flow Box Theorem). Let X be a Cr vector field on a Cr surface S

(for some 1 ≤ r ≤ ∞ or r = ω). Let λ : I → S be a Cr transversal section for X, assume

that [c, d] ⊂ I for some c < 0 < d, and write λ(0) = w. Then there exist ε > 0, an open

neighbourhood W of w in U and a Cr diffeomorphism h : W → (−ε, ε)× (c, d) such that:

(i) λ(I) ∩W = λ((c, d)) and h(λ(s)) = (0, s) for any s ∈ (c, d);

(ii) h is a Cr conjugacy between X|W and the constant vector field Y : (−ε, ε)× (c, d)→
R2 given by Y (x, y) = (1, 0).

Proof. See for example [22, Theorem 1.12].

Remark 1.52. ([7, Theorem 1.1, p. 45]). In the same setting as in the previous result,

let Φ be the local flow associated with X. Let z ∈ S be a regular point whose orbit is

not periodic, let a < b be two points in Iz and consider the semiorbit Φz([a, b]). Then,

using compactness and the previous theorem, it is possible to find a neighbourhood W of

Φz([a, b]) in S and a small ε > 0 such that X is Cr conjugate in W to the constant vector

field Y : (a− ε, b+ ε)× (−1, 1)→ R2 given by Y (x, y) = (1, 0).

Some results for the special case of the plane and the sphere

One of the landmarks of bidimensional qualitative theory of differential equations is the

famous Poincaré-Bendixson Theorem. This theorem deals with the asymptotic behaviour

of the orbits of a flow, that is, with the study of the α-limit and ω-limit sets of a flow.

In general, ω-limit sets (respectively α-limit sets) are closed subsets of S invariant for Φ.

If the ω-limit set of p is nonempty, then bp = ∞; moreover, when S is compact, ωΦ(p)

is also compact and connected. The analogous statements also hold for α-limit sets [66,

Chapter 1].
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A deeper result for the case of local flows on open subsets of the plane is given by

the classical Poincaré-Bendixson Theorem. Let us fix for the rest of the section a region

U ⊂ R2, a vector field on U of class Cr with 1 ≤ r ≤ ∞ or r = ω and its associated local

flow Φ.

Theorem 1.53 (Poincaré-Bendixson Theorem). Let p ∈ U and suppose that the semiorbit

ϕ(p,+) (respectively ϕ(−, p)) is contained in a compact subset of U . Then either the set

ωΦ(p) (respectively αΦ(p)) contains some singular point or it is a periodic orbit.

Proof. See, for example, [22, Theorem 1.25, p. 24] or [5, Theorem 13, p. 92].

The following classical corollary of the Poincaré-Bendixson Theorem is of special in-

terest:

Theorem 1.54. If Γ is a periodic orbit of Φ enclosing (as a circle on R2) a simply

connected region B which is totally contained in U , then B contains a singular point of Φ.

Proof. See [22, Theorem 1.31] or [5, Theorem 16, p. 97].

In standard proofs of the Poincaré-Bendixson Theorem the result below is stated as

a preliminary lemma. Its proof can be found for example in [22, Lemma 1.29] or [5,

Theorem 11, p. 90].

Theorem 1.55. Let p ∈ U and assume that ϕ(p,+) (respectively, ϕ(−, p)) is contained in

a compact subset of U . If the ω-limit or the α-limit set of an orbit Γ ⊂ ωΦ(p) (respectively,

Γ ⊂ αΦ(p)) contains some regular point, then Γ is periodic and ωΦ(p) = Γ (respectively

αΦ(p) = Γ).

We finish this section with an elementary and technical lemma.

Lemma 1.56. Let k : U → R be a Cr function and consider the vector field Y = kX. Let

p be a regular point of Y and Ψp : Jp → U be the maximal integral curve of Y starting at

p. Then there exist an open interval 0 ∈ L ⊂ R and a Cr function τ : L → R such that

τ(0) = 0 and Φp(t) = Ψp(τ(t)) for all t ∈ L.

Proof. If p is a regular point for Y , it cannot be a zero of k. Therefore, there is an open

interval 0 ∈ J ⊂ Ip where the function F = 1/(k ◦Ψp) is well-defined and of class Cr.

Let us consider now the maximal solution of Cauchy’s problemτ̇ = F (τ)

τ(0) = 0.
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This maximal solution is a function τ defined in an open interval L containing 0 and whose

evaluations belongs to J . It is easy to check that the composition Ψp ◦ τ is an integral

curve of X starting at p. Hence we have L ⊂ Ip and Φp(t) = Ψp(τ(t)) for all t ∈ L.

Bendixson Compactification

For the sake of simplicity, we present an adaptation of [72, Section 1.1.3.2] using real

analysis notation.

The one-point compactification of the euclidean plane R2
∞ = R2 ∪ {∞} can be seen

as a analytic compact surface. Indeed, it is enough to consider the two local charts

(R2, z) and (R2
∞ \ {0}, Z) where z : R2 → R2 is the map given by the formula z(x, y) =

(r(x, y), s(x, y)) = (x, y) for every (x, y) ∈ R2 and Z : R2
∞ \{0} → R2 is given by Z(x, y) =

(u(x, y), v(x, y)) = (x/(x2 + y2),−y/(x2 + y2)) if (x, y) 6=∞ and Z(∞) = (u(∞), v(∞)) =

0. The equations for the changes of coordinates z ◦ Z−1 : R2 \ {0} → R2 \ {0} and

Z ◦ z−1 : R2 \ {0} → R2 \ {0} are given by the analytic formulas r = u/(u2 + v2) and

s = −v/(u2 + v2) and u = r/(r2 + s2) and v = −s/(r2 + s2) respectively; this justifies

that {(R2, z), (R2
∞ \ {0}, Z)} is an analytic atlas for R2

∞. We denote by φ : R2
∞ → R2

∞ the

homeomorphism associated with this transition map (where φ(0) =∞ and φ(∞) = 0); we

will call φ the transition homeomorphism associated with the Bendixson compactification.

The spaces R2
∞ and S2 are not only homeomorphic but also analytically diffeomorphic:

as a explicit analytic diffeomorphism we may consider the map ψ : S2 → R2
∞ given by

the formulas ψ(0, 0, 1) = ∞ and ψ(x, y, z) = (x/(1 − z), y/(1 − z)) if (x, y, z) 6= (0, 0, 1).

The standard euclidean distance on R3, d2, induces a distance on R2
∞ (compatible with its

topology as one-point compactification): the map given by d∞(a, b) = d2(ψ−1(a), ψ−1(b))

for every a, b ∈ R2
∞ is such a distance.

Let P and Q be real polynomials in two variables and consider the algebraic planar

vector field given by X = P∂x + Q∂y. If d = max{deg(P ),deg(Q)}, we may consider

a vector field in the amplified euclidean plane R2
∞, X̂, given by the formulas X̂(r, s) =

1
1+(r2+s2)d

(P (r, s)∂r +Q(r, s)∂s) if (r, s) ∈ R2
∞ \ {∞} and X̂(∞) = 0. It is direct to show

that X̂ is well-defined and analytic in the whole R2
∞.

Finite sectorial decomposition property

Let Φ be a global flow on R2 having the origin 0 = (0, 0) as an isolated singular point,

that is, such that there exists an open neighbourhood of 0, U , where the only singular

point of Φ is 0.

A characteristic orbit ϕ(p) at 0 is a regular orbit tending to 0 in positive time (re-

spectively in negative time) with a well-defined slope, that is, limt→∞Φp(t) = 0 and the
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Figure 1.1: From left to right: a hyperbolic, an attracting, a repelling and an elliptic sector.

limit limt→∞ (Φp(t)− p)/ ‖Φp(t)− p‖ exists (respectively limt→−∞Φp(t) = 0 and the limit

limt→−∞ (Φp(t)− p)/ ‖Φp(t)− p‖ exists).

Let fi : R2 → R2, 1 ≤ i ≤ 4, be the vector fields f1(x, y) = (x,−y), f2(x, y) = (−x,−y),

f3(x, y) = (x, y), f4(x, y) = (x2 − 2xy, xy − y2) respectively. Also, let

A1 = {(x, y) ∈ R2 : 0 ≤ x, y < 1, xy < 1/2},

A2 = A3 = A4 = {(x, y) ∈ R2 : 0 ≤ x, y < 1, x2 + y2 < 1}.

We remark that although the sets Ai are not open, fi still induces a local flow Φi on Ai,

1 ≤ i ≤ 4. See Figure 1.1. Assume now that B is a set containing 0 and Φ induces a local

flow on B which is topologically equivalent to Φi. Then we say that B is a hyperbolic,

attracting , repelling or elliptic sector of Φ (at 0) when, respectively, i = 1, 2, 3, 4 (in the

cases i = 2 and i = 3 we also say that B is a parabolic sector). The flow Φ is said to

have the finite sectorial decomposition property (at 0) if 0 has a bounded neighbourhood

V such that there are no periodic orbits on V and there are finitely many characteristic

orbits at 0, c0, c1, . . . , cn−1, which meet BdV transversely at points p0, p1, . . . , pn−1 (in the

sense that each pi has a neighbourhood in BdV which is transversal for Φ) decomposing

V in the union of n hyperbolic, attracting, repelling and elliptic sectors.

Remark 1.57. The typical case for this to happen is that Φ is associated with an analytic

vector field analytic with 0 as isolated singularity. It then can be proved that either

0 is a focus (that is, a global attractor or repeller such that none of the orbits in any

neighbourhood of 0 are characteristic), a center or Φ has the finite sectorial decomposition

property at 0 — see for instance [22, Chapter 3]. The proof of this fact in [22] (or

in [42]) uses highly nontrivial and sophisticated desingularization methods. Fortunately,

in most of the cases where we are interested in using this property, we will have the extra

hypothesis of absence of periodic orbits in a small neighbourhood of 0. In that context,

a elementary alternative proof is given in [56, Chapter X] as a combination of the Star

Structure Theorem (Theorem A) with some standard Poincaré-Bendixson techniques.
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Chapter 2

The Star Structure TheoremThe Star Structure Theorem

T he local structure of the set of zeros of analytic functions on the plane will play a

central role during the dissertation. Before presenting this structure, we introduce the

auxiliary notion of star.

Given any positive integer n ∈ N, we say that a topological space is an n-star if it

is homeomorphic to Sn = {z ∈ C : zn ∈ [0, 1]}. If Z is an n-star and h : Sn → X is a

homeomorphism, then the image of the origin (respectively the image of any of the n-roots

of unity) under h is called a center of the star (respectively an endpoint of the star) while

the components of Z \ {h(0)} are called the branches of the star . Note that the center,

the endpoints and the branches of a star are uniquely defined except in the cases n = 1, 2,

when Z is just an arc and the centers are its endpoints (for n = 1) or its interior points

(for n = 2). We will also adopt the convention of calling any singleton a 0-star (the point

being its center). When Y is a topological space and a is a point in Y which possesses a

neighbourhood Z ⊂ Y being an n-star with a as center, we will say that a is a star point

in Y (of order n); note that the order of a star point is unambiguously defined. If all the

points in Y are star points, Y will be called a generalized graph.

The local structure of planar analytic functions is stated in the following result. The

contents of the theorem are classical and well-known, see, e.g., [43, Theorem 4.3], except

maybe for the “parity” statement, which is due to Sullivan [79]. Alternatively, in [25] we

presented a “dynamically based” proof. The proof we expose in Subsection 2.1 below is

the latter one.

Theorem A (Star Structure Theorem). Let U ⊂ R2 be a region and f : U → R be an

analytic function. Let C = {z ∈ U : f(z) = 0} be the set of zeros of f . Then either C = U
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or given any non-isolated point of C, z ∈ C, there exists a neighbourhood V of z and an

n ∈ N such that V ∩ C is a 2n-star with center z. Moreover, in the latter case, after

removing from the star its center and endpoints, the resultant open arcs admit analytic

parametrizations.

Remark 2.1. In fact, as shown implicitly in [43], a stronger result also holds (which cannot

be derived from our proof). With the notation of the theorem above, and in the case when

V ∩ C is a 2n-star with center z, the arc L given by the union of any branch with {z}
can be also parametrized by an analytic map ϕ : [0, 1]→ L (where by ϕ being analytic in

the whole closed interval we mean that it can be analytically extended to a larger open

interval containing [0, 1]).

2.1 Proof of Theorem A

Let U ⊂ R2 be open and connected, f : U → R be an analytic function and C = {z ∈
U : f(z) = 0}.

If C has nonempty interior (as a subset of U), then f is identically zero (recall Propo-

sition 1.7) and there is nothing to prove. In what follows we assume that Int(C) = ∅.

Let z0 ∈ U be a non-isolated point of C. We will build an analytic vector field X on a

specific open neighbourhood W of z0 such that either all its points are regular points for

X (and then we will see that, in a neighbourhood of z0, C reduces to an arc with z0 in its

interior), or z0 is the only singular point of X in W and there is a compact neighbourhood

of z0, V ⊂ W , which can be written as a finite union of evenly many sectors, with the

additional property that C∩V is the union of {z0} and the orbits separating the adjoining

sectors.

To define this vector field we proceed in two steps. Firstly, we consider the planar

vector field Y given by Y (z) = (−∂f
∂y (z), ∂f∂x (z)). Secondly, by virtue of Theorem 1.9, there

exist a neighbourhood of z0, W ⊂ U , and analytic functions k,X1, X2 : W → R such that

if we call X = (X1, X2), then Y = kX and X has no zeros in W r {z0}. This X is the

vector field we are looking for. We will denote by Φ the local flow associated with X.

Notice that, replacing f by f2 if needed, there is no loss of generality in assuming

that ∂f
∂x (z) = ∂f

∂y (z) = 0 for all z ∈ C. Moreover, f is a first integral for X, that is, if

z : J ⊂ R → W is an integral curve of X, then f ◦ z is constant. Indeed, if t ∈ J is such

that z(t) is a singular point of X, then both partial derivatives of first order of f vanish at

z(t); otherwise we apply Lemma 1.56 to guarantee that ż(t) and Y (z(t)) are proportional

vectors. Therefore, we get in any case that

d(f ◦ z)
dt

(t) =

〈(
∂f

∂x
(z(t)),

∂f

∂y
(z(t))

)
, ż(t)

〉
= 0,
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where 〈·, ·〉 denotes the scalar product of R2.

Obviously there are two options for z0: either it is an isolated singular point of X or

it is a regular one. We will distinguish these two cases in the following reasoning.

We first handle the case when all points of W are regular for X. According to the Cω

Flow Box Theorem (Theorem 1.51), W can be chosen in such a way that all the orbits of

X accumulate at the boundary of W and intersect (the image of) an analytic transversal

section λ : J → W for X (with 0 ∈ J and λ(0) = z0) at exactly one point. Let s ∈ J and

consider the maximal integral curve of X starting at zs = λ(s), Φzs(t). The composition

f ◦ Φzs is constant; when s = 0 that constant is necessarily zero. Taking into account

Proposition 1.8 and the fact that C has empty interior, we get that f ◦Φzs do not vanish

if s ∈ J r {0} is close enough to 0. Thus, choosing if necessary a smaller neighbourhood

W of z0, we get that the zeros of f in W are exactly the points of the orbit ϕΦ(z0).

Now we consider the case when z0 is an isolated singularity of X (in fact, because of

the way we have defined W , it is the only singularity of X). Since f is a first integral,

if the α-limit set or the ω-limit set of an integral curve z(t) of X contains z0, then the

function f ◦ z must be identically zero. As a consequence, {z0} cannot be, at the same

time, the α-limit and the ω-limit set of any integral curve z(t) of X, that is, the system X

admits no homoclinic orbits (except {z0} itself). Indeed, if we suppose the contrary, then

the image of z(t) (together with z0) defines a circle. Therefore, the Poincaré-Bendixson

theorem and Theorem 1.54 imply that all orbits in the region enclosed by this circle are

homoclinic as well and C has nonempty interior, a contradiction.

We claim that X admits no sequences of periodic orbits (Jn)n∈N satisfying Jn ⊂
B(z0, 1/n) ∩W for all n. We argue to a contradiction by assuming that such a sequence

does exist. Recall that any periodic orbit in W encloses z0 (by Theorem 1.54), so given

any two of them one encloses the other; in particular we can assume that Jn encloses Jn+1

for every n. Besides, since z0 is not an isolated zero of f , given an arbitrary n one finds

a z 6= z0 in the region enclosed by Jn such that f(z) = 0. Say that z belongs to the

annulus between consecutive curves Jm and Jm+1, m ≥ n. By the Poincaré-Bendixson

Theorem (Theorem 1.53), two possibilities arise for the orbit of z: either it is a periodic

orbit consisting of zeros of f or it spirals towards two periodic orbits (both consisting of

zeros of f) included in the fixed annulus. Therefore, one can also consider a new sequence

of periodic orbits (J ′n)n∈N such that each J ′n consists of zeros of f and verifies that Jn

encloses J ′n and J ′n encloses J ′n+1. Consequently, the analytic function τ 7→ f(z0 + τ(1, 0))

vanishes at a sequence of points (τn)n converging to 0 so, by Proposition 1.8, it vanishes

in a full open interval containing 0, say (−δ, δ). Now realize that any orbit of any point

near enough to z0 must either be periodic or spiral around z0, hence it must intersect the

segment {z0 + τ(1, 0) : τ ∈ (−δ, δ)}. We conclude that f vanishes in a neighbourhood of

z0, contradicting that C has empty interior.
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As a consequence of the above claim, there is a small neighbourhood W ′ of z0 such

that the vector field X, when restricted to W ′, has no periodic orbits. (Note that this

does not exclude the possibility that the initial system has a sequence of periodic orbits

accumulating at z0; however, since their diameters cannot be too small, they become

non-periodic after being “cut off” by W ′.) To ease the notation we still call the new

neighbourhood and the corresponding vector field W and X, respectively.

Next, let us consider a small enough r > 0 such that V = Cl(B(z0, r)) ⊂ W . In the

absence of homoclinic and periodic orbits, taking into account that z0 is the only singular

point of X, and using the Poincaré-Bendixson Theorem and Theorem 1.55, the semiorbits

of the system in V can be easily described. Namely, if z ∈ Int(V ) r {z0} and ϕ(z) is the

orbit of X through z, then the connected component of Cl(V )∩ϕ(z) containing z is either

an arc with an endpoint in ∂V or (together with z0) an arc whose endpoints are z0 and a

point of ∂V . More precisely, let z ∈ Int(V ) r {z0}, let Φz : (az, bz)→ W be the maximal

integral curve of X with Φz(0) = z, and write Φz((az, bz)) = ϕ(z). Then the component

of ϕ(z)∩V containing z is either Φz([a
′
z, b
′
z]), Φz((az, b

′
z]) (with az = −∞), or Φz([a

′
z, bz))

(with bz = ∞) for some az < a′z < 0 < b′z < bz; points Φz(a
′
z),Φz(b

′
z) belong to ∂V ; and

we have limt→−∞Φz(t) = z0 and limt→∞Φz(t) = z0, respectively, in the last two cases.

Among the semiorbits of X in V , those having {z0} as their α-limit or ω-limit sets

consist of zeros of f . We claim that there are only finitely many of them. If the opposite is

true, then any circle centered in z0 with radius s less than r would contain infinitely many

zeros of f . Applying Proposition 1.8 to the analytic function τ 7→ f(z0 + (s cos τ, s sin τ)),

we get that f vanishes in the whole circle and, since s is arbitrary, in the whole V . A

similar argument allows us to assume (using if necessary a smaller r) that the zeros of f

contained in V (apart from z0) are exactly those in the semiorbits having z0 as a limit

point. Since z0 is not an isolated point of C, the family of these special semiorbits cannot

be empty: we denote them by Γ1,Γ2, . . .Γm (for some m ≥ 1) and assume that they are

counterclockwise ordered. It only rests to show that m is even.

Let zi ∈ Γi ∩ ∂V , i = 1, 2 . . . ,m. Taking advantage of analyticity once more, there is

no loss of generality in assuming that ∂V is locally transversal for X at these points and

Γi r {zi} ⊂ Int(V ) for any i. We call Γi outward or inward according to, respectively,

limt→−∞Φzi(t) = z0 or limt→∞Φzi(t) = z0. We prove that m is even by showing that the

semiorbits Γi are consecutively outward and inward.

Assume, for instance, that Γi is inward. Let A be the counterclockwise arc in ∂V

with endpoints zi and zi+1 (here, we identify m + 1 and 1; if m = 1, then A = ∂V ). Let

(pn)n be a sequence of points in A monotonically converging to zi. Since ∂V is locally

transversal for X at zi, we can assume that there are semiorbits Υn entering V at pn and

escaping from V at corresponding points qn ∈ A. Observe that the points qn are reversely

ordered as those in the sequence (pn)n, hence they converge to a point q ∈ A. Let tn be

the escaping time of Υn, that is Φpn(tn) = qn. Since Φzi(t) is well defined (and inside
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V ) for any t ≥ 0, the regularity of the flow at zi implies tn → ∞ as n → ∞. Finally,

the regularity of the flow at q guarantees that Φq(t) is well defined, and inside V , for any

t ≤ 0, that is, q = zi+1 and Γi+1 is outward (see Remark 1.52). This finishes the proof.

Remark 2.2. Note that the two last paragraphs of the above argument can be disposed of:

sinceW contains neither homoclinic nor periodic orbits, and only finitely many heteroclinic

orbits, z0 must admit a neighbourhood consisting of a finite number n of hyperbolic

sectors. The point z0 is, alternatively, the α-limit set and the ω-limit set of the orbits

limiting these sectors, hence n is even (instead, we can use the Poincaré index formula [22,

Proposition 6.32] (alternatively see Example 1.42) to deduce that the topological index of

z0 is the integer 1− n/2, so n is even).

Yet, as indicated at Section 1.4.3, the only elementary proof of the finite sectorial

decomposition property we are aware of is based on the Star Structure Theorem. Thus,

in order to avoid a circular argument, we are bound to (implicitly) use desingularization

and, in a sense, the simple profile of our proof is lost.
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Chapter 3

On the Markus-Neumann TheoremOn the Markus-Neumann Theorem

T he Markus-Neumann Theorem is an often cited result dealing with the topological

classification of surface flows. Google Scholar provides 147 explicit references to [59], and

91 to [63], and has been used without explicit mention (mainly in the planar case), as in

[70, p. 5], a large number of times. A first planar version was proved by L. Markus [59],

under the additional restriction of nonexistence of so-called “limit separatrices”. In [63],

D. A. Neumann disposed of this condition and extended the result to arbitrary surfaces.

Roughly speaking, the theorem states that two surface flows are equivalent if there is

a surface homeomorphism preserving a number of distinguished orbits from both flows.

However, Markus missed an important point which, apparently, also passed unnoticed to

Neumann and the subsequent readers (see for instance [22, pp. 33–34], [68, p. 294], [65,

pp. 245–246] or [64, pp. 225–226]). As a consequence the theorem, as stated in [59]

and [63], is wrong. In fact, as we will show in the next section, counterexamples can

be found in far from pathological settings, even for polynomial plane flows. The good

news is that, after appropriately amending the Markus-Neumann notion of separatrix, the

theorem works (and can be slightly improved).

We should stress that, when using the theorem in the polynomial scenery, researchers

typically employ an alternative, easier to handle with, notion of separatrix (see Re-

mark 3.5). Fortunately enough, it turns out to be equivalent to our amended definition

(but not to that of Markus-Neumann’s). Therefore, all such papers remain correct without

further changes.
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3.1 The Markus-Neumann Theorem

In what follows we list a number of notions that will be needed to state the Markus-

Neumann theorem (Theorem 3.2 below).

Let Φ : R × S → S be a flow on a surface S. Note that S is not assumed to be

either compact nor orientable. Associated with the flow (S,Φ), fix also the extended flow

(S∞,Φ∞) (see Section 1.4.3).

Let Ω be an invariant region for (S,Φ). Following [63] (and recalling the notation

introduced in Remark 1.47), we say that Ω is is parallel when the restriction (Ω,Φ) is

topologically equivalent to either (R2,Φs), (R2 \ {0},Φa), (R2 \ {0},Φr) or (T2,Φss), and

use the terms strip, annular , radial and toral , respectively, to distinguish cases. Note that

in the toral case Ω = S is indeed a torus and all orbits are periodic.

If Ω is parallel, and T ⊂ Ω is a transversal open arc, then we say that it is a complete

transversal to Ω provided that one the following conditions hold:

• Ω is either a strip or an annular region, and T intersects each orbit from Ω at exactly

one point. Observe that, in the strip case, T decomposes Ω into two regions, Ω−T
and Ω+

T , corresponding to the backward and forward direction of the flow.

• Ω is a radial region and, if p ∈ T , then each of the two transversals into which p

decomposes T intersects any orbit from Ω infinitely many times.

Also, we say that a transversal T ⊂ Ω is semi-complete when either it is complete, or it is

one of the two transversals into which some point decomposes a complete transversal.

Let (S,Φ) be a flow and let p ∈ S. Recall that given any orbit ϕ(p) of Φ, we write

α′(p) = α(p) r ϕ(p) and ω′(p) = ω(p) r ϕ(p). In [63] or [59] separatrices are defined as

follows:

Definition 3.1. We say that an orbit ϕ(p) of (S,Φ) is ordinary if it is neighboured by a

parallel region Ω such that:

(i) α′(q) = α′(p) and ω′(q) = ω′(p) for any q ∈ Ω;

(ii) Bd Ω is the union of α′(p), ω′(p) and exactly two orbits ϕ(a) and ϕ(b) with α′(a) =

α′(b) = α′(p) and ω′(a) = ω′(b) = ω′(p).

If an orbit is not ordinary, then it is called a separatrix .

Observe that no conditions are imposed on α′(p) and ω′(p): one or both may be empty

(which is to say the infinite point ∞ when passing to Φ∞), and they may have, or not,

empty intersection. On the other hand, ϕ(a) and ϕ(b) must be distinct and disjoint from

α′(p) and ω′(p).
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Let (S,Φ) be a flow and call S the union set of all its separatrices. Note that the set S is

closed. The components of S \S are called the canonical regions of (S,Φ). By a separatrix

configuration for (S,Φ), S+, we mean the union of S together with a representative orbit

from each canonical region.

Let Φ1 and Φ2 be two flows defined on the same surface S and let S+
1 and S+

2 be,

respectively, their separatrix configurations. We say that S+
1 and S+

2 are equivalent if

there is a homeomorphism of S onto S which carries orbits of S+
1 onto orbits of S+

2

preserving time directions.

We are ready to state the announced result:

Theorem 3.2 (Markus-Neumann Theorem [59, 63]). Let S be a surface and suppose that

Φ1 and Φ2 are flows on S whose sets of singular points are discrete. Then Φ1 and Φ2 are

topologically equivalent if and only if they have equivalent separatrix configurations.

3.2 Counterexamples to the Markus-Neumann Theorem

As it turns out, Theorem 3.2 (as presently formulated) is wrong, the problem being

that the previous definition of separatrix is too restrictive. A planar counterexample is

shown by Figure 3.1. Both flows share the orbits Γ1, Γ2, Γ3 and Γ5 and the singular point

p, and the separatrices are just, in both cases, p, Γ1 and Γ2. For instance, to show that Γ3

is ordinary for the right-hand flow Φ2, take an orbit Γ enclosed by Γ2 but not by Γ3, and

use the strip Ω consisting of all orbits enclosed by Γ2 but not by Γ. Now the boundary

of Ω consist, as required by Definition 3.1, of the orbits Γ2 and Γ, and the singular point

p, which is both the α-limit and the ω-limit set of all orbits in Ω and also of Γ2 and Γ.

(Here, as in the examples below, there is no need to distinguish between α(q) and α′(q)

nor between ω(q) and ω′(q), because the only recurrent orbits are the singular points).

Likewise, Γ4 is ordinary for the left-hand flow Φ1 (use the strip Ω consisting of all orbits

enclosed by Γ2 but not by Γ3).

Now, since the separatrix configurations S+
1 = S+

2 = {p}∪Γ1∪Γ2∪Γ3∪Γ5 are the same,

the flows Φ1 and Φ2 should be, according to Theorem 3.2, topologically equivalent. Clearly,

they are not: since Γ2 is, in both cases, the maximal homoclinic orbit, the topological

equivalence should carry it onto itself. However, there are two unstable orbits (Γ3 and Γ4)

inner to Γ2 for Φ1, but just one (Γ3) for Φ2.

Remark 3.3. As shown in Chapter 4 (see also [74]) flows Φ1 and Φ2 can in fact be realized

by polynomial planar vector fields with an only singular point (or, via the Bendixson

compactification — Section 1.4.3—, by analytic sphere flows with just two singular points).

An even cleaner (torus) counterexample is exhibited by Figure 3.2. Here, the left-hand

flow Φ3 and the right hand flow Φ4 share the orbits Γ1 and Γ2 and the singular point p, and
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Figure 3.1: The phase portraits of flows Φ1 (left) and Φ2.
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Figure 3.2: The phase portraits of flows Φ3 (left) and Φ4.

all orbits are homoclinic. As it happens, p is the only separatrix for both flows. To show,

say, that Γ1 is ordinary (for Φ4), remove from T2 the closure of the strip delimited by Γ3

and Γ4 and containing Γ2, to get a radial region containing Γ1 with boundary Γ3∪Γ4∪{p}.
In the case of Φ3, the radial region Ω′ = T2 \ (Γ2 ∪ {p}) cannot be used (there is just one

regular orbit in its boundary), but we take off another orbit Γ and use the strip Ω = Ω′ \Γ

instead. Once again, the separatrix configurations S+
3 = S+

4 = {p} ∪ Γ1 coincide, but Φ3

and Φ4 are not equivalent because Φ3 has three unstable orbits (p, Γ1 and Γ2) and Φ4 has

four (p, Γ1, Γ3 and Γ4).

Clearly, the problem with the previous examples is that the neighbouring regions we

are using for ordinary orbits are, so to speak, too “big”, and as a consequence the bounding

orbits are not what they are “supposed” to be. A way to avoid this is not allowing parallel
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Figure 3.3: The phase portraits of flows Φ5 (left) and Φ6.

regions to be radial (trivially they cannot be toral either) in Definition 3.1. Moreover, we

can force strips to be “strong”. More precisely, we say that a strip Ω is strong if there are

non-recurrent orbits Γ1,Γ2 such that (Ω′,Φ) is topologically equivalent to the restriction

of the flow Φs to R× [−1, 1], where Ω′ = Ω∪Γ1 ∪Γ2. We call Γ1 and Γ2 the border orbits

of the strip Ω, and say that a complete transversal to Ω is strong if it can be extended

to an arc by adding one point from each border orbit. All orbits from a strip are non-

recurrent: by requiring that the border orbits of a strong strip also are, we get rid of the

annoying distinction between αΦ(p) and α′Φ(p) or ωΦ(p) and ω′Φ(p) (in the annular case,

Definition 3.1(i) and (ii) are quite redundant, anyway).

Unexpectedly, Theorem 3.2 keeps failing even after redefining ordinary orbits as in the

paragraph above, see Figure 3.3. In this torus example, common orbits to Φ5 and Φ6 are

Γ1, Γ2, Γ3 and Γ5 and the singular points p and q. Observe that typical orbits of these

flows have Γ1 ∪ {p} as their α-limit set and {p} as their ω-limit set. Checking that Φ5

and Φ6 are not equivalent, while having the same separatrix configurations S+
5 = S+

6 =

{p, q} ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ5, is as simple as in the previous examples.

The underlying problem here is that α-limit and ω-limit sets should be separately

managed by Definition 3.1, but they are not. The orbit Γ4 (for Φ6) is neighboured by

strong strips, as close to it as required, whose boundaries consist of (as prescribed) the

border orbits, the α-limit set Γ1 ∪ {p} and, a fortiori, the ω-limit set {p}. Nevertheless,

after removing a strong transversal from the strip, the boundary of the forward semi-strip

contains, besides the border semiorbits, the strong transversal and the ω-limit point {p},
the “spurious” orbit Γ1.
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3.3 A new statement of the theorem; an improvement

Taking all the above into consideration, we define:

Definition 3.4. We say that an orbit ϕ(p) of (S,Φ) is almost fine if it is neighboured by

an annular region or by a strong strip Ω with border orbits ϕ(a) and ϕ(b) such that:

(i) α(q) = α(p) and ω(q) = ω(p) for any q ∈ Ω ∪ ϕ(a) ∪ ϕ(b);

(ii) Bd Ω = ϕ(a) ∪ ϕ(b) ∪ α(p) ∪ ω(p).

If ϕ(p) satisfies the analogous conditions, replacing (ii) by

(ii’) if T is a strong transversal to Ω with endpoints a and b, then Bd Ω−T = T∪ϕ(−∞, a)∪
ϕ(−∞, b) ∪ α(p) and Bd Ω+

T = T ∪ ϕ(a,∞) ∪ ϕ(b,∞) ∪ ω(p),

then we say that ϕ(p) is fine.

If an orbit is not fine, then it is called a separator .

Observe that the union set of all separators is closed as well, when the components of

its complementary set will be called standard regions. Since all separatrices are separa-

tors, every standard region is contained in a canonical region. The notions of separator

configuration and of equivalence of separator configurations are accordingly defined.

Remark 3.5. Typically, books and papers invoking the Markus-Neumann Theorem in the

setting of analytic sphere flows (in particular, after carrying polynomial planar flows to

the sphere via the Bendixson or the Poincaré projections), use an alternative definition

of separatrix, see for instance [68, Section 3.11]. Here, under the additional assumption

of finiteness of singular points, an orbit is called a “separatrix” if and only if it is either

a singular point, a limit cycle, or an orbit lying in the boundary of an hyperbolic sector.

Using the finite sectorial decomposition property for isolated (non-centers) singular points

of analytic flows, noting that analyticity excludes the existence of one-sided isolated peri-

odic orbits, and recalling some basic Poincaré-Bendixson theory, it is not difficult to show

that this notion is, in fact, equivalent to that of separator (see also Proposition 3.6(b) or

(c) below). Of course, as emphasized by our first counterexample (and contrarily to that

stated in [68]) there may be orbits bounding hyperbolic sectors which are not separatrices

in the Markus-Neumann sense.

Note, finally, that the previous discussion make no sense outside the sphere (just think

of the irrational flow on the torus: here all orbits are separatrices).

Trivially, a fine orbit is almost fine. The converse is not true, as shown by the flow Φ6.

Nevertheless, we have (recall the definition of essential point in Section 1.4.3):
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Proposition 3.6. Let ϕ(p) be an almost fine orbit of (S,Φ). Assume that one of the

following conditions holds:

(a) Both α(p) and ω(p) are finite (that is, empty or consisting of one point);

(b) S has zero genus and the set of essential singular points of Φ is totally disconnected;

(c) S = R2 or S = S2.

Them ϕ(p) is fine.

Proof. In all three cases we must show that if Ω is a strong strip satisfying (i) and (ii) in

Definition 3.4, then (ii’) holds as well.

Assume that (a) holds. We just prove (the other equality is analogous) Bd Ω−T =

T ∪ϕ(−∞, a)∪ϕ(−∞, b)∪α(p), when we can assume (otherwise the statement is trivial)

α(p) = {u} 6= ω(p). Then there is a small topological disk D, neighbouring u (hence not

intersecting ω(p)), such that ϕ(a) and ϕ(b) intersect D at respective semiorbits ϕ(−, a′),
ϕ(−, b′); moreover, this can be done so that one of the arcs in BdD joining a′ and b′ is the

closure of a strong transversal T ′ to Ω. One of the regions into which ϕ(−, a′)∪{u}∪ϕ(−, b′)
decomposes IntD cannot intersect Ω, and the other one, call it Ω′, includes Ω−T ′ . By the

hypothesis on Bd Ω, and the fact that ω(p) does not intersect D, both Ω′ and Ω−T ′ have the

same boundary, hence (because they are connected) Ω′ = Ω−T ′ . This implies the statement.

Now suppose that (b) holds. Because S has zero genus, there is no loss of generality

in assuming that it is a region in S2 (see Theorem 1.33). Observe that, since ϕ(p) is

almost fine, all non-essential singular points contained in α(p) ∪ ω(p) must be horizontal.

If α(p) ∪ ω(p) contains a regular point or an horizontal singular point, then a standard

Poincaré-Bendixson argument allows to find a semiorbit ϕ(c, d) of ϕ(p), and a transversal

joining c and d, whose union is a circle decomposing S2 into two regions, one including

α(p), the other one including ω(p). By the compactness of {a, b}∪T , there is t0 such that

Ω−Φ−t0 (T ) is included in the first region, while Ω+
Φt0 (T ) is included in the second one, which

easily implies that ϕ(p) is fine. In the case when all points from α(p) and ω(p) are singular

and essential, total disconnectedness implies finiteness and (a) applies.

Finally, suppose that (c) is true. If suffices to consider the case S = S2, as then the

case S = R2 follows by passing to its one-point compactification, which is precisely S2

(recall Section 1.4.3). Moreover, as in (b), we can additionally assume that all points from

α(p) ∪ ω(p) are singular. Let U be the component of S2 \ Sing(Φ) including ϕ(p). Next

define the equivalence relation ∼ in S2 by u ∼ v if u = v or there is a component C of

S2 \ U such that u, v ∈ C. As explained in Section 1.1.4 (alternatively see [9, p. 481]),

the quotient space S2/ ∼ is homeomorphic to S2 and the flow Φ collapses, in the natural

way, to a flow Φ∼ on S2/ ∼, whose set of singular points is totally disconnected. By
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Figure 3.4: The phase portraits of flows Φ7 (left) and Φ8.

applying (b) to the collapsed flow, we deduce that the distances d(Φt(q), α(p)), q ∈ Ω−T ,

tend uniformly to zero as t → −∞, and the same is true for d(Φt(q), ω(p)), q ∈ Ω+
T and

t→∞. Therefore, ϕ(p) is fine.

After extending the notion of separatrix as described in Definition 3.4, Theorem 3.2

works and, in fact, can be slightly improved, see Theorem B below. The improvement

has to do with essential singular points. The left-hand flow Φ7 from Figure 3.4 is that

associated (after deformation to clarify the picture outside the unit circle) with the vector

field

f7(x, y) = (1− x2 − y2)
(
−(1− x2 − y2)x− y, x− (1− x2 − y2)y

)
,

having the origin and the unit circle S1 as its set of singular points. Consecutive points

of the semiorbit starting at (2, 0) and intersecting the positive x-semiaxis (respectively,

negative x-semiaxis, positive y-semiaxis) are denoted by (an)∞n=1 (respectively, (bn)∞n=1,

(cn)∞n=1). To construct Φ8 we modify, as indicated in the picture, the semiorbits from

the regions enclosed by ϕΦ7(an, bn), ϕΦ7(an+1, bn+1), and the segments connecting an and

an+1 and bn and bn+1. In the lower half-plane, and inside S1, the phase portrait does not

change. Thus, for both flows, all regular orbits spiral towards S1 in positive time, and if Γ1

denotes the orbit passing through (2, 0) and Γ2 is an orbit inside S1, then {0}∪S1∪Γ1∪Γ2

is a separator configuration for both Φ7 and Φ8.

Nevertheless, these flows are not equivalent. The key point is that, while all semi-
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lines starting from the origin are transversal (except at the unit circle) to Φ7, transversals

connecting the points (cn)n for Φ8 cannot be fully included in the octant {(x, y) : y > |x|},
hence their diameters are uniformly bounded, from below, by a positive number. Now

assume that h is a topological equivalence mapping the orbits of Φ8 onto those of Φ7.

Then the points h(cn) converge to a point d ∈ S1, and there are transversals Tn (for

Φ7) connecting the points h(cn) and h(cn+1) whose diameters tend to zero. Hence the

diameters of the transversals h−1(Tn) (for Φ8) also tend to zero, which is impossible

because they connect the points cn and cn+1.

There is no contradiction with Theorem 3.2 here, because the set of singular points is

not discrete. On the other hand, note that all singular points in the octant are essential

for the flow Φ8, which is really the reason why Theorem 3.2 fails in this case:

Theorem B. Let S be a surface and suppose that Φ1 and Φ2 are flows on S whose sets of

essential singular points are discrete. Then Φ1 and Φ2 are topologically equivalent if and

only if they have equivalent separator configurations.

We outline the proof of Theorem B in the next section. Let us presently emphasize the

usefulness of the improved condition on the singular points. On the one hand, recall that

it implies, in the zero genus case, that all almost fine orbits are fine (Proposition 3.6(b)).

On the other hand, we have:

Proposition 3.7. If (S,Φ) is associated with an analytic vector field X, then either X is

identically zero or its set of essential singular points is discrete.

Proof. If Sing(Φ) has nonempty interior, the analyticity of X and the connectedness of S

implies that Sing(Φ) = S (see Proposition 1.7); we discard this trivial case in the rest of

the proof.

First, for every p ∈ S, there exist a neighbourhood Up of p, an analytic map ρp : Up → R
and an analytic vector field Yp on Up, such that the restriction of X to Up equals ρpYp

and the vector field Yp has no zeros in Up \ {p} (see Theorem 1.9). If S1 denotes the set of

singular points with the property that any Yp in such a decomposition vanishes at p, then

S1 is clearly closed and discrete.

Since Sing(Φ) is the set of zeros of the analytic map X2
1 + X2

2 , X = (X1, X2), by

virtue of Theorem A, Sing(Φ) is locally, at each of its points p, a topological star with

finitely many branches (“zero” branches meaning that the point is isolated in Sing(Φ));

moreover, the closure of any such branch B can be parametrized via a bijective analytic

map ϕ : [0, 1] → B with ϕ(0) = p (see Remark 2.1). Clearly, the set S2 of points where

Sing(Φ) is not locally a 2-star (that is, there is not an arc neighbouring p in Sing(Φ)) is

also closed and discrete.

To finish the proof, it then suffices to show that if S3 is the set of essential singular

points not included in S1 ∪ S2, then S3 is closed and discrete as well. Let p ∈ S3 and
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assume Up to be small enough so that it is a tubular neighbourhood of p for the non-

vanishing vector field Yp. We can also assume that there is an analytic bijection λp :

(−1, 1) → Sing(Φ) ∩ Up. Since p is not vertical, λ′p(0) must be parallel to Yp(p), that

is, Tp(s) = λ′p,1(s)Yp,2(λp(s)) − λ′p,2(s)Yp,1(λp(s)) vanishes for s = 0, and since p is not

horizontal, Tp(s) cannot be identically zero. Analyticity then implies that there is ε > 0

such that Tp(s) does not vanishes at (−ε, ε) \ {0}, that is, all singular points close enough

to p are vertical. In particular, S3 is discrete.

To prove that S3 is closed, it suffices to show that if (pn)n is a sequence of pairwise

distinct points of S3, then it cannot converge. Assume the opposite and call p its limit,

when we can also assume that all points pn belong to the same branch B of the star of

singular points with centre p and are included in the neigbourhood Up. Find an analytic

parametrization ϕ : [0, 1] → B as previously explained, with ϕ(tn) = pn and tn → 0, and

realize that vectors ϕ′(tn) and Yp(ϕ(tn)) are parallel for all n. Hence, ϕ′(t) and Yp(ϕ(t))

are parallel for all t ∈ [0, 1], which is to say that all points pn are, in fact, horizontal. This

contradiction finishes the proof.

Corollary 3.8. Let S be a surface and suppose that Φ1 and Φ2 are flows on S associ-

ated with analytic vector fields. Then Φ1 and Φ2 are equivalent if and only if they have

equivalent separator configurations.

3.4 Why the proof of Theorem 3.2 fails, and how to prove The-

orem B

Roughly speaking, the proof of Theorem 3.2 by Markus and Neumann goes as follows.

First of all, it is shown that each canonical region for a flow (S,Φ) is parallel. (The same

reasoning still works, word by word, for standard regions; alternatively, notice that each

invariant region in a parallel region is parallel as well.) Here observe that, by a simple

connectedness argument, all orbits in a canonical (or a standard) region Ω share their α-

limit sets and their ω-limit sets. Thus it make sense to write α(Ω) and ω(Ω), respectively,

to denote them.

Next, under the hypotheses of Theorem 3.2 for (S,Φ1) and (S,Φ2), an easy simplifi-

cation allows to assume that both separatrix configurations are equal, S+ := S+
1 = S+

2 ,

hence the canonical regions of (S,Φ1) and (S,Φ2) are also equal and the topological equiv-

alence h : S → S we are looking for should map each canonical region into itself. Note

that the existence of a toral canonical region implies that S = T2; this trivial case can be

discarded, for then both (T2,Φ1) and (T2,Φ2) are equivalent to the rational flow (T2,Φss).

Now the difficult part of the proof comes (Section 3 in [63] and Section 7 in [59]):

starting from assuming that h is the identity on S+, it must be homeomorphically extended
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to each canonical region Ω (mapping orbits from (S,Φ1) into orbits from (S,Φ2) and

preserving the time directions). After explaining how this extension must be done, the

authors first check the continuity from “inside” at the so-called accessible regular points

from Bd Ω (by accessible we mean that there is a lateral tubular region at the point

which is included in Ω), then deduce the continuity from “outside” and at the rest of

regular points in S+, and finally prove the continuity at the (isolated) singular points. If

fact, the argument equally works under the weaker hypothesis that the sets of essential

singular points are discrete. Continuity at vertical singular points is guaranteed from the

very beginning, because they are interior to S+; on the other hand, maximal curves of

horizontal singular points can be dealt with exactly as if they were regular orbits.

Unfortunately, in their construction Markus and Neumann take for granted the follow-

ing intuitively obvious (but, as shown by the counterexamples from the previous section,

not necessarily true) fact: if a transversal to a canonical region ends at an accesible point

from its boundary, then the transversal must be semi-complete. Using standard regions

allows to override this difficulty:

Proposition 3.9. Let Ω be a strip, annular or radial standard region. If p ∈ Bd Ω is a

regular or a horizontal singular point, and L ⊂ Ω is a transversal ending at p (that is,

there is an arc A with endpoint p such that A′ = A \ {p} ⊂ L), then L is semi-complete;

more precisely, there is a complete transversal to Ω including A′.

Proof. When Ω is annular, the result is clear.

Assume now that Ω is a strip and fix a topological equivalence g between (Ω,Φ) and

(R2,Φs), when there is no loss of generality in assuming that g preserves directions (that

is, if T = g−1({0}×R), then Ω+
T = g−1((0,∞)×R)) and g−1(0, 0) = q is the other endpoint

of the arc A.

Let I = (c, d) (−∞ ≤ c < 0 < d ≤ ∞) be the open interval and µ : I → R be the

continuous map such that g(L) = {(µ(s), s) : s ∈ I} when, say, lims→d h
−1((µ(s), s)) = p.

We argue to a contradiction by assuming that d <∞.

We claim that either lims→d µ(s) =∞ or lims→d µ(s) = −∞. Otherwise, there would

be a sequence sn → d with µ(sn)→ r ∈ R, hence g−1((sn, µ(sn)) would converge both to

g−1(d, r), a point in Ω, and to p, which belongs to Bd Ω. This is impossible. We suppose,

for instance, lims→d µ(s) =∞. Moveover, slightly modifying g near q if necessary, we can

assume µ(s) > 0 for all s ∈ (0, d). Hence T ′ = g−1({0} × (0,∞)) does not intersect A′.

Let v = h−1(0, d). The orbit ϕ(v) is fine, so there is a strong strip U ⊂ Ω neighbouring

it, with its border orbits also included in Ω, verifying Definition 3.4(ii’). Since the points

in Cl(S+
T∩U ) which are not in Ω belong to ω(Ω) = ω(v), and p is one of such points because

g−1(µ(s), s) is included in S if s is close enough to d, we get p ∈ ω(Ω).

Fix now a couple of lateral tubular regions V and W at p. We can assume that V ⊂ Ω
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and, moreover, A ⊂ V . Let B be the corresponding lateral transversal at p included in

W . Since p ∈ ω(Ω), all positive semiorbits ϕ(z,+), z ∈ T , must intersect B (in fact,

infinitely many times). Let q∗ be the first point from ϕ(q,+) in B, and denote by B′ ⊂ B
the transversal with endpoints p and q∗. Now let T ′0 (respectively, T ′1) be the set of

points z ∈ T ′ such that the first intersection point of ϕ(z,+) with A′ ∪ B′ belongs to A′

(respectively, to B′). Both sets are disjoint and nonempty (v ∈ T ′1, and all points from

T ′ ∩ V , in particular those close enough to q, belong to T ′0), its union is the whole T ′, and

they are clearly open in T ′ because the orbit ϕ(q) does not intersects T ′. This contradicts

the connectedness of T ′.

Finally, we assume that Ω is radial and reason again by way of contradiction, assuming

that A′ does not intersect all orbits of Ω infinitely many times. It is clear that, without

loss of generality, we can suppose that A′ does not meet every single orbit in Ω; with more

detail, there is no restriction in assuming that there exist some z ∈ Ω and some strip

neighbourhood of ϕΦ(z), U , such that U ∩A′ = ∅.

Now consider a new flow Φ′ having exactly the same orbits as Φ in S\ϕΦ(z) and having

z as its only singular point. Then ϕΦ(z), when seen as a subset of (S,Φ′), consists of three

separators for Φ′: the singular point z and two regular orbits given by the components of

ϕΦ(z)\{z}. Moreover, Ω′ = Ω\ϕΦ(z) is a strip and, clearly, a standard region for Φ′. The

previous argument implies that A′ is semi-complete for Φ′, which is impossible because it

does not intersect U .

With the help of Proposition 3.9, Theorem B can be proved, without further changes,

as explained above.
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In the present chapter we present the results collected in [28]: we classify polynomial

global attraction up to topological equivalence. Indeed we work in the much more general

setting of planar flows with finitely many separators (or equivalently, see Remark 4.21,

those having the finite sectorial decomposition property at 0, or those having finitely many

unstable orbits), when their separator configurations are also finite. To begin with, there

is a dichotomy: global attraction is trivial if and only if 0 is positively stable, that is,

there are no regular homoclinic orbits (Proposition 4.14). Hence we concentrate in what

follows in the “non-positively stable” case, when at least (as implied by Proposition 4.14)

one heteroclinic separator must exist. We rely on Theorem B: two flows are equivalent if

and only if there is a plane homeomorphism preserving the orbits and time directions of

their separator configurations. As it turns out, a weaker so-called compatibility condition

(just assuming preservation of orbits, see Subsection 4.1.2) suffices, provided that at least

one heteroclinic separator is preserved as well. Moreover, after fixing an orientation in

R2 (counterclockwise or clockwise) and a heteroclinic separator, and using the separator

configuration combinatorial structure, there is a canonical way to associate a so-called

feasible set (a finite vectorial set as described in Definition 4.18) to the flow, and this

labelling characterizes equivalence: topologically equivalent flows have the same canonical

feasible set. We emphasize that although the separator configuration is not uniquely

defined, no ambiguity arises because the corresponding canonical feasible sets are the

same (this follows from Lemma 4.13).
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Figure 4.1: Two non-equivalent phase portraits with the same sectorial decomposition (elliptic-elliptic-

hyperbolic-attracting-hyperbolic in counterclockwise sense) at the origin.

Our first theorem summarizes these results.

Theorem C. Assume that 0 is a global attractor, non-positively stable, for two plane flows

Φ and Φ′, both having finitely many separators, and let X and X ′ denote their separator

configurations. Then the following statements are equivalent:

(i) Φ and Φ′ are topologically equivalent.

(ii) X and X ′ are compatible and the compatibility bijection ξ : X → X ′ maps some

heteroclinic separators of Φ to a heteroclinic separators of Φ′.

(iii) There are respective orientations Θ,Θ′ in R2 and heteroclinic separators Σ,Σ′ such

that the associated canonical feasible sets are the same.

We remark that sharing (up to homeomorphisms) the same finite sectorial decompo-

sition is a necessary but not sufficient condition for two such flows being topologically

equivalent, see Figure 4.1. Likewise, compatibility alone is not enough to guarantee topo-

logical equivalence, see Figure 4.2.

Although the lemmas in Section 4.2 do not require finiteness of separators, no attempt

has been done to find a more general version of Theorem C disposing of this restriction.

Anyway, we are mainly interested in polynomial (local) flows, that is, those associated

with polynomial vector fields, hence finiteness of separators is guaranteed (Remarks 1.57

and 4.2). Our next result, together with Theorem C, implies that if a flow has a globally

attracting singular point, then it is topologically equivalent to a polynomial flow.
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Figure 4.2: Two non-equivalent phase portraits with compatible separator configurations (numbering indicating

the compatibility bijection).

Theorem D. Let L be a feasible set. Then there are a polynomial flow Φ (having 0 as

a non-positively stable global attractor) and a heteroclinic separator Σ of Φ such that L is

the canonical feasible set associated with Φ, the counterclockwise orientation in R2 and Σ.

Our proof of Theorem D depends heavily on the paper [74], where sufficient condi-

tions are given allowing the flow associated with a C1-vector field to be equivalent to a

polynomial flow. In a sense this is not fully satisfying, because the arguments in [74] are

essentially non-constructive. In fact, to the best of our knowledge, the literature provides

no explicit examples of polynomial flows having a nontrivial globally attracting singular

point. For this reason we finally prove:

Theorem E. The origin is both a global attractor and an elliptic saddle for the systemx′ = −((1 + x2)y + x3)5,

y′ = y2(y2 + x3),
(4.1)

that is, the origin possesses a neighbourhood decomposed as exactly one elliptic sector and

one hyperbolic sector.

4.1 Preliminary notions

While polynomial planar vector fields are the primary interest of this chapter, and

their associated flows are usually just local, there is a way to get rid of this restriction.

Indeed, for any local flow Φ on R2 there exists a (global) flow of class C∞ on R2
∞ which
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has∞ as a singular point and whose restriction to R2 is topologically equivalent to Φ (see

Subsection 1.4.3). To simplify the notation we will call Φ, rather than Φ∞, this extended

flow, hoping that this will not lead to confusion. If Φ is associated with a polynomial

planar vector field, then we also call it (and its extension) polynomial, although of course

this map is not “polynomial” in the usual sense.

Conversely, there is a natural way to transport polynomial vector fields from S2 to R2.

Namely, if f : S2 → R3 is a polynomial vector field, tangent to S2 and vanishing at the

north pole pN = (0, 0, 1) of S2, say f(u, v, w) = (P (u, v, w), Q(u, v, w), R(u, v, w)), then

we can carry it, via the stereographic projection, to the plane vector field

g(x, y) = (1− w)−1(P (u, v, w) +R(u, v, w)x,Q(u, v, w) +R(u, v, w)y)

with u = 2x/(1 + x2 + y2), v = 2y/(1 + x2 + y2), w = (x2 + y2 − 1)/(1 + x2 + y2), and

after multiplying g by an appropriate power of 1 + x2 + y2 we obtain a polynomial vector

field whose associated (polynomial) flow is topologically equivalent to the flow induced by

f on S2 \ {pN}.

4.1.1 On special flows and regions

The standing assumption in this section is that 0 is a globally attracting singular point

for the flows Φ on R2 we deal with, that is, ω(z) = {0} for any z ∈ R2. This is closely

related to the notions of heteroclinicity and homoclinicity. In this context, an orbit ϕ(z)

of Φ is homoclinic (respectively, heteroclinic) if ω(z) = {0} and α(z) = {0} (respectively,

α(z) = ∅ —that is, α(z) = {∞} when using the extended flow to R2
∞). Of course, the

singular point 0 is trivially homoclinic. If Γ is homoclinic, then we denote by E(Γ) the disk

enclosed by the circle Γ ∪ {0} (or just the singleton {0} in the case Γ = {0}). When all

orbits of a flow are heteroclinic or homoclinic, then it trivially has 0 as a global attractor.

The converse is true as well (Lemma 4.5).

In Chapter 3, we introduced the notions of parallel regions for a flow. Notice that in

the context of this chapter, only the strip and the radial regions are compatible with the

properties of the flows we are dealing with (0 is a global attractor).

If all orbits of a strip Ω ⊂ R2 are heteroclinic (respectively, homoclinic), then we

call Ω heteroclinic (respectively, homoclinic) as well. When Ω is a strong heteroclinic (or

homoclinic) strip, with Γ1 and Γ2 as border orbits (when notice that, due to Lemma 4.6,

they both are also heteroclinic or homoclinic, respectively), and Cl(Ω) = Ω∪Γ1∪Γ2∪{0},
then we say that Ω is solid .

If Q is a transversal circle (respectively, open arc) with the property that, for every

z ∈ Q, ϕ(z) intersects Q exactly at z, then Ω =
⋃
z∈Q ϕ(z) is a radial (respectively strip)

region. To construct the corresponding homeomorphism g : R2 \ {0} → Ω (respectively,
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g : R2 → Ω) just fix a homeomorphism f : S1 → Q (respectively, f : R → Q) and

write g(e−t+iθ) = Φ(t, f(eiθ)) (respectively g((t, θ)) = Φ(t, f(θ))). Conversely, if Ω ⊂ R2

is radial (respectively, a strip) then there is a circle (respectively, an open arc) Q ⊂ Ω,

transversal to Φ, having exactly one common point with every orbit in Ω. We call any

such set Q a complete transversal to Ω (notice that this notion is not in contradiction with

the homonym notion introduced in Chapter 3 — in the strip case, we are given exactly the

same concept, while in the radial case, we are here defining complete transversal circles

and in Chapter 3 we worked with complete transversal open arcs). Also, recal that if

Ω is a strong strip, then more is true: there is a transversal arc T having exactly one

common point with every orbit in Ω and every regular orbit in Bd(Ω) (what we call, a

strong transversal to Ω).

Remark 4.1. If Ω is radial, and the circle C is a complete transversal to Ω, then it must

enclose 0. Hence all heteroclinic orbits intersect C, that is, Ω is the union set of all

heteroclinic orbits of Φ; in other words, Φ admits one radial region at most (later we

will see, Proposition 4.14, that such a region does exist). Moreover, the circles Φt(C)

tend uniformly to ∞ as t → −∞. In fact, if Dt ⊂ R2
∞ is the disk containing ∞ and

having Φt(C) as its boundary, then Dt = {Φs(u) : u ∈ C, s ≤ t} ∪ {∞}. Since these disks

intersect exactly at ∞, we get diam(Dt)→ 0 as t→ −∞, and the uniform convergence to

∞ follows. As a corollary, all heteroclinic orbits are negatively stable.

Similarly, if Ω is a solid strip and T is a strong transversal to Ω, then Φt(T ) tends

uniformly to 0 as t → ∞, and tends uniformly to 0 as t → −∞ in the homoclinic case,

and to ∞ in the heteroclinic case. In particular, all orbits of a solid strip are stable, and

if it is heteroclinic (respectively, homoclinic), then the flow induced by f2 on R × [0,∞)

(respectively, by f4 on the union set of 0 and all orbits intersecting the diagonal arc

{(x, x) : 1/4 ≤ x ≤ 1/2}) is topologically equivalent to the restriction of Φ to Cl Ω (recall

the definitions of f2 and f4 given in Subsection 1.4.3).

In this context, the notion of separator (see Definition 3.4) can be reformulated as

follows: an orbit is a separator of Φ if it is contained in no solid strip (c.f. Proposition 3.6).

Remark 4.2. As indicated in Remark 4.1, any unstable orbit must be a separator. If Φ

has the finite sectorial decomposition property at 0, then Γ is a separator if and only if

it is either the singular point, or includes a semiorbit limiting a hyperbolic sector. In

particular, Φ has finitely many separators and Γ is a separator if and only if it is unstable.

The first statement in the next remark is a particular case of [59, Theorems 5.2 and

7.1], see also [63] and Chapter 3:

Remark 4.3. Notice that in the context of this chapter (the global attraction is incom-

patible with the existence of annular or toral parallel regions), any standard region of Φ

must be either radial or a strip. On the other hand, it is clear that a strip (even a strong

strip) needs not be either heteroclinic or homoclinic. Nevertheless, if a standard region
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is a strip, then it must be either heteroclinic or homoclinic (because, in this case, the

set of its heteroclinic orbits and the set of its homoclinic orbits are both open; hence, by

connectedness, one of them must be empty).

As particular case of Theorem B we have:

Theorem 4.4. Assume that 0 is a global attractor for two flows Φ and Φ′ and let X and

X ′ denote some separator configurations for Φ and Φ′. Then Φ and Φ′ are topologically

equivalent if and only if there is a homeomorphism from the plane onto itself mapping the

orbits of X onto the orbits of X ′ and preserving the time directions.

4.1.2 On orientations and the extension of homeomorphisms

Taking advantage of the results exposed in Subsection 1.1.4 (the notions and notation

introduced there will be used here), we present an ad hoc way to relate sets of orbits of Φ

and to use that relation to produce homeomorphism from the plane onto itself.

Let C be a circle around 0. If Γ is heteroclinic, we call the last point of Γ in C (that is,

the point q ∈ Γ∩C such that Φq(t) /∈ C for any t > 0) the ω-point of Γ in C. Likewise, if Γ

is regular and homoclinic and C is small enough so that there are points of Γ not enclosed

by C, then we call the first and last points of Γ in C (that is, the points p, q ∈ Γ∩C such

that Φp(t) /∈ C for any t < 0 and Φq(t) /∈ C for any t > 0) the α-point and the ω-point of

Γ in C, respectively.

If P is a finite family of orbits of Φ, and C is a circle around 0 small enough, then we

denote by ∆Φ(P, C) the set of all α- and ω-points in C from the orbits in P and call it

the configuration of P in C. Note that the possibility that the singular point belongs to

P is not excluded, when of course it adds no points to ∆Φ(P, C). Also, observe that all

configurations of P are essentially the same, that is, if C and C ′ are small circles around

0, then there is an orientation preserving homeomorphism h : C → C ′ mapping the α-

and ω-points in C of every orbit Γ ∈ P to the α- and ω-points in C ′ of that same orbit Γ.

If Γ is homoclinic, then we say that it is positive (respectively, negative) when, after

taking Γ′ ⊂ IntE(Γ) and a small circle C around 0, the α- and ω-points p, q of Γ in C,

and the ω-point q′ of Γ′ in C, we get that (p, q′, q) is positive (respectively, negative).

In simpler words, Γ is positive (negative) when the flow induces the counterclockwise

(clockwise) orientation on Γ ∪ {0}.
Assume that P and P ′ are finite families of orbits of, respectively, Φ and Φ′ (we also

assume that both of them contain the globally attracting singular point 0 and at least one

heteroclinic and one homoclinic orbit). Let P and P ′ be the union sets of these orbits and

note that these sets are nice. Then, as it is simple to check, a condition characterizing the

R2-compatibility of P and P ′ (when we accordingly say that P and P ′ are compatible) is

the existence of a compatibility bijection. By this we mean a bijection ξ : P → P ′ for which
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there is a homeomorphism µ : C → C ′, with C and C ′ small circles around 0, mapping

∆Φ(P, C) onto ∆Φ′(P ′, C ′), so that µ(C ∩ Γ) = C ′ ∩ ξ(Γ) for any Γ ∈ P. In this case we

say that µ preserves orbits for ξ.

If, additionally, µ maps ω-points onto ω-points (when we say that µ preserves directions

for ξ), then the corresponding plane homeomorphism preserves the time directions on

P and P ′. If, moreover, these families are the separator configurations of Φ and Φ′,

Theorem 4.4 implies that the flows are topologically equivalent.

4.2 General results on global attraction

Recall that we assume that 0 is a global attractor for Φ.

Lemma 4.5. All orbits of Φ are either homoclinic or heteroclinic.

Proof. If the statement of the lemma is not true, then there is some point z ∈ R2 such

that α(z) contains a regular point u. Let T be a transversal to u. According to some well-

known Poincaré-Bendixson theory, we can find p, q ∈ ϕ(z) ∩ T so that ϕ(p, q) ∪ S (where

S is the arc in T whose endpoints are p and q) is a circle enclosing a disk D in R2
∞ which

contains ϕ(−, p), and hence α(z), and intersects ϕ(q,+) just at q. This is impossible: on

the one hand, 0 cannot belong to D, because it is the ω-limit set of ϕ(q); on the other

hand, u ∈ α(z) implies ω(u) ⊂ α(z), so 0 does belong to D.

Lemma 4.6. The union set of all homoclinic orbits of Φ is bounded.

Proof. Assume the opposite to find a family of homoclinic orbits {ϕ(zn)}∞n=1 with zn →∞
as n → ∞ and fix a circle C around 0. Using the continuity of the (extended) flow Φ

at ∞, there is no loss of generality in assuming that the semiorbits Φzn([−n, 0]) do not

intersect the region O encircled by C. Next, find the numbers an ≤ −n, closest to −n,

such that the points Φzn(an) belong to C (using that the orbits ϕ(zn) are homoclinic)

and assume, again without loss of generality, that the points un = Φzn(an) converge to u.

Since Φun(t) ∈ R2 \ O for any t ∈ [0, n], the continuity of the flow implies that ϕ(u,+)

does not intersect O, contradicting that 0 is a global attractor.

Let H denote the family of homoclinic orbits of Φ. We introduce a partial order in H
by writing Γ � Σ if Γ ⊂ E(Σ), when Γ ≺ Σ means of course Γ � Σ with Γ 6= Σ. We say

that Γ ∈ H is maximal if there is no Σ ∈ H such that Γ ≺ Σ. If Γ,Σ ∈ H and neither

Γ � Σ nor Σ � Γ is true, then we say that Γ and Σ are incomparable. Realize that a

family of pairwise incomparable orbits must be countable. Moreover, we have:

Lemma 4.7. If the orbits {Γn}∞n=1 are pairwise incomparable, then diam(Γn) → 0 as

n→∞.
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Proof. Suppose the contrary to get a point u 6= 0 at which these orbits accumulate. Let

T be a transversal to u and find points unk ∈ Γnk ∩ T , k = 1, 2, 3, with, say, un2 lying

between un1 and un3 in T . Then un1 and un3 belong to different regions in R2\(Γn2∪{0}):
we are using here that any homoclinic orbit can intersect a transversal at one point at

most. Thus, either Γn1 ≺ Γn2 or Γn3 ≺ Γn2 , contradicting the hypothesis.

Lemma 4.8. Let Ω $ R2 be a region invariant for Φ.

(i) If Ω is bounded, then Bd Ω is the union set of a homoclinic orbit Σ, a (possibly

empty) family G of pairwise incomparable homoclinic orbits satisfying Γ ≺ Σ for

every Γ ∈ G, and the singular point.

(ii) If Ω is unbounded, then its boundary is the union set of at most two heteroclinic

orbits, a (possibly empty) family of pairwise incomparable homoclinic orbits, and the

singular point.

Proof. Since Ω in invariant, Bd Ω is invariant as well, and the statement (ii) follows easily

from the connectedness of Ω. To prove (i), assume that the boundary of the bounded

region Ω is not as described and realize that then we must have Bd Ω = {0} ∪ ⋃n Γn

for a family {Γn}n (having at least two elements) of pairwise incomparable homoclinic

orbits. Lemma 4.7 implies that O = R2 \⋃nE(Γn) is a region including Ω with the same

boundary as Ω. Hence Ω = O, contradicting that Ω is bounded.

Lemma 4.9. Let Γ ∈ H. Then there is Σ ∈ H, maximal for “≺”, such that Γ � Σ.

Proof. If Γ is not maximal itself, then the Jordan curve theorem implies that the nonempty

family F = {Γ′ ∈ H : Γ � Γ′} is a totally ordered subset of H; accordingly, it is enough

to show that F has a maximal element for �. Say F = {Γi}i. Then, because of the total

ordering, Ω =
⋃
i IntE(Γi) is a region invariant for Φ, and because of Lemma 4.6, Ω is

bounded. As a result, we can apply Lemma 4.8(i) to obtain the corresponding homoclinic

boundary orbit Σ. Then, clearly, Σ is the maximal element of F .

Remark 4.10. Note that all maximal homoclinic orbits of Φ are separators.

Lemma 4.11. Let z be a regular point. Then there is a transversal T to z such that, for

every u ∈ T , ϕ(u) intersects T exactly at u.

Proof. Fix an arc Q transversal to z. Note that no orbit can intersect Q infinitely many

times. Also, if some orbit intersects Q at consecutive times t < s and corresponding points

u and v, then no orbit can intersect the open arc in Q with endpoints u and v more than

once. Using these two facts it is easy to construct a transversal T ⊂ Q to z with endpoints

p and q such that the orbits ϕ(p) and ϕ(q) intersect T at exactly p and q. This is the

transversal we are looking for, because if an orbit Γ consecutively intersects T at points u
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and v, and D is the disk in R2
∞ enclosed by ϕ(u, v) and the arc in T with endpoints u and

v such that 0 ∈ D, then either ϕ(p) or ϕ(q) does not intersect D, a contradiction.

Remark 4.12. If the boundary of a heteroclinic strip consists of the singular point and

two heteroclinic orbits, then it is solid (the corresponding strong transversal can be found

with the help of Lemma 4.11). If we replace “heteroclinic” by “homoclinic”, this needs

not happen unless we additionally assume that the ordering “≺” totally orders the orbits

of the strip.

Lemma 4.13. If Ω is a standard region and Γ,Γ′ are distinct orbits in Ω, then there is a

solid strip S ⊂ Ω such that BdS = Γ ∪ Γ′ ∪ {0}.

Proof. Let Q be a complete transversal to Ω and let A ⊂ Q be an arc with endpoints

belonging to Γ and Γ′. Since Ω includes no separators, for any point z ∈ Q there is a solid

strip in Ω, containing z, whose closure intersects Q at a small arc in Q (this small arc thus

being a strong transversal to the strip). Taking this into account, and applying a simple

compactness argument to A, the lemma follows.

Recall that Φ admits one radial region at most, that consisting of all heteroclinic orbits

of Φ (Remark 4.1). Indeed, such is the case:

Proposition 4.14. Let R be the union set of all heteroclinic orbits of Φ. Then it is radial.

Moreover:

(i) If R = R2\{0}, that is, all regular orbits of Φ are heteroclinic, then Φ is topologically

equivalent to the associated flow with f2(x, y) = (−x,−y) in R2 (hence 0 is positively

stable and it is the only separator of Φ).

(ii) If R 6= R2 \ {0}, then R includes a separator of Φ.

Proof. First we assume R = R2 \ {0}. To prove that R is radial and (i) holds, it suffices

to show that 0 is the only separator of Φ (Remark 4.3 and Theorem 4.4). Take z ∈ R and

let T ⊂ R be an arc transversal to z with the property that the orbits of all its points

intersect T exactly once (Lemma 4.11). Let p and q be the endpoints of T and let D be

the disk in R2
∞ enclosed by ϕ(p), ϕ(q), 0 and ∞ and including T . If u ∈ IntD, then ϕ(u)

intersect T (because it is heteroclinic). Therefore, IntD is a heteroclinic solid strip; in

particular, ϕ(z) is not a separator.

Assume now R 6= R2 \ {0}. Applying Lemma 1.4 to the union set K = R2 \ R of all

sets E(Γ) with Γ maximal for “≺” (recall also Lemmas 4.7 y 4.9), and using (i), we can

construct a topological equivalence between the restriction of Φ to R and the restriction

(to R2 \ {0}) of the associated flow with f2. In particular, R is radial.
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To prove the last statement of the proposition, assume that R includes no separators

(hence it is a standard region by Remark 4.3), fix a complete transversal circle C to R

and apply Lemma 4.13 (recall also Remark 4.1) to conclude the uniform convergence of

Φt(C) to 0 and ∞ as t→ ±∞. Then R =
⋃
t∈R Φt(C) = R2 \ {0}, a contradiction.

4.3 Proof of Theorem C

In this section we assume, besides global attraction, that 0 is not positively stable and

Φ has finitely many separators.

Let X be a separator configuration for Φ, fix a small circle C around 0 and let X =

∆Φ(X , C) be the configuration of Φ in C. Also, fix an orientation Θ (counterclockwise

or clockwise) in R2 and a heteroclinic separator Σ in X (such an orbit exists because of

Proposition 4.14(ii)). Let q be the ω-point of Σ in C. Find disjoint open arcs J, J ′ ⊂ C

having q as their common endpoint (small enough so that they do not contain any points

from X), take points p ∈ J , p′ ∈ J ′, and assume that they are labelled so that the

orientation of (p, q, p′) in C is that given by Θ (that is, (p, q, p′) is positive if and only if

Θ is the counterclockwise orientation). Finally, after removing J ′ from C, we get an arc

A with endpoints a (the other endpoint of J ′) and q, and order the points from A in the

natural way so that a < q.

We call positive (negative) homoclinic orbits even when Θ is the counterclockwise

(clockwise) orientation, and odd when Θ is the clockwise (counterclockwise) orientation.

Thus, a homoclinic orbit from X is even if and only if its α-point v and its ω-point w

satisfy v < w. By convention, all heteroclinic orbits are even. We say that two orbits have

the same parity when both are even or both are odd.

According to Remark 4.3 and, again, Proposition 4.14(ii), all standard regions are

indeed strips, so we will call them standard strips. Recall (Remark 4.3) that any standard

strip must be either heteroclinic or homoclinic. By Lemma 4.8, the boundary of any

heteroclinic standard strip Ω consists of (apart from 0) two heteroclinic separators (or

just Σ, when Ω = R \ Σ is the union set of all heteroclinic orbits except Σ) and several

(possibly zero) maximal homoclinic separators, when Ω is called elementary if and only if

this last set is empty. Likewise, the boundary of a homoclinic standard strip Ω consists

of, apart from 0, a homoclinic separator Γ enclosing it and possibly some others, all of

them less than Γ in the ≺-ordering, when we again call Ω elementary if this last family is

empty. Note that is quite possible for a standard strip to be elementary, but at least one

heteroclinic standard strip cannot be elementary (otherwise Φ would have no homoclinic

separators, and consequently all its regular orbits would be heteroclinic, contradicting

Proposition 4.14(i)).

Remark 4.15. The following statements are easy to prove:
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• a heteroclinic standard strip is elementary if and only if it is solid;

• a homoclinic standard strip is elementary if and only if the restriction of Φ to its

closure is topologically equivalent to the flow induced by the “elliptic vector field”

f4(x, y) = (x2 − 2xy, xy − y2) on the union set A′4 of all orbits intersecting the

diagonal arc {(x, x), 0 ≤ x ≤ 1}.

Remark 4.16. If a regular homoclinic separator Γ is minimal, that is, E(Γ) an elementary

homoclinic standard strip, then there is an elliptic sector intersecting E(Γ) (Remark 4.15).

Thus, due to Remark 4.2, if 0 is not positively stable, and the finite sectorial decomposition

property holds, then the decomposition must include both an elliptic and a hyperbolic

sector.

There are two natural ways to associate an orbit from X to each standard strip Ω of Φ.

Firstly, γ′(Ω) will denote the orbit from X included in Ω. Next, γ(Ω) will denote (when

Ω is homoclinic) the separator Γ ⊂ Bd Ω enclosing Ω, and (when Ω is heteroclinic) the

heteroclinic separator Γ ⊂ Bd Ω whose ω-point w (in C, and then in A) satisfies v < w,

v being the ω-point of γ′(Ω) Note that X consists of all orbits γ(Ω), γ′(Ω) together with

0. Also, observe that γ′(Ω) decomposes Ω into two components Ωl and Ωu, Ωu being the

component of Ω \ γ′(Ω) including γ(Ω) in its boundary (an ambiguity arises in the case

Ω = R \Σ, where Ωu consists of the orbits whose ω-points are greater than the ω-point of

γ′(Ω)).

Lemma 4.17. Let Ω be a standard strip and let Γ be a regular orbit in Bd Ω. Then Γ has

the same parity as γ′(Ω) if and only if either Γ = γ(Ω) or Γ ∈ Bd Ωl.

Proof. We present the proof under the hypothesis that Ω is a heteroclinic strip whose

boundary includes two heteroclinic orbits, γ(Ω) and γ′′(Ω). The case when Ω is heteroclinic

but Σ is the only heteroclinic separator of Φ, and the homoclinic case, can be dealt with

in analogous fashion. We will also assume that the fixed orientation Θ is counterclockwise

so the even (respectively odd) homoclinic orbits coincide with the positive (respectively

negative) ones.

If Ω is elementary, then there is nothing to prove: both Γ and γ′(Ω) are heteroclinic

and consequently even. Otherwise, let Γ1, . . . ,Γj be the maximal homoclinic orbits in

Bd Ω, where these orbits are labelled in such a way that if q1, . . . , qj are the corresponding

ω-points, then q1 < · · · < qj (in A). The corresponding α-points will be denoted by pk,

1 ≤ k ≤ j. Finally, let u, v and w be the ω-points of γ′′(Ω), γ′(Ω) and γ(Ω), respectively

(so u < v < w). We can assume, without loss of generality that there are small subarcs of

C, neighbouring all these points, which are transversal to the flow.

Let 1 ≤ k ≤ j − 1. We claim that it is not possible that Γk is negative and Γk+1 is

positive. Assume by contradiction qk < pk < pk+1 < qk+1. Find points pk < b < b′ < pk+1
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in C, very close to pk and pk+1, respectively, so that T = {t ∈ C : pk ≤ t ≤ b}, T ′ =

{t ∈ C : b′ ≤ t ≤ pk+1} are transversal to the flow. Also, let Q = {t ∈ C : b ≤ t ≤ b′}.
Since Γk is negative, backward semiorbits starting from points from T \{pk} enter the disk

D enclosed by C and, since Γk+1 is positive, then they escape from the disk through Q.

Accordingly, take a a decreasing sequence (bn)∞n=1 in T ∩Ω tending to pk and find maximal

semiorbits ϕ(an, bn) fully included in D, when observe that the sequence (an)n, besides

lying in Q, is increasing. Call a∗ its limit. Clearly, a∗ ∈ Cl Ω. Since the full forward orbit

ϕ(a∗,+) lies in D, and Γk and Γk+1 are consecutive, we easily get that, in fact, a∗ ∈ Ω

and there is a solid heteroclinic strip S neighbouring a∗. This is impossible because points

bn belong to S if n is large enough, hence Γk ⊂ BdS.

Further, if Γk and Γk+1 have the same sign, then γ′(Ω) cannot lie between them. In

fact, assume, say, qk < pk < v < qk+1 < pk+1, take b, T and (bn)n as before. but consider

now Q = {t ∈ C : b ≤ t ≤ v}. Find similarly the points an and a∗ in Q to obtain the

analogous contradiction. We prove that if Γ1 is positive, then γ′(Ω) cannot lie between

γ′′(Ω) and Γ1, and if Γj is negative, then γ′(Ω) cannot lie between Γj and γ(Ω), in the

same way.

As a conclusion, we get that either (a) all orbits Γk are positive and γ′(Ω) lies between

Γj and γ(Ω), or (b) all orbits Γk are negative and γ′(Ω) lies between γ′′(Ω) and Γ1, or (c)

there is 1 ≤ l ≤ j − 1 such that all orbits Γk with k ≤ l are positive, all orbits with k > l

are negative, and γ′(Ω) lies between Γk and Γk+1. This implies the lemma.

We say that a finite, nonempty set V of vectors of positive integers is complete when, for

any (i1, . . . , il) ∈ V , we have (i1, . . . , im) ∈ V for every 1 ≤ m ≤ l, and (i1, . . . , il−1, i) ∈ V
for every 1 ≤ i ≤ il. If v ∈ V , then we denote by λ(v) the largest number j such that

(v, j) ∈ V , λ(v) = 0 meaning that there is no j such that (v, j) ∈ V . Likewise, λ(∅) stands

for the largest number t such that (t) ∈ V . Of course we should write λV instead of λ

(and similarly ρL, σL instead of ρ, σ below) to emphasize that this map depends on V , but

hopefully this will not lead to confusion.

Let M = {n/3 : n = 0, 1, 2, . . .}.

Definition 4.18. We say that a set L of vectors of numbers from M is feasible with base

a complete set V if its elements have the structure (v, k), with v ∈ V and k ∈M, and the

following conditions hold:

(i) for each (i) ∈ V there are exactly two elements in L: (i, λ(i) + 1) and (i, s+ 2/3) for

some integer s = σ(i), 0 ≤ s ≤ λ(i);

(ii) for each v ∈ V with length at least 2 there are exactly four elements in L: (v, 0),

(v, λ(v) + 1), and (v, r + 1/3), (v, s + 2/3) for some integers r = ρ(v), s = σ(v),

0 ≤ r ≤ s ≤ λ(v);
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(iii) (i, λ(i) + 2/3) and (i + 1, 2/3) cannot simultaneously belong to L (where we mean

i+ 1 = 1 when i = λ(∅));

(iv) if λ(v) = 1, then (v, 1/3), (v, 5/3), (v, 1, 1/3) and (v, 1, λ(v, 1) + 2/3) cannot simul-

taneously belong to L.

Note that property (iii) above implies that λ(i) ≥ 1 for some i, hence V contains at

least one sequence of length 2. If V is the base of a feasible set L, then we assign a parity

(even or odd) to each v ∈ V as follows. All vectors of length 1 in V have parity even. If

(i) ∈ V , then we assign even or odd parity to (i, j) depending on whether j ≤ σ(i) or not.

Inductively, once the parity of v ∈ V is established, we assign to (v, j) the same parity as v,

or the other one, depending on whether ρ(v) < j ≤ σ(v) or not. Finally, if w = (v, h) ∈ L,

then we say that w is an α-vector if either v is even and h = 0 or h = ρ(v) + 1/3, or v is

odd and h = λ(v) + 1 or h = σ(v) + 2/3. Otherwise, we say that w is a ω-vector.

We next explain how to associate canonically a feasible set L to Φ. To construct the

base V we proceed inductively, biunivocally associating to each standard strip Ω (and

the ω-point of γ(Ω)) a vector from V . First of all, order the heteroclinic standard strips

of Φ as Ω1, . . . ,Ωt, this meaning that the corresponding ω-points qi of the orbits γ(Ωi),

1 ≤ i ≤ t, satisfy q1 < . . . < qt. Then the 1-length vectors from V will be those of the

type (i), 1 ≤ i ≤ t. If, additionally, the strip Ωi is not elementary, and Ωi,1, . . . ,Ωi,j are

the homoclinic standard strips Ω such that γ(Ω) ⊂ Bd Ωi (again assuming qi,1 < . . . < qi,j

for their corresponding ω-points), then we add the 2-vectors (i, k) to V , 1 ≤ k ≤ j. In

general, if a vector v has been added to V , with corresponding standard strip Ωv, and

Ωv is not elementary, then we order as before the homoclinic standard strips Ω such that

γ(Ω) ⊂ Bd Ωv, call them Ωv,1, . . . ,Ωv,j′ (so that qv,1 < . . . < qv,j′ for the corresponding

ω-points), and add the vectors (v, k), 1 ≤ k ≤ j′, to V . Clearly, the set V so defined is

complete.

Now we define L (and biunivocally associate to its vectors all points from X). We just

must explain how to choose the numbers σ(i) and the pairs ρ(v), σ(v) in Definition 4.18(i)

and (ii), and then check that (iii) and (iv) hold. As for the first numbers, let (with the

notation of the previous paragraph) 1 ≤ i ≤ t. Then s = σ(i) is the largest number

such that qi,s < yi, yi being the ω-point of γ′(Ωi) (or s = 0 if Ωi is elementary or no

such number exists, that is, yi < qi,j for all j). Also, we redefine the points yi and qi

as ci,σ(i)+2/3 and ci,λ(i)+1, respectively. In the general case we denote by xv and yv the

α- and ω-points of γ′(Ωv) when this orbit is even, reversing the notation when γ′(Ωv) is

odd, and take r = ρ(v) and s = σ(v) as the largest numbers satisfying qv,r < xv and

qv,s < yv, respectively (or r = s = 0 when Ωv is elementary, and r = 0 or s = 0 when the

corresponding number does not exist). Finally, we redenote xv and yv as cv,ρ(v)+1/3 and

cv,σ(v)+2/3, while cv,0 and cv,λ(v)+1 stand for the α- and ω-points (or conversely in the odd

case) of γ(Ωv).



68 Unstable global attractors

V L

(1) (1, 2), (1, 5
3)

(1, 1) (1, 1, 0), (1, 1, 2), (1, 1, 1
3), (1, 1, 2

3)

(1, 1, 1) (1, 1, 1, 0), (1, 1, 1, 1), (1, 1, 1, 1
3), (1, 1, 1, 2

3)

Table 4.1: The elements of the feasible set L and its base V from the left flow of Figure 4.1.

V L

(1) (1, 2), (1, 2
3)

(1, 1) (1, 1, 0), (1, 1, 1), (1, 1, 1
3), (1, 1, 2

3)

(2) (2, 1), (2, 2
3)

(3) (3, 2), (3, 5
3)

(3, 1) (3, 1, 0), (3, 1, 1), (3, 1, 1
3), (3, 1, 2

3)

Table 4.2: The elements of the feasible set L and its base V from the right flow of Figure 4.1 (Σ is the “upper”

heteroclinic separator.

We claim that (iii) in Definition 4.18 holds. Indeed if, say, both (i, λ(i) + 2/3) and

(i+ 1, 2/3) belong to L for some i, the orbits γ′(Ωi) and γ′(Ωi+1) would bound, together

with 0, a solid strip (Remark 4.12). Since this strip includes the separator γ(Ωi), we get

a contradiction.

Assume now that Definition 4.18(iv) does not hold, that is, there is v ∈ V with λ(v) = 1

such that all vectors (v, 1/3), (v, 5/3), (v, 1, 1/3) and (v, 1, λ(v, 1)+2/3) belong to L. Then,

again by Remark 4.12, the orbits γ′(Ωv), γ
′(Ωv,1) bound, together with 0, a solid strip

including γ(Ωv,1), which is impossible.

Thus we have shown that L is feasible. Although L has been constructed with the

help of the circle C, it depends only on Θ and Σ. We call it the canonical feasible set

associated with Φ, the orientation Θ and the separator Σ.

As some examples, we present in Tables 4.1 and 4.2 the feasible sets associated with

the flows on Figure 4.1 under the counterclockwise orientation.

Remark 4.19. The simplest feasible set

L = {(1, 5/3), (1, 2), (1, 1, 0), (1, 1, 1/3), (1, 1, 2/3), (1, 1, 1)}

(equivalent to

L = {(1, 2/3), (1, 2), (1, 1, 0), (1, 1, 1/3), (1, 1, 2/3), (1, 1, 1)}

after reversing the orientation) correspond to the case when there are exactly three sep-
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arators (one heteroclinic, another one regular homoclinic, and the singular point), which

occurs when “≺” is a total ordering in H (0 becoming an elliptic saddle for the flow).

Observe that the bijection from L to X given by w 7→ cw preserves orders (when the

lexicographical order is used in L), orbits (that is, two points cw and cw′ belongs to the

same orbit if and only if w = (v, h) and w′ = (v, h′) for some v ∈ V and h + h′ is an

integer) and directions (that is, w is a ω-vector if and only if cw is a ω-point; this follows

from Lemma 4.17, which implies that the parity of v ∈ V is the same as that of γ(Ωv)

and γ′(Ωv)). There are many feasible sets L′ which can be bijectively mapped onto X

so that ordering is preserving: since both orderings are total, one just needs that both

cardinalities of L and L′ are the same. As it turns out, if orbits are preserved, then

directions are preserved as well:

Lemma 4.20. If L′ is feasible, and there is a bijection ψ : L′ → X preserving orders and

orbits, then L′ = L.

Proof. Let V ′ the base of L′ and redenote λV ′ = λ′, ρL′ = ρ′, σL′ = σ′. Since ψ preserves

orbits, it maps vectors (i′, λ′(i′)+1) and (i′, σ′(i′)+2/3) to ω-points of heteroclinic orbits,

and pairs (v′, 0) and (v′, λ′(v′) + 1), as well as pairs (v′, ρ′(v′) + 1/3) and (v′, σ′(v′) + 2/3),

to pairs of points of homoclinic orbits. Since orders are preserved as well, we get that

vectors (i′, λ′(i′) + 1) are precisely those mapped to heteroclinic separators, and deduce

that vectors of lengths 1 and 2 of V and V ′, as well as vectors of length 2 of L and L′,

are the same. Now, as the reader will easily convince himself, to prove the lemma we just

have to show this: pairs (v′, 0) and (v′, λ′(v′) + 1) are exactly those mapped to homoclinic

separators.

Assume, to arrive at a contradiction, that (v′, 0) and (v′, λ′(i′) + 1) are mapped to one

of the orbits γ′(Ωv) of X . Since X has no orbits between γ′(Ωv) and the orbits γ(Ωv,k)

(regarding the order “≺”), it is clear that (v′, ρ′(v′) + 1/3) and (v′, σ′(v′) + 2/3) must

be mapped to one of the orbits γ(Ωv,k) (in particular, v cannot have maximal length in

V ). Similarly, if (v′, ρ′(v′) + 1/3) and (v′, σ′(v′) + 2/3) are mapped to an orbit γ(Ωw), the

pair which is mapped to γ′(Ωw) must be of the type (w′, 0) and (w′, λ′(w′) + 1), because

the orbit corresponding to (w′, ρ′(w′) + 1/3) and (w′, σ′(w′) + 2/3) is ≺-less than that

corresponding to (w′, 0) and (w′, λ′(w′) + 1), and there are no orbits of X between γ(Ωw)

and γ′(Ωw). We could thus proceed indefinitely, contradicting the finiteness of X .

Proof of Theorem C. The statement (i)⇒(ii) is obvious (recall Proposition 4.14).

Let us show (ii)⇒(iii). Fix small circles C,C ′ around 0 and let µ : C → C ′ be a

homeomorphism preserving orbits for ξ. Use the hypothesis to find heteroclinic separators

Σ and Σ′ such that ξ(Σ) = Σ′, fix Θ as the counterclockwise orientation, and take Θ′

as the counterclockwise or the clockwise orientation depending on whether µ preserves or

reverses the orientation. Construct the canonical feasible sets L and L′ associated with
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Figure 4.3: From left to right: phase portraits of f , f0,2,f2,5 and f0,0.

them, and the corresponding bijections ψ : L → X, ψ′ : L′ → X ′ to the configurations

of X and X ′ preserving orders, orbits and directions. Although the hypothesis does not

state that µ preserves directions for ξ, we get that µ−1 ◦ψ′ : L′ → X preserves orders and

orbits anyway. Now Lemma 4.20 applies and (iii) follows.

Finally, to prove (iii)⇒(i), let again C,C ′ be small circles around 0, denote the con-

figurations of X and X ′ in these circles by X and X ′, and find arcs A ⊂ C and A′ ⊂ C ′

containing all points of X and X ′ and having q and q′, the ω-points of Σ and Σ′, as

their upper endpoints (after using the respective orientations Θ and Θ′). According to the

hypothesis, there are a feasible set L and bijections ψ : L → X, ψ′ : L → X ′ preserving

orders, orbits and directions, and hence a bijection ξ : X → X ′ and a homeomorphism

µ : C → C ′ preserving orbits and directions for ξ. Then, as explained in Subsection 4.1.2,

there is a plane homeomorphism preserving the separator configuration orbits, which turns

out to preserve the time directions as well. Hence Φ and Φ′ are topologically equivalent

by Theorem 4.4.

4.4 Proof of Theorem D

Let 0 ≤ s ≤ j be non-negative integers. We define a C1-vector field fs,j as follows.

We start from f(x, y) = (x(x2 − 1),−y). As easily checked, the phase portrait of (the

associated local flow with) f in the semi-band [−1, 1] × [0,∞) (the only sector we are

interested in) consists of three singular points (0, (−1, 0) and (1, 0)), two horizontal orbits

in the x-axis going to 0 as time goes to ∞, and three vertical orbits on the semi-lines

x = −1, 0,−1, each converging in positive time to the corresponding singular point. All

other orbits go to 0 as t → ∞. Next, let κ(x) be a non-negative C1-function vanishing

at points x = −i/s, 0 ≤ i ≤ s (or at the whole interval [−1, 0] if s = 0), at points

x = i/(j − s), 0 ≤ i ≤ j − s (or at the whole interval [0, 1] if s = j), and at no other

points. Then we define fs,j(x, y) = (κ(x) + y2)f(x, y), thus adding new singular points in

the x-axis and leaving unchanged the upper orbits. Figure 4.3 exhibits the phase portrait

of fs,j for different values of s and j.

Now, let 0 ≤ r ≤ s ≤ j be non-negative integers and define C1-vector fields g+
r,s,j , g

−
r,s,j
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Directions Regions

x′ < 0, y′ > 0 V1 = {(x, y) ∈ V : x < −1 + (1− y)2/2}
x′ > 0, y′ > 0 V2 = {(x, y) ∈ V : −1 + (1− y)2/2 < x < 0}
x′ > 0, y′ < 0 V3 = {(x, y) ∈ V : 0 < x < 1− (1− y)2/2}
x′ < 0, y′ < 0 V4 = {(x, y) ∈ V : 1− (1− y)2/2 < x}

Table 4.3: Directions of the vector field for the system (4.1).

⇒

��
↘↗

↙↖

U1 U4

U2 U3

Figure 4.4: Phase portrait of g.

as follows. This time our starting point is

g(x, y) =

(
(x2 − 1)

(
x2 −

(
1− (1− y)2

2

)2
)
, y(y − 1)x

)

and we are interested in its phase portrait in the rectangle [−1, 1] × [0, 1]. We have six

singular points: (−1, 0), (1, 0), (−1/2, 0), (1/2, 0), (−1, 1) and (1, 1). The boundary of the

rectangle is invariant for the flow, hence consisting of the singular points and six regular

orbits, all clockwise oriented by the flow except that connecting (−1/2, 0) and (1/2, 0).

Additional isoclines exist at the y-axis (for the horizontal direction of the flow) and the

parabolas x = ±(1−(1−y)2/2) (for the vertical direction of the flow). This three isoclines

divide the interior of the rectangle V = (−1, 1)× (0, 1) in four regions Vi, 1 ≤ i ≤ 4, where

the flow has a well-defined direction: see Table 4.3 and Figure 4.4.

This already ensures that all orbits through points in V crossing the y-axis go to

(−1/2, 0) (respectively, (1/2, 0)) as time goes to −∞ (respectively, ∞).

As it happens, this completes the phase portrait because in fact all interior orbits cross

the y-axis. To prove this we must discard the existence of full orbits in the region to the

right of the isocline x = 1−(1−y)2/2 or, equivalently (because of the symmetry properties

of the vector field) in the region to the left of the isocline x = −1 + (1 − y)2/2. Now, in

order to prove that there are no full orbits to the right of x = 1 − (1 − y)2/2, it clearly

suffices to show that the vector field crosses from left to right all lines y = 1 + a(x − 1),
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Figure 4.5: Phase portraits of g+
1,1,2 (left), g+

0,3,5 (center) and g−2,3,4 (right).

a > 0, in the square (1/2, 1) × (1/2, 1), that is, ag1(1 − t, 1 − at) − g2(1 − t, 1 − at) > 0

whenever 0 < t < 1/2 and 0 < at < 1/2, when we mean g = (g1, g2). Since

ag1(1− t, 1− at)− g2(1− t, 1− at)
at

= 1 + 3t− at− 4t2 + at2 − 2a2t2

+(1 + a2)t3 +
a4t4

2
− a4t5

4

> 1 + 3t− 1

2
− 2t+ at2 − 1

2

+(1 + a2)t3 +
a4t4

2
− t

64

=
63t

64
+ at2 + (1 + a2)t3 +

a4t4

2
> 0,

we are done.

Let κ(x) be a non-negative C1-function vanishing at points x = −1 + i/(2r), 0 ≤ i ≤ r
(or at the whole interval [−1,−1/2] if r = 0), at points x = −1/2 + i/(s− r), 0 ≤ i ≤ s− r
(or at the whole interval [−1/2, 1/2] if r = s), at points x = 1/2+ i/(2j−2s), 0 ≤ i ≤ j−s
(or at the whole interval [1/2, 1] if s = j), and at no other points. Then we define

g+
r,s,j(x, y) = (κ(x) + y2)(1 − x2)g(x, y). In this way, we add some new singular points

at the x-axis, and all points from both vertical borders of the rectangle become singular

as well, yet the inner orbits remain the same. Finally we put g−r,s,j(x, y) = −gr,s,j(x, y),

getting the same phase portrait with reversed time directions. Some examples of the phase

portraits of these vector fields are shown in Figure 4.5.

Let L be a feasible set with base V . We are ready to explain how to construct a poly-

nomial flow Φ whose associated feasible set, after fixing the counterclockwise orientation

and choosing an appropriate heteroclinic separator of Φ, is exactly L.

Let n be the length of the largest sequence in V and recall that n ≥ 2. Also, let

t = λ(∅) ≥ 1. Firstly, we define a vector field F on R2 by gluing (after appropriate

translations and dilatations) some vectors fields fr,j , g
+
r,s,j , g

−
r,s,j (and the null vector field)

as prescribed by L.

To begin with, if (i) ∈ V , then we glue at the semi-band [i − 1, i] × [0,∞) the vector

field fσ(i),λ(i) (that is, fσ(i),λ(i)(2x − 2i + 1, y)). Note that the way we defined the maps

fs,j ensures that adjacent pieces glue well at the orbits Υi := {i} × [0,∞).
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Now, the maximal compact intervals I in Ii := [i− i, i] such that Int I × {0} contains

no singular points will be denoted, from left to right, by Ii,1, . . . , Ii,λ(i), the flow travelling

to the right on Υi,k := Ii,k × {0} if and only if k ≤ σ(i). Certainly, maximal compact

intervals N with N ×{0} just consisting of singular points may exist; we call each of them

a 0-level null interval.

After F has been defined on [0, t] × [0,∞), we define it in [0, t] × [−1, 0). In the

rectangles N × [−1, 0), where N is a 0-level null interval, we just define F as zero; and at

the rectangles Ii,k× [−1, 0) we glue either the vector field g+
ρ(i,k),σ(i,k),λ(i,k) (more properly,

g+
ρ(i,k),σ(i,k),λ(i,k)((2x− a− b)/(b− a), y + 1)

with Ii,k = [a, b]) or the vector field g−ρ(i,k),σ(i,k),λ(i,k) according to whether the flow in Υi,k

goes to the right or to the left. Similarly as before, the maximal compact intervals I in

Ii,k such that Int I × {−1} contains no singular points will be denoted, ordered from left

to right, Ii,k,1, . . . , Ii,k,λ(i,k) (write also Υi,k,k′ = Ii,k,k′ × {−1}), and the flows travels on

Υi,k,k′ in the same direction as in Υi,k if and only if ρ(i, k) < k′ ≤ σ(i, k). Any maximal

compact interval N such that N ×{−1} consists of singular points will be called a 1-level

null interval.

Proceeding in this way, we associate inductively to each vector v ∈ V of length m ≥ 2

an interval Iv ∈ [0, t] (and the corresponding orbit Υv = Iv × {−m + 2}), and define the

m-level null intervals. Then we define F as zero in N × [−m+ 1,−m+ 2) if N is m-level

null, or as g+
ρ(v),σ(v),λ(v) or g−ρ(v),σ(v),λ(v) in Iv× [−m+1,−m+2) according to the direction

of the flow on Υv. Note that the full lowest segment [0, t] × {−n + 1} is null, that is, all

its points are singular.

Thus we have completed the definition of F on [0, t]× [−n+ 1,∞). Note that the map

so defined is not locally Lipschitz (or even continuous) at the orbits Υv; this can be easily

arranged by multiplying F by appropriate positive C1-functions τv(x) in the corresponding

semi-open rectangles Int Iv × [−m + 1,−m + 2). We keep calling F this modified map;

note that, even so, it needs not be continuous at the singular points. To conclude the

definition of F , we extend it periodically to the whole semi-plane R × [−n + 1,∞) (that

is F (x, y) = F (x+ kt, y) for any integer k) and define it as zero otherwise.

Before proceeding further, some additional notation must be given. First, let Υ′i =

{i − 1/2} × [0,∞), i = 1, . . . , t. Also, for any v ∈ V with length m ≥ 2, let Υ′v be the

orbit in Iv× (−m+1,−m+2) corresponding, after translation and dilatation, to the orbit

of the vector field g(x, y), passing through the point (0, 1/2). Now it is easy to construct

a poligonal arc A with endpoints (0, 1) and (t, 1), consisting of alternate horizontal and

vertical segments, so that:

• horizontal segments are of type J × {−m + εJ} for some compact interval J , some
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V L

(1) (1, 5
3), (1, 4)

(1, 1) (1, 1, 0), (1, 1, 1
3), (1, 1, 2

3), (1, 1, 1)

(1, 2) (1, 2, 0), (1, 2, 1
3), (1, 2, 2

3), (1, 2, 1)

(1, 3) (1, 3, 0), (1, 3, 1
3), (1, 3, 2

3), (1, 3, 1)

(2) (2, 2
3), (2, 2)

(2, 1) (2, 1, 0), (2, 1, 1
3), (2, 1, 8

3), (2, 1, 3)

(2, 1, 1) (2, 1, 1, 0), (2, 1, 1, 1
3), (2, 1, 1, 2

3), (2, 1, 1, 1)

(2, 1, 2) (2, 1, 2, 0), (2, 1, 2, 1
3), (2, 1, 2, 2

3), (2, 1, 2, 1)

(3) (3, 2
3), (3, 1)

(4) (4, 5
3), (4, 2)

(4, 1) (4, 1, 0), (4, 1, 4
3), (4, 1, 5

3), (4, 1, 3)

(4, 1, 1) (4, 1, 1, 0), (4, 1, 1, 1
3), (4, 1, 1, 2

3), (4, 1, 1, 1)

(4, 1, 2) (4, 1, 2, 0), (4, 1, 2, 1
3), (4, 1, 2, 2

3), (4, 1, 2, 1)

Table 4.4: The elements of the feasible set L and its base V from Figure 4.6.

0 < εJ ≤ 1 and 0 ≤ m < n;

• any two such intervals J, J ′ have at most one common point, and the union of all

intervals J is [0, t];

• A intersects each orbit Υi,Υ
′
i at exactly one point, and all other orbits Υv,Υ

′
v at

exactly two points.

Observe that the bijection mapping L to the set of these intersection points that preserves

orders (hence mapping (t, λ(t) + 1) to (t, 1)), also preserves orbits as previously meant,

that is, every vector (i, h) is mapped either to A∩Υi or to A∩Υ′i and every pair of vectors

(v, h), (v, h′) with h+ h′ an integer is mapped either to A ∪Υv or to A ∪Υ′v.

Figure 4.6 illustrates the former construction starting from the feasible set L described

in Table 4.4. The dotted line indicates the arc A.

Let Ξ : R2 → R2 \ {0} be given by Ξ(r, θ) = er+i2πθ/t. Although F may not be

continuous, the set T of singular points of F is closed and F is locally Lipschitz in the

region O = R2\T ; hence, when restricted to O, it has an associated local flow which can be

naturally carried to the region U = Ξ(O) via Ξ: call Ψ′ this projected local flow on U . Let

Ψ be a flow on R2
∞ with the same orbits and time orientations as Ψ′, and having singular

points outside U , that is, at K = Ξ(T ) ∪ {0} and ∞. This flow induces in Q = R2
∞/ ∼K ,
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Υ1 Υ2 Υ3 Υ4Υ′1 Υ′2 Υ′3 Υ′4

Υ1,1 Υ1,2 Υ1,3 Υ2,1 Υ4,1

Υ′
1,1 Υ′

1,2 Υ′
1,3 Υ′

2,1 Υ′
4,1

Figure 4.6: Constructing a polynomial flow from a feasible set.

in the natural way, a flow Ψ∼K with two singular points, K (now an element of Q) and

∞. Moreover, since R2
∞ \ K is connected, there is a homeomorphism H : Q → R2

∞
(Lemma 1.4), when we can assume H(K) = 0, H(∞) = ∞. After carrying Ψ∼K to R2

∞
via H, we get a flow Φ′ on R2

∞ having (when restricted to R2) 0 as its global attractor, its

separator configuration consisting of 0 and the curves (H ◦ Ξ)(Υv), (H ◦ Ξ)(Υ′v), v ∈ V .

Using C = (H ◦ Ξ)(A), now a circle around 0, choosing an appropriate orientation Θ in

R2, and taking Σ = (H ◦ Ξ)(Υt) (recall also Lemma 4.20), we get that L is the canonical

feasible set associated with Φ′, Θ and Σ. Composing H if necessary with a reversing order

homeomorphism, we can in fact get Θ to the the counterclockwise orientation.

We are almost done. Indeed, since Φ′ has finitely many unstable orbits, two singular

points (the only possible α-limit and ω-limit sets of the flow) and no periodic orbits, [46,

Lemma 4.1] (essentially, a corollary of Theorem 1.49 and the main results in [74]) implies

that it is topologically equivalent to the associated flow with a polynomial vector field in

S2 and then, as explained in Section 4.1, to a polynomial flow in R2. Figure 4.7 shows the

resultant flow after collapsing the flow from Figure 4.6.

Remark 4.21. Since any flow having 0 as a global attractor and finitely many separators

is topologically equivalent to a polynomial flow, and polynomial flows have the finite

sectorial decomposition property, we get that finiteness of separators and sectors are, in

fact, equivalent properties in this setting (compare to Remark 4.2).
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Ω1,1

Ω1,2

Ω1,3

Ω2,1

Ω4,1

Ω1

Ω2

Ω3

Ω4

Figure 4.7: The phase portrait of the flow labelled by the feasible set from Table 4.4.
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Directions Regions

x′ < 0, y′ > 0 U1 = {(x, y) : y > 0, y2 + x3 > 0}
x′ < 0, y′ < 0 U2 = {(x, y) : y2 + x3 < 0, (1 + x2)y + x3 > 0}
x′ > 0, y′ < 0 U3 = {(x, y) : (1 + x2)y + x3 < 0, y > 0}
x′ > 0, y′ < 0 U4 = {(x, y) : y < 0, y2 + x3 < 0}
x′ > 0, y′ > 0 U5 = {(x, y) : y2 + x3 > 0, (1 + x2)y + x3 < 0}
x′ < 0, y′ > 0 U6 = {(x, y) : (1 + x2)y + x3 > 0, y < 0}

Table 4.5: Directions of the vector field for the system (4.1).

4.5 Proof of Theorem E

Since the polynomial (1+x2)2 +x3 has no real zeros, 0 is the only singular point of the

associated local flow with (4.1). The isocline corresponding to the horizontal direction of

the vector field is the union of the curves y = 0 and y2 +x3 = 0. Thus, the x-axis consists

of 0 and two regular orbits (both going to 0 in positive time) and there are no periodic

orbits, as they should enclose the singular point. The isocline corresponding to the vertical

direction of the vector field is the curve (1 + x2)y + x3 = 0. Finally, the isoclines divide

the plane in six regions Ui, 1 ≤ i ≤ 6, where the flow has a well-defined direction: see

Table 4.5 and Figure 4.8.

Claim 1: The origin is a global attractor of (4.1).

First of all, observe that orbits starting in U2 go to U3, and orbits starting in U3 go

to 0. Similarly, orbits starting in U4 go to U5, orbits starting in U5 either go to 0 or to

U6, and orbits starting in U6 go to 0. As a consequence, in order to prove the claim, it is

enough to show that any orbit starting in U1 meets the curve y2 + x3 = 0.

Let P (x, y) = −((1 + x2)y + x3)5 and Q(x, y) = y2(y2 + x3) be the components of the

vector field and put U ′1 = U1 ∩ {(x, y) : y ≥ 1}. Then we have

− 1 ≤ Q(x, y)

P (x, y)
≤ 0 for any (x, y) ∈ U ′1 (4.2)

because if x ≥ 0, then

Q(x, y) = y4 + y2x3 ≤ (1 + x2)5y5 + 5(1 + x2)4y4x3 ≤ |P (x, y)|,

while if x ≤ 0, we use that y ≥ −x holds in U ′1 to get

Q(x, y) ≤ y4 ≤ y5 ≤ (y + yx2 + x3)5 = |P (x, y)|.
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Figure 4.8: Phase portrait of x′ = −((1 + x2)y + x3)5, y′ = y2(y2 + x3).

Now, realize that if an orbit starts in U1, then either it crosses y2 + x3 = 0, or goes to

U ′1. Therefore, to prove the claim, it suffices to show that if (x0, y0) ∈ U ′1, then the orbit

(corresponding to the solution) (x(t), y(t)) of (4.1) starting at x(0) = x0 and y(0) = y0

meets y2 +x3 = 0. But, due to (4.2), we have y′(t) ≤ −x′(t) and then y(t) ≤ x0 +y0−x(t)

whenever the orbit stay in U ′1. In other words, the orbit lies below the line y = x0 +y0−x
while staying in U ′1. Since this line intersects y2 + x3 = 0, Claim 1 follows.

Claim 2: The origin is not positively stable for (4.1).

Given any y0 > 0, let (x(t), y(t)) be the orbit of (4.1) starting at x(0) = 0 and

y(0) = y0. According to Claim 1, this orbit must travel to U2, then to U3, and finally

converge to 0. In particular, it meets the line y = −2x. Let t∗ be the (smallest) positive

time for which y(t∗) = −2x(t∗) and denote Y (y0) = y(t∗).

To prove the claim, it suffices to show that Y (y0) > 1/2 (this bound is conservative;

numerical estimations suggest that the optimal bound is approximately 0.831). We proceed

by contradiction assuming Y (y0) ≤ 1/2. Then −1/4 ≤ x(t) ≤ 0 for any 0 ≤ t ≤ t∗.

For the sake of clarity, in this paragraph we assume 0 ≤ t ≤ t∗ and shorten x(t) as x

and y(t) as y. Since x ≤ 0, we trivially have

y +
x3

1 + x2
≤ y + (−x)3/2. (4.3)
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We assert that

y +
x3

1 + x2
≤ 2

(
y − (−x)3/2

)
(4.4)

is true as well. Observe that (4.4) is equivalent to

2(1 + x2)(−x)3/2 +
x3

≤ (1 + x2)y

and, taking into account that y ≥ −2x, a sufficient condition for this to happen is

(−2x(1 + x2)− x3)2 − (2(1 + x2)(−x)3/2)2 ≥ 0,

which is true indeed:

(−2x(1 + x2)− x3)2 − (2(1 + x2)(−x)3/2)2 = x2(4 + 4x+ 12x2 + 8x3 + 9x4 + 4x5)

≥ 4x2(1 + x+ 2x3 + x5)

≥ 4x2

(
1− 1

4
− 1

32
− 1

1024

)
≥ 0.

Finally, we have
1

(1 + x2)5
≥ 1

(1 + 1/16)5
=

1048576

1419857
>

1

2
. (4.5)

Putting together (4.3), (4.4) and (4.5), we get

Q(x, y)

P (x, y)
= −y

2(y + (−x)3/2)(y − (−x)3/2)

(1 + x2)5(y + x3/(1 + x2))5
≤ − 1

4y
.

As a consequence, for every 0 ≤ t ≤ t∗, we have 2y′(t)y(t) ≥ −x′(t) and therefore

y(t)2 ≥ y2
0 − x(t) > −x(t),

that is, the orbit lies over the parabola y2 = −x. Since this parabola intersects y = −2x

at the point (−1/4, 1/2), we obtain the desired contradiction Y (t0) > 1/2, and Claim 2

follows.

Claim 3: The origin is an elliptic saddle for (4.1).

Let R be the union set of all heteroclinic orbits of (4.1), that is, the closed lower half-

plane (except 0) and all orbits intersecting the positive semi-y-axis. By Claims 1 and 2, R

is a radial region strictly included in R2 \{0} (Proposition 4.14). Moreover, it is clear that

this flow does not allow a pair of incomparable homoclinic orbits. Then BdR = Γ ∪ {0},
Γ being the only regular homoclinic separator of the flow (the other separators are the

positive semi-x-axis and 0), and 0 is an elliptic saddle (Remark 4.19).

Claims 1, 2 and 3 complete the proof of Theorem E.
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Chapter 5

On the ω-limit sets for analytic flows

on open sets of the sphere

On the ω-limit sets for analytic flows

on open sets of the sphere

I n [43], V. Jiménez and J. Llibre characterized, up to topological deformation, the

ω-limit sets for analytic flows on the sphere, the plane and the projective plane. Unfor-

tunately, there is a gap in the proof of the essential Lemma 4.6 there. The proof can be

amended when the surface S is either the sphere S2, the plane R2, the projective plane P2

or the projective plane minus one point P2
∗ (see Proposition 5.11), hence the main results of

the paper (Theorems 5.3, 5.4, 5.5 and 5.6 below) are correct. However, as Proposition 5.12

shows, the lemma needs not hold on arbitrary surfaces, and in particular may fail when

S is a proper subset of R2 or P2
∗. Similarly, since [43, Proposition 4.9] is strongly based

on it, it works in S2, R2, P2 and P2
∗ but not on arbitrary subsurfaces of S2 and P2. As a

consequence, Theorems 7.1 and 7.2 in [43] are not correct.

In Section 5.1, we will explain why [43, Lemma 4.6] cannot work in general surfaces

(we will give some counterexamples to this result in the sphere minus two points and

the torus) and we will prove the property for the case of flows defined on S2, R2, P2 or

P2
∗. On the other hand, we will also point out why there is no way to fix the proof for

the characterizations for general open subsets of these three surfaces. In fact, the above-

mentioned counterexamples provide some ω-limit sets (on the respective open subsets of

those surfaces) which are not included in the characterization given in [43] for the cases of

proper open subsets of the sphere and the projective plane. Nevertheless, we have found

good topological restrictions which a subset of an open set of the sphere must verify in

order to be a limit set for an analytic flow on that open set. We present these restrictions

in Section 5.2; furthermore, and based on those restrictions, we conjecture a complete
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topological characterization for such limit sets. We do believe that we will be able to

complete a proof for that conjecture in the short term (the solution for the analogous

problem in the case of the projective plane is still to be found, but it should follow, with

the logical changes, from the previous one).

In order to give formal statements for the characterizations of the limit sets for analytic

flows on the whole plane, sphere and projective plane, we must first start by defining several

topological notions whose proper combinations allow us to describe those limit sets.

Definition 5.1. (see [43, p. 680]) A topological space A is said to be a cactus if it is a

simply connected union of finitely many disks (when notice that each pair of these disks

can have at most one common point). We say that A ⊂ R2 is a half-plane if both A and

R2 r IntA are homeomorphic to {(x, y) ∈ R2 : x ≥ 0}. We say that A ⊂ R2 is a chain if

there are disks {Di}i∈N such that:

(i) A =
⋃
i∈NDi;

(ii) if |i− j| = 1, then Di ∩Dj consists of exactly one point; otherwise Di ∩Dj = ∅;

(iii) every bounded set of R2 intersects finitely many disks Di.

Definition 5.2. (see [43, p. 682]) We say that a topological space A is a bracelet if it is

homeomorphic to {(x, y) ∈ R2 : x2 + y2 ≤ 1, (x − 1/2)2 + y2 ≥ 1/4}. We say that A is a

wristlet if there are finitely many sets {Bi}ni=1 (where n ≥ 2 and every Bi is either a disk

or an arc) such that:

(i) A =
⋃n
i=1Bi;

(ii) if |i− j| = 1 or {i,j}={1,n}, then Bi ∩ Bj consists of exactly one point; otherwise

Bi ∩Bj = ∅;

(iii) every bounded set of R2 intersects finitely many disks Di.

The announced characterizations for the plane, the sphere and the projective plane are

the following ones.

Theorem 5.3. (see [43, The R2-analytic theorem, pp. 680–681]) Let Φ be an analytic

local flow on the plane and let Ω = ωΦ(u) for some u ∈ R2. Then Ω = BdA, with A being

(a) the empty set;

(b) a single point;

(c) a cactus;

(d) the union of a circle C and finitely many pairwise disjoint cactuses, each of them

contained in the disk enclosed by C and intersecting C at exactly one point;
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(e) a union of countably many cactuses, half-planes and chains, which are pairwise dis-

joint except that each cactus intersects either one of the half-planes or one of the

chains at exactly one point; moreover, every bounded set of R2 intersects finitely

many of these sets.

Conversely, for every set A ⊂ R2 as in (a)–(e) and Ω = BdA, there are an analytic local

flow Φ on R2 and a homeomorphism h : S2 → S2 such that h(Ω) is the ω-limit set for

some orbit of Φ.

Theorem 5.4. (see [43, The R2-polynomial theorem, pp. 681–682]) Let f : R2 → R2 be

polynomial, let Φ be the local flow assocaited to f , and let Ω = ωΦ(u) for some u ∈ R2.

Then Ω = Bd(A), with A as in Theorem 5.3, except that in (e) the union is finite and

contains no chains.

Conversely, for every set A ⊂ R2 as before and Ω = Bd(A), there are a polynomial

function f : R2 → R2 and a homeomorphism h : R2 → R2 such that h(Ω) an ω-limit set

for the local flow associated with f .

Theorem 5.5. (see [43, The S2-analytic theorem, p. 682]) Let Φ be an analytic local flow

on the S2 and let Ω = ωΦ(u) for some u ∈ S2. Then Ω = BdA, with A being a single

point or a cactus.

Conversely, for every such set A ⊂ S2, there are an analytic flow Φ on S2 and a

homeomorphism h : S2 → S2 such that h(BdA) is the ω-limit set for some orbit of Φ.

Theorem 5.6. (see [43, The P2-analytic theorem, pp. 680–681]) Let Φ be an analytic

local flow on P2 and let Ω = ωΦ(u) for some u ∈ R2. Then Ω = BdA, with A being

(a) a single point;

(b) a cactus;

(c) the union of M (where M is either a nonorientable bracelet. or a nonorientable

wristlet, or a Möbius band), with finitely many pairwise disjoint cactuses, each of

them intersecting M at exactly one point.

Conversely, for every set A ⊂ R2 as in (a)–(c) and Ω = BdA, there are an analytic local

flow Φ on P2 and a homeomorphism h : P2 → P2 such that h(Ω) is the ω-limit set for

some orbit of Φ.

5.1 A first approximation to the problem

To clarify where the problem in [45] exactly lies, let us state here the content of [43,

Lemma 4.6]. We will do it separating the information in that lemma in a theorem and a
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remark. In Theorem 5.7 we present the part of [43, Lemma 4.6] which is totally correct

(the proof given in [43] is completely fine) while in Remark 5.8 we highlight the part which

needs not be true.

Theorem 5.7. (c.f. Lemma 4.6 in [43]) Let S be an analytic surface and let Φ be an

analytic local flow on S. Let Γ be the orbit of Φ through u ∈ S, put Ω = ωΦ(u) and assume

that Ω does not consists of a single singular point. Then, for every v ∈ Ω, there are a disk

D neighbouring v and an n-star R ⊂ Ω ∩D, n ≥ 2, with the following properties:

(i) v is the center of R;

(ii) the branches of R approach v from definite directions;

(iii) R intersects Bd(D) exactly at its endpoints;

(iv) if O is any of the components of Int(D\R), then either O∩Γ, or O∪B is a semi-open

flow box with border B the boundary of O in Int(D).

Remark 5.8. In the statement of Lemma 4.6 [43] the following final property is added.

“Moreover, except for a discrete set of points P , the corresponding set R

is a 2-star (an arc) and either one of the components of Int(D \ R) does not

intersect ϕ(p), or both components, together with its common boundary B

in Int(D) (the arc R minus its both endpoints), are semi flow boxes equally

oriented by the flow.”

As we will show below (see Proposition 5.11), this property needs not hold for general

surfaces.

Remark 5.9. When S is a subsurface of the sphere or the projective plane, in Theorem 5.7,

we can assume that not only R ⊂ Ω ∩D but also R = Ω ∩D (see [43, p. 690]).

Let us consider a surface S and let Φ be a (local) flow on S. Given a point u ∈ S, we

say that ϕ(u) spirals around an open arc B of singular points of Φ if there is an embedding

h : (−1, 1)× (−1, 1)→ S such that:

(a) h((−1, 1)× {c}) is a semiorbit of Φ for any c 6= 0;

(b) h((−1, 1)× {0}) = B;

(c) semiorbits at both sides of B are oppositely oriented by the flow;

(d) ϕ(u) accumulates at B, as time goes to ∞, from both sides of B; more precisely,

there is a sequence tn → ∞ such that the points Φu(tn) belong to h({0} × (−1, 0))

(respectively, h({0} × (0, 1))) whenever n is odd (respectively, even), and Φu(tn)→
h(0, 0) as n→∞.
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The problematic part of Lemma 4.6 in [43] is the statement quoted in Remark 5.8,

which essentially amounts to say that the “spiralling around” phenomenon cannot occur.

The original proof in [43] misses the point that, after cancelling a common analytic factor

in a neighbourhood of an arc of singular points, orientations in the resultant vector field

can be partially reversed. We next provide a correct, alternative proof for the special cases

of the sphere, the plane, the projective plane and the projective plane minus one point. It

is based on two parity tricks. The first one is nothing else but the parity of the branches in

the local structure of the set of zeros of analytic planar maps (see Theorem A). To present

the second one, we first need to introduce an auxiliary concept.

In Chapter 2, we introduced the notion of generalized graph. We say that a compact

connected metric generalized graph G is a graph. The points of G which are star points

of order different to 2 are said to be the vertexes of G. The set of all vertexes of G, VG,

is clearly finite; also, the set G \ VG consists of finitely many components: we call any of

those components an edge of G. The following elementary property holds:

Lemma 5.10. Let G be a graph, let V = {v1, v2, . . . , vm} be its set of vertexes and, for

every i ∈ {1, 2, . . . ,m}, denote by ri the number of edges of G ending at vi. Then
∑m

i=1 ri

is even.

Proof. This follows immediately from the fact that
∑m

i=1 ri = 2l, with l the number of

edges of the graph.

Proposition 5.11. Let Φ be an analytic flow on S = S2, R2, P2 or P2
∗. Then Φ admits

no orbits spiralling around open arcs of singular points of Φ.

Proof. We argue to a contradiction by assuming that the orbit of Φ through a point u ∈ S,

Γu, spirals around an open arc B of singular points of Φ, with h being the corresponding

embedding. Let 0 < t0 < s0 be such that Φu(t0) = h(0, c0), Φu(s0) = h(0, d0), with c0 <

0 < d0. Clearly, there is no loss of generality in assuming that the semiorbit Φu((t0, s0))

does not intersect h({0} × (−1, 1)), hence C = Φu([t0, s0]) ∪ h({0} × [c0, d0]) is a circle. If

S = P2, then we can additionally assume that C is orientable. Indeed, construct similarly

the circle C ′ = Φ([t1, s1]) ∪ h({0} × [c1, d1]), with s0 < t1 < s1 and c1 < 0 < d1 such that

Φu(t1) = h(0, c1) and Φu(s1) = h(0, d1). Due to [43, Lemma 4.8], it is not restrictive to

suppose that ωΦ(u) intersects Clh({0} × (−1, 1)) exactly at h(0, 0), and hence that t1 is

large enough so that Φu([t1,∞)) only intersects h({0}× (−1, 1)) at h({0}× (c0, d0)), that

is, c0 < c1 < d1 < d0. Now realize that (because orientations are reversed at both sides of

B) C ′ can be slightly deformed to a homotopic curve C ′′ which does not intersect C, and

recall that in P2 any pair of nonorientable circles must have at least one common point

(Remark 1.23). Therefore, either C or C ′ is orientable.

From the previous discussion we conclude that, regardless S = S2, R2, P2 or P2
∗, there

is a disk or a Möbius band D ⊂ S such that C = BdD. Let K denote the set of singular
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points of Φ. According to Theorem A, K is locally a 2n-star at any of its points, which

implies that the component G of K ∩D containing h(0, 0) is a graph. Now observe that

G is locally a star with an even number of branches at any of its vertexes except h(0, 0),

where G is locally a 1-star. This contradicts Lemma 5.10.

In contrast to this, spiralling around is possible, for instance, in the sphere minus two

points:

Proposition 5.12. There is an analytic flow on S2 \ {pN , pS}, where pN = (0, 0, 1) and

pS = (0, 0,−1), having (1, 0, 0) and the open arc B = {(−
√

1− z2, 0, t) : z ∈ (−1, 1)} as

its set of singular points, such that all regular orbits spiral around B, have B as their

ω-limit set, and have (1, 0, 0) as their α-limit set.

Proof. Consider the analytic vector field g(x, y) = (g1(x, y), g2(x, y)) (on the whole plane)

given by

g1(x, y) = cos(ν(x, y)) sin y + sin(ν(x, y)) sinx,

g2(x, y) = sin(ν(x, y)) sin y − cos(ν(x, y)) sinx,

with ν(x, y) = sin2(x + y) sin2(x − y). The dynamics of the flow Ψ associated with g in

the square Q = {(x, y) ∈ R2 : |x| + |y| ≤ π} are easy to describe. To begin with, the

boundary of Q is invariant under Ψ: the only singular points of g in Q are the origin and

the four vertexes of the square, and its four edges Γ1 = {(x, y) : x + y = π, 0 < x < π},
Γ2 = {(x, y) : x − y = π, 0 < x < π}, Γ3 = {(x, y) : x + y = −π, −π < x < 0} and

Γ4 = {(x, y) : x − y = −π, −π < x < 0} are regular orbits clockwise oriented by the

flow. Next observe that the scalar map V (x, y) = cosx + cos y = 2 cos(x+y
2 ) cos(x−y2 ) is

nonnegative in Q, vanishes at BdQ and attains its maximum at the origin. Moreover,

V̇ (x, y) = ∇V (x, y) · g(x, y) = − sin(ν(x, y))(sin2 x + sin2 y) ≤ 0, hence V is a Lyapunov

function for g, which is strict for all points from Q except those in BdQ and in the lines

x + y = 0, x − y = 0. As it is easy to check, the level curves of V in Q are circles

enclosing the origin and all four vertexes of Q are saddle points for ψ (see, e.g., [68,

pp. 119–129]; by a saddle point we mean a singular point whose every small enough

neighbourhoods decompose on four hyperbolic sectors). All these previous fact, together

with some elementary Poincaré-Bendixson theory (Theorems 1.53 and 1.54) allows us to

conclude that all orbits starting from points in IntQ \ {(0, 0)} have (0, 0) as their α-limit

set and spiral clockwise towards BdQ, which is their ω-limit set — see Figure 5.1.

After replacing g by the vector field w(x, y) = cos(x+y
2 )g(x, y) we get a new flow

having exactly the same orbits and orientations as Ψ in IntQ (velocities may change);

however, orbits Γ1 and Γ3 of ψ become open arcs of singular points for the new flow.

Moreover, for every k ∈ Z and every (x, y) ∈ Q, w(x, y) = w(x + kπ, y + kπ). Thus,

after identifying Γ1 and Γ3 in IntQ ∪ Γ1 ∪ Γ3, we obtain an analytic flow on a cylinder.
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Figure 5.1: Phase portrait of Ψ on ClU .

This last flow can be seen as an analytic flow on the open and bounded euclidean cylinder

L = {(x, y, z) ∈ R3 : x2 + y2 = 1, |z| < 1} just applying the diffeomorphism (x, y) 7→
(cos(x+y), sin(x+y), y−xπ ) to the previous one. Realize that this flow has (1, 0, 0) and the

open arc {(−1, 0, z) : −1 < z < 1} as its set of singular points, and that all regular orbits

spiral around that open arc. After projecting horizontally each point of the cylinder L

onto the sphere S2 minus the north and south poles pN , pS (this is the so-called Lambert

cylindrical projection) we get the desired flow.

Remark 5.13. Since the closure in S2 of the open arc B above is a (closed) arc, we get a

counterexample to the direct statement in [43, Theorem 7.1].

More generally, let Φ be the analytic flow on S2 \ {pN , pS} from Proposition 5.12, f

be its associated vector field and u be a regular point for Φ. If T is a totally disconnected

compact subset of the orbit ϕ(u), then, after removing the points from T , we trivially

get an analytic vector field (and hence an analytic flow) on S2 \ ({pN , pS} ∪ T ), similarly

having B as an ω-limit set and having orbits spiralling around B. Using the topological

characterization of noncompact surfaces (see Corollary 1.34) and the well-known fact that

two homeomorphic surfaces are analytically diffeomorphic (see Remark 1.17), we conclude

that any open subsurface of the sphere minus two points admits analytic flows for which

the “spiralling around” phenomenon takes place.

Remark 5.14. If f is the analytic vector field associated with the flow on S2\{pN , pS} from

Proposition 5.12, then one can find, as an application of Theorem 1.46, an analytic map

ρ : S2 \ {pN , pS} → (0,∞) with the property that ρf is C∞-extensible to the whole sphere

just defining it as zero both at pN and pS . Thus we get a C∞ flow on the whole sphere

having the arc of singular points B ∪ {pN , pS} as its only nontrivial ω-limit set. This,

however, does not contradicts [43, Theorem C] (Theorem 5.5 aboce) because analyticity
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is lost at the endpoints of the arc.

Remark 5.15. In order to construct a counterexample as that of Proposition 5.12 one could

alternatively start from an analytic scalar map in S2 \ {pN , pS} vanishing exactly at B,

for instance

F (x, y, z) =
(
x+

√
x2 + y2

)2
+ y2,

and then apply similar techniques to those in [43, Sections 6 and 7] — c.f. Section 5.2.3

below. This, however, would unnecessarily complicate matters; thus we have preferred a

direct, elementary proof in this preliminary section.

On the other hand, these more sophisticated techniques in [43] also allow us to con-

struct a counterexample for the projective plane minus two points. The starting point

would be now the map

F (x, y, z) = z

((
1− 2x2 +

√
(1− 2x2)2 + y2

)2
+ y2

)
which, as can be easily seen, is analytic in

S = S2 \ {(a, 0, a), (a, 0,−a), (−a, 0, a), (−a, 0,−a)},

a =
√

2/2, and vanishes at the union A of the equator {(x, y, z) ∈ S2 : z = 0} and

the two open arcs {(x, y, z) ∈ S2 : y = 0 ∧ x ≥
√

2/2} and {(x, y, z) ∈ S2 : y =

0 ∧ x ≤ −
√

2/2}. Moreover, we have F (−x,−y,−z) = −F (x, y, z). Then, reasoning

as in [43, Sections 6 and 7], one gets an analytic vector field f on S, also satisfying

f(−x,−y,−z) = −f(x, y, z). The Hartman-Grobman Theorem (see, e.g., [68, pp. 119–

129]) guarantees that the poles are repelling foci (by a repelling focus we mean an isolated

singular point q which possesses a neighbourhood where all points have {q} as α-limit

set); moreover, f has regular orbits converging towards A (more precisely, those at the

north hemisphere S2
+ = {(x, y, z) ∈ S2 : z ≥ 0} have S2

+ ∩ A as their ω-limit set, and

those at the south hemisphere S2
− = {(x, y, z) ∈ S2 : z ≤ 0} have S2

− ∩ A as their

ω-limit set). After canonically identifying opposite points in the sphere, we obtain an

analytic flow on the projective plane minus two points (this is the reason why we need

f(−x,−y,−z) = −f(x, y, z)) having the union of a nonorientable circle C and an open

arc B (intersecting transversally at exactly one point p) as an ω-limit set. This is in

disagreement with the direct statement in [43, Theorem 7.2]. As it turns out, there are

regular orbits of this flow which spiral around the two open arcs into which p decomposes

B.

Remark 5.16. If in Proposition 5.12 we use the vector field

w̃1(x, y) = cos

(
x− y

2

)
cos

(
x+ y

2

)
g1(x, y)
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instead of w1, then we get w̃1(x, y) = w̃1(x + kπ, y + lπ) for all integers k and l, so this

vector field induces an analytic flow on the torus having the union Ω = C1 ∪ C2 of two

non-null homotopic transversal circles of singular points as an ω-limit set; moreover, any

orbit having Ω as its ω-limit set spirals around all open arcs in Ω not containing the

intersection point of C1 and C2. Hence the statement from [43] highlighted in Remark 5.8

may fail even when the surface S is compact.

5.2 A topological characterization of ω-limit sets for analytic

flows on open subsets of the sphere

We devote this section to tackle the problem of characterizing (topologically) the ω-

limit sets for analytic flows on open subsets of the sphere.

5.2.1 Introductory notions and statement of the main results

Throughout this chapter, the real euclidean distance d(·, ·) in the unit sphere S2 =

{(u1, u2, u3) ∈ R3 : u2
1 + u2

2 + u2
3 = 1} will remain fixed.

Recall that a Peano space is a locally connected metric continuum. Single points, arcs,

circles and disks are the simplest examples of Peano spaces. Throughout the rest of the

chapter, some other special types of Peano spaces will be extensively used. We describe

them below.

We say that a Peano space X is a net when the set EX of all points admitting an open

arc as a neighbourhood is dense in X. Each component of EX is called an edge of X, and

the points of VX = X \ EX are called the vertexes of X. As it turns out, any edge E of

X is either a circle (when E = X) or an open arc. In this last case ClE is either E plus

one vertex of X (and then we get a circle) or E plus two vertexes of X (and then we get

an arc).

Remark 5.17. The previous statements can be proved as follows. Let E be an edge of X,

fix x ∈ E, find open arcs A,B in E neighbouring x with ClA ⊂ B and let p and q be the

endpoints of ClA. Then X \A is trivially locally connected. Indeed, assume first that this

set is connected, hence a Peano space. Then there is an arc C ⊂ X \ A with endpoints p

and q. If C ⊂ E, then, by connectedness, E equals the circle C ∪ A. Otherwise, there is

a arc Cp ⊂ C with endpoints p and v, and an arc Cq ⊂ C with endpoints q and w, such

that v and w are vertexes of X and both Cp \ {v} and Cq \ {w} are included in E. Again

using the connectedness of E, if v = w then E ∪ {v} is the circle C ∪ A, while if v 6= w

then E ∪ {v, w} is the arc A ∪ Cp ∪ Cq. On the other hand, if X \ A is not connected,

then it is the union of two disjoint Peano spaces V 3 p and W 3 q. We claim that V (and

similarly W ) is not fully included in E. If this is not true, then any point of V except
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p disconnects V (otherwise we could argue as in the above paragraph to find a circle in

V $ E, then arriving at a contradiction), hence any pair of points of V disconnect V . By

[54, Theorem 2, p. 180], V is then a circle and again we get a contradiction. Thus, there

are points in V which do not belong to E, and we can construct an arc Cp with endpoints

p and a vertex v in V , such that Cp \ {v} ⊂ E. Arguing similarly in W to find a vertex

w ∈W and an arc Cq with endpoints q and w and such that Cw \ {w} ⊂ E, we conclude

as before that E ∪ {v, w} is the arc A ∪ Cp ∪ Cq.

A graph is then a net with finitely many vertexes and edges. If a graph includes no

circles, then it is called a tree; more generally, a Peano space including no circles is called

a dendrite. We have already remarked that any Peano space is arcwise connected. For

dendrites a stronger property holds: any two different points p and q in a dendrite X are

the endpoints of a unique arc Xp,q in X. Accordingly, the locally arcwise connectedness

of a dendrite X can be rewritten as follows: for every p ∈ X and every ε > 0, there exists

δ > 0 such that if q is a point in the open ball of centre p and radius δ, the diameter of

Xp,q is less than ε.

If a tree X has n edges, then it has n + 1 vertexes: if, moreover, there is a vertex c

belonging to the closure of all its edges, then X is nothing else but an n-star with center

c and endpoints all other vertexes of X.

The next one is the most important notion of this paper.

Definition 5.18. We say that ∅ $ A $ S2 is a shrub if it is a simply connected Peano

space.

Remark 5.19. If A is a shrub, then all components {Rj}j of IntA are open disks (because

R is connected, hence S2 \Rj = R ∪ BdA ∪⋃j′ 6=j Rj′ is connected as well). If fact, more

is true: their closures Dj = ClRj are disks. To prove this it is enough to show, according

to [73, Remark 14.20(a), p. 291], that if a sequence (un)∞n=1 of points in Rj converges to

a point u ∈ BdRj , then there is a path in Dj monotonically passing through the points

un and ending at u (that this, there is a continuous map ϕ : [0, 1] → Dj and numbers

0 ≤ t1 < t2 < · · · , tn → 1, such that ϕ(tn) = un for all n and ϕ([0, 1)) ⊂ Rj). This last

statement is a direct consequence of the following fact: let ε > 0, then there is δ > 0 such

that, whenever v, w ∈ Rj and 0 < d(v, w) < δ, we can find an arc in Rj with endpoints v, w

whose diameter is less than ε. Certainly, such a δ > 0 exists, because A is a Peano space

[54, Theorem 2, p. 253 and Theorem 1, p. 254], except than we cannot guarantee that

the small arc connecting v and w, call it L, is fully contained in Rj . One thing, at least,

is sure: L ⊂ Dj . Otherwise, we could easily construct a circle C ⊂ A intersecting both

Rj and A \Rj , and simply connectedness forces that one of the open disks enclosed by C

is included in A, which contradicts that Rj is a component of IntA. Thus, L ⊂ Dj and,

similarly as above, we can construct a circle C ′ in Dj including all points of L ∩ BdRj .

Since C ′ encloses an open disk fully included in Dj , it is easy to slightly modify L so
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that the resultant arc L′ still has diameter less than ε, and v and w as its endpoints, and

additionally satisfies L′ ⊂ Rj .

We call the disks of the above (countable) family {Dj}j the leaves of the shrub A.

Observe that, again due to the simply connectedness of A, any circle in A must be included

in one of its leaves. This implies, in particular, that distinct leaves of a shrub can have

at most one common point. All dendrites in S2 are shrubs [54, Theorem 2, p. 375 and

Corollary 7, p. 378]; conversely, if a shrub has no leaves, then it is a dendrite. If a shrub A

is a union of finitely many leaves, then it is called a cactus. If A is the union of a cactus D

and finitely many arcs {Ai}mi=1, with every Ai intersecting D at only one endpoint of Ai,

ui, and (Ai \ {ui})∩ (Ai′ \ {ui′}) = ∅ whenever i 6= i′, we call A an m-prickly cactus, with

the arcs Ai being the prickles of A (here m = 0 is possible, when we get just a cactus);

the endpoints of the prickles of A not belonging to D will also be called the endpoints of

A. If all points of all circles in BdA are star points in BdA, we say that the shrub A is

simple. In particular, all cactuses and prickly cactuses are simple shrubs.

Definition 5.20. Let A be a shrub.

• Let u ∈ BdA. We say that u is an odd vertex (of A) if either u is not a star point

in BdA or u is in no leaf of A and, for some odd positive integer n, u is a star point

in BdA of order n.

• Let K be a maximal connected union of leaves of A. We say that K is an odd cactus

(in A) if there is an n-prickly cactus neighbouring K in A for some odd number n.

Definition 5.21. We say that a shrub A is realizable if its set of odd vertexes is totally

disconnected.

Remark 5.22. If A is a realizable shrub, then BdA is a net and all odd vertexes of A are

vertexes of BdA.

Remark 5.23. Clearly, the set of odd vertexes of a shrub is closed, and a set consisting

of all odd vertexes of a shrub and one point from each of its odd cactuses, is closed (and

totally disconnected if the shrub is realizable) as well.

Let O be a nonempty open subset of S2. If f is an analytic vector field on O we will

assume in what follows that f can be C∞-extended to the whole S2 by adding singular

points at S2\O. In view of Theorem 1.46 above, this involves no loss of generality (because

after multiplying a vector field by a positive factor the resultant vector field has exactly

the same ω-limit sets as the previous one). Hence its associated flow can be seen (and so

we will do) as globally defined on R×S2, and when speaking about ω-limit sets for f , this

is the flow we are referring to.

Recall that we are interested in characterizing, up to homeomorphism, the ω-limit set

for analytic flows on O. Without loss of generality we may assume that O is a region and,

because of Theorem 1.4(i), that S2 \O is a totally disconnected set. Now we have:
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Theorem F. Let f be an analytic vector field on O and assume that T = S2 \O is totally

disconnected. Then any ω-limit set for f is the boundary of a shrub. Moreover, all odd

vertexes of the shrub are contained in T (hence it is realizable) and every odd cactus in

the shrub must intersect T .

We present the proof of this last result in the following subsection. We do believe that

these restrictions are in fact the properties which characterize ω-limit sets for analytic

flows on open sets of the sphere. A first step to prove the converse of Theorem F is given

with the following proposition (whose proof is tackled in Subsection 5.2.3 below), because

we conjecture that the boundary of a realizable shrub can be realized, up to a “small” set

of points, as an analytic set.

Proposition 5.24. Let O be a simply connected region of S2, write Ω = BdO, and let

F : S2 → R be a C∞ map, which is analytic (at least) in O, and satisfies F (u) 6= 0 for

any u ∈ O and F (u) = 0 for any u ∈ Ω. Then there is a C∞ vector field f in S2, which

is analytic wherever F is (in particular, in O), and such that its associated flow has Ω as

one of its ω-limit sets.

To conclude, these two previous results allow us to conjecture the following converse.

Conjecture 1. Let A ⊂ S2 be a realizable shrub and let T ⊂ A contain all odd vertexes

of A and one point from each of the odd cactuses of A. Then there are a homeomorphism

h : S2 → S2, and an analytic vector field on h(S2 \ T ), such that its associated flow has

the boundary of h(A) as an ω-limit set.

And consequently:

Conjecture 2. Up to homeomorphisms, a set is an ω-limit set for some analytic vector

field defined on S2 except for a totally disconnected complementary if and only if it is the

boundary of a realizable shrub.

5.2.2 Proof of Theorem F

Let Φ be the (global) flow associated with f . Let p ∈ S2 and rewrite Γ = Φp(R),

Ω = ωΦ(p). Clearly we can discard the cases when Ω is a singleton or a circle. Moreover,

since no local flow on the sphere admits no nontrivial recurrent orbits, Γ ∩ Ω = ∅.
Also, several “intuitive” (but deep) topological results from the topology of the sphere

will be needed. The following ones may not be as well known as the Jordan curve theorem,

but they will be implicitly used a number of times: if V ⊂ S2 is compact and totally

disconnected, then there is an arc in S2 including V [54, Theorem 5, p. 539 (see also

p. 189)]; if B and B′ are either arcs or circles in S2, then there is a homeomorphism

h : S2 → S2 mapping B onto B′ — see Section 1.1.4 (alternatively, see [54, Corollary 2, p.

535]).
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Lemma 5.25. Ω is a net (hence a Peano space), and the same is true for all its subcon-

tinua.

Proof. Due to the compactness of S2, Ω is a continuum [13, Theorem 3.6, p. 24]. Es-

sentially it suffices to show that any subcontinuum of Ω is a Peano space, that is, locally

connected, because then Theorem 5.7 easily implies that it is a net. To prove the local

connectedness, according to [54, Theorem 2, p. 247], we only need to show that if K

is a nowhere dense subcontinuum of Ω, then it is a singleton. (Recall that a nowhere

dense subset of a topological space is one whose closure has empty interior). Suppose the

opposite to find such a subcontinuum K having at least two points. Since T is totally

disconnected, K cannot be included in Ω ∩ T and we can find a point u ∈ K ∩ O. Let

X ⊂ Ω ∩ O be a star neighbouring u and having it as its center (Theorem 5.7). Two

possibilities arise: either K intersects X exactly at u, or K ∩ X contains an arc. Both

of them are impossible: the first one because of the connectedness of K, the second one

because K has empty interior in Ω.

Since we are assuming that Ω is neither a circle nor a singleton, it is the union of

its nonempty families of edges (which are countably many) and vertexes. Let E be an

edge of Ω and u ∈ E. We say that u is two-sided if there is a disk D neighbouring u

such that D is decomposed by E into two components D1 and D2, and Γ accumulates

at u from both D1 and D2. Otherwise we say that u is one-sided. If u ∈ E is regular,

then there is a flow box M such that h(0, 0) = u for the corresponding homeomorphism

h : [−1, 1]× [−1, 1]→M . Since the arc h({0}× [−1, 1]) is transversal to the flow, it must

be intersected monotonically, as time increases, by Γ. Hence u is one-sided.

We say that an edge E is two-sided if it has some two-sided point; otherwise, it is

called one-sided.

Lemma 5.26. Let E be an edge of Ω. Then E is one-sided if and only if it is contained

in a circle in Ω. Moreover, if E is two-sided, then all points from E are two-sided.

Proof. The “if” part of the first statement is obvious. Next we prove that if E is not

contained in a circle, then it is two-sided.

By Lemma 5.25, there are disjoint continua Ω1,Ω2 satisfying Ω \ E = Ω1 ∪ Ω2. Use

[54, Theorem 5’, p. 513] to find a circle C ⊂ S2 separating Ω1 and Ω2. Clearly, we can

assume that C intersects E (hence Ω) exactly at one point u ∈ O which, arguing to a

contradiction, we will suppose one-sided. By Theorem 5.7, there is a semi-flow box M ,

with corresponding homeomorphism h : [−1, 1]× [0, 1]→M and border B ⊂ E, such that

h(0, 0) = u and Γ accumulates at B from M . We can assume, without loss of generality,

that M intersects C at the arc L = h({0}× [0, 1]). After crossing L the semiorbits of Γ in

M enter, as time increases, into one of the open disks enclosed by C, call it U . But then Γ
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must also cross C infinitely many times to escape from U , and these other crossing points

cannot belong to M (and hence cannot be close to u because u is one-sided). Consequently,

Ω, the ω-limit set of Γ, intersects C \ {u}, and we get the desired contradiction.

The above argument implies in fact that if E is two-sided, then all points from E ∩O
are two-sided. Since this set is dense in E, all points from E are two-sided.

Let {Cj}j be the family of circles in Ω. Each Cj decomposes S2 into open disks Rj and

Sj , which can be chosen so that the resultant disks Dj = Cj ∪Rj do not intersect Γ (hence

Rj is a component of S2 \ Ω for any j). Let R be the component of S2 \ Ω containing Γ.

Then the family of components of S2 \ Ω is precisely {R} ∪ {Rj}j . Indeed, assume that

U is a component of S2 \ Ω different from R and any Rj . Lemma 5.26 implies that BdU

can intersect no edge of Ω; therefore, BdU is totally disconnected and W = S2 \ BdU is

a region. Since BdW = BdU , U ⊂ W and both U and W are regions, we get U = W ,

which is impossible.

Let A = Ω ∪⋃j Rj = S2 \R. We have:

Lemma 5.27. A is a shrub and Ω = BdA, the leaves of A being the disks Dj.

Proof. Since Int Ω = ∅, we have Ω = BdA. Since R is connected, it suffices to show that

A is locally connected.

If the family {Dj}kj=1 is finite this is simple: just use the Hahn-Mazurkiewicz theorem

to find continuous onto maps ϕ : [0, 1] → Ω (here we use Lemma 5.25), ϕj : [0, 1] → Dj ,

and combine these k + 1 maps to generate a continuous map applying [0, 1] onto A.

If {Dj}∞j=1 is infinite, then the above argument still works provided that the diameters

of the disks Dj tend to zero. Assume that the opposite is true to find δ > 0 and disks

Djn so that diamDjn = d(un, vn) ≥ δ for appropriate un, vn ∈ Djn , n = 1, 2, . . .. We can

assume that the sequence (un) converges, say to u ∈ A. If u belongs to one of the open

disks Rj or to Ω ∩O, then we immediately get a contradiction (recall Theorem 5.7), so u

must belong to T . Since T is totally disconnected, we can find a disk D neighbouring u

as small as needed (in particular, diamD < δ) so that BdD ⊂ O. If n is large enough,

then un ∈ D and vn /∈ D, hence Djn intersects BdD. Thus the disks Djn accumulate at

a point from O and again we get a contradiction.

We are ready to finish the proof of Theorem F. After Lemma 5.27, we are left to show

that all odd vertexes of A are in T and all odd cactuses in A intersect T .

Let P = Sing(Φ) ∩ O, assume that u ∈ O is an odd vertex of A and let X be an

m-star as in Theorem 5.7. Then m is odd and, since there are no disks Dj near u, all

edges ending at u must be two-sided (Lemma 5.26). In particular, all points of X must

be singular for Φ. Now, since P is the set of zeros of an analytic function F : O → R, it
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is locally at u a 2n-star Y for some nonnegative integer n (Theorem A). Since X is “odd”

and Y is “even”, Y strictly includes X. This means that (because all points from X \ {u}
are two-sided) there is a semi-flow box having two consecutive branches as its border, and

intersecting a branch of Y not included in X. This is impossible, because all singular

points of a semi-flow box belong to its border.

Finally, assume that K ⊂ O is and odd cactus, when the m-prickly cactus L neigh-

bouring K in A can be assumed to be included in O as well. Let N be the set of endpoints

of L. Again, all edges ending at K are two-sided, hence all prickles of L consist of singular

points. Note that there are no singular points outside L accumulating at L \ N ; other-

wise there would be an arc in O intersecting L \ N at exactly one point, and we could

reason to a contradiction with similar arguments to those in the paragraph above. The

conclusion is: G = P ∩L is the union of finitely many pairwise disjoint graphs, which are

locally “even” at all their vertexes, except for the m endpoints of L. This contradicts the

following general parity property for graphs: if V = {v1, v2, . . . , vl} is the set of vertexes

of a graph G and, for every i ∈ {1, 2, . . . , l}, ri denotes the order of vi as a star point in

G, then
∑l

i=1 ri is even (see Lemma 5.10).

5.2.3 Proof of Proposition 5.24

In what follows we assume, without loss of generality and after applying appropriate

analytic transformations, that the north pole pN = (0, 0, 1) of S2 belongs to Ω, that the

south pole pS = (0, 0,−1) belongs to O, and that the meridian I0 consisting of the points

(
√

1− z2, 0, z), z ∈ [−1, 1], is included in O ∪ {pN}. (More in general, by a meridian we

mean an arc in S2 having pN and pS as its endpoints and which is included in O ∪ {pN}.)
As it turns out, the vector field f we are looking for can be explicitly derived from

F , which immediately guarantees that it satisfies the smoothness requirements from the

theorem. Namely, let ‖ · ‖ denote the euclidean norm, let G : R3 \ {(0, 0, 0)} → R be given

by G(u) = F 2(u/‖u‖), and define f : R3 \ {(0, 0, 0)} → R3, f = (f1, f2, f3), as follows:

f1(x, y, z) = 2z(y − x)G(x, y, z) + (x2 + y2)

(
−y∂G

∂z
(x, y, z) + z

∂G

∂y
(x, y, z)

)
,

f2(x, y, z) = −2z(x+ y)G(x, y, z) + (x2 + y2)

(
x
∂G

∂z
(x, y, z)− z ∂G

∂x
(x, y, z)

)
,

f3(x, y, z) = (x2 + y2)

(
2G(x, y, z) + y

∂G

∂x
(x, y, z)− x∂G

∂y
(x, y, z)

)
.

It is easy to check that f(u) · u = 0 for any u. Hence f , when restricted to S2, induces a

vector field on S2. Observe that, because of the definition of G, all points of Ω are singular

points for the corresponding system

u′ = f |2S(u). (5.1)
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On the other hand, although G is positive on O, there may be many singular points of

(5.1) in O (pS , for instance, is one of them).

Next we will show, through a sequence of lemmas, that Ω is an ω-limit set for (5.1),

but first the point behind the definition of f must be clarified. For this, consider the semi-

space U = {(x, y, z) ∈ R3 : z < 1} and the map π : U → R2 given by π(x, y, z) = (x/(1−
z), y/(1− z)), which of course becomes the stereographic projection when restricted to S2.

Recall that if a meridian I is given, then there exists an analytic map ΛI : R2\π(I\{pN})→
R such that ΛI(x, y) ∈ arg(x+ iy) for any (x, y). Likewise, let UI = U \ π−1(π(I \ {pN}))
and define ΘI : UI → R by ΘI = ΛI ◦ π. Note that ΘI can be locally written as

ΘI(x, y, z) = kπ + arctan(y/x) or ΘI(x, y, z) = kπ + arccot(x/y) for some integer k, and

then

∇ΘI(x, y, z) =

(
∂ΘI

∂x
(x, y, z),

∂ΘI

∂y
(x, y, z),

∂ΘI

∂z
(x, y, z)

)
=

( −y
x2 + y2

,
x

x2 + y2
, 0

)
.

Finally, write ρ(x, y, z) = (x2 +y2)G(x, y, z), JI(u) = ρ(u)e−2ΘI(u) and HI(u) = log JI(u).

While JI is well defined in UI , HI only makes sense in the open set VI = UI ∩G−1((0,∞)).

Still, observe that O \ I ⊂ VI .

Fix a meridian I. The key property of f is that, as it can be easily checked, we can

write it as

f(u) = ρ(u)(∇HI(u)× u) whenever u ∈ VI .

This has the important consequence that ∇HI(u) · u′ = 0 for some relevant (connected)

smooth curves u(t) = (x(t), y(t), z(t)) in O \ I, which means that HI (and consequently

JI) is constant on them. Such is the case, for instance, if u(t) is a solution of the system

(5.1), because then

∇HI(u) · u′ = ρ(u)∇HI(u) · (∇HI(u)× u) = 0,

and also if all points of the curve u(t) are singular, because then ∇HI(u)× u = 0, which

implies that ∇HI(u) = κ(u)u for some scalar map κ, and therefore

∇HI(u) · u′ = κ(u)(u · u′) = 0,

the last equality just following from the fact that u(t) is a curve in the sphere S2.

The above properties can be exploited further. Firstly, Theorem A implies that if Φ

is the flow associated with (5.1), then JI is in fact locally constant in Sing(Φ) ∩ (O \ I),

hence constant on each of the components of this set. On the other hand, if p ∈ O \ {pS},
then we cannot automatically guarantee the constancy of some concrete map JI on the

whole maximal solution Φp(t) = (xp(t), yp(t), zp(t)), because although the orbit lies in O

it needs not be fully included in any region O \ I. Still, it is clearly possible to find a
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continuous choice of the angle (that is a continuous map θp : R → R satisfying θp(t) ∈
arg(xp(t) + iyp(t)) for any t ∈ R), so that

wp(t) = ρ(Φp(t))e
−2θp(t)

is constant. We gather these results as a lemma:

Lemma 5.28. The following statement holds:

(i) If I is a meridian, then JI is constant on any component of Sing(Φ) ∩ (O \ I).

(ii) If p ∈ O \{pS} and I is a meridian, then JI is constant on every semiorbit of Φp(R)

included in O \ I; moveover, the above map wp(t) is constant.

Lemma 5.29. The south pole pS is a repelling focus for Φ.

Proof. It suffices to show that the same statement is true, with respect to the origin when

we transport the system (5.1) to R2 via the local chart (x, y) 7→ (x, y,
√

1− x2 − y2), when

we obtain the system given by

g(x, y) = (f1(x, y,
√

1− x2 − y2), f2(x, y,
√

1− x2 − y2)).

Now a direct calculation shows that the jacobian matriz of g at (0, 0) is

Jg(0, 0) =

[
2G(pS) −2G(pS)

2G(pS) 2G(pS)

]
,

its eigenvalues being 2G(pS)(1 ± i). Since G(pS) > 0, the lemma follows (because of the

Hartman-Grobman Theorem, c.f. [68, pp. 119–129]).

Lemma 5.30. Let P be the set of singular points in O which are nontrivial ω-limit sets

(that is, p ∈ P if and only if there is q 6= p such that ωΦ(q) = {p}). Then, for any p ∈ P ,

there are only finitely many orbits having p as its ω-limit set. Moreover, P is discrete,

that is, all its points are isolated, hence countable.

Proof. Let p ∈ P , fix a meridian I not containing p and say JI(p) = a. Find a small star

X ⊂ O \ I neighbouring p in Sing Φ (recall that X becomes to a 0-star, that is, just the

point p, when p is isolated in Sing Φ). Now realize that, by Lemma 5.28 and continuity,

JI also equals a on X and all small semiorbits ending at points from X. Since J−1
I ({a})

is analytic, and JI cannot be constant on O \ I (because then f would vanish on the

whole O, which is not true in view of Lemma 5.29), the lemma follows immediately from

Theorem A.

Lemma 5.31. Let p ∈ O and assume that αΦ(p) = pS and ωΦ(p) is not a singular point

of O. Then ωΦ(p) = Ω.
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Proof. Rewrite u(t) = Φp(t), Γ = Φp(R), θ(t) = θp(t), w(t) = wp(t), Ω′ = ωΦ(p).

First we show that Ω′ ⊂ Ω. Suppose not to find q ∈ Ω′ ∩ O and (using Theorem 5.7)

a semi-flow box M ⊂ O whose border B is in Ω′ and such that Γ accumulates at B from

M \ B. If h : [−1, 1] × [0, 1] → M is the corresponding homeomorphism, then the points

qn = u(tn) (tn ≥ 0) of Γ intersecting A = h({0} × [0, 1]) converge monotonically, as time

increases, to q. If An is the arc in A with endpoints qn and qn+1, then two possibilities

arise: either one of the circles Cn = An ∪ u([tn, tn+1]) separates q and pN , or neither of

them does.

Assume that the first possibility holds. If, say, Cn0 separates q and pN , then there is

a meridian I such that neither u([tn0 ,∞)) nor Ω′ intersect it (we are using αΦ(p) = pS).

Hence JI equals to a constant a on u([tn0 ,∞)) (Lemma 5.28(ii)). Moreover, by continuity,

JΘI = a on Ω′ as well. Now, since J−1
I ({a}) is an analytic set which it is not locally a star

at q, we get J−1
I ({a}) = O \ I (Theorem A), which is impossible.

If the second possibility holds, then all curves Cn have the same winding number

ν ∈ {−1, 1} around pN , and θ(tn+1) − θ(tn) → 2πν as n → ∞. Therefore, |θ(tn)| → ∞.

Since ρ is positive in q, it is impossible that w(t) is constant, contradicting Lemma 5.28(ii).

This concludes the proof that Ω′ ⊂ Ω.

We are now ready to prove Ω′ = Ω. Note firstly that, since d(u(t),Ω) → 0 as t → ∞
(because Ω′ ⊂ Ω) and G vanishes at Ω, the only way for Lemma 5.28(ii) to hold is that

θ(t)→ −∞ as t→∞. We can, of course, assume θ(0) ≥ 0, hence the last and first numbers

tn and sn respectively satisfying θ(tn) = −2π(n − 1) and θ(sn) = −2πn, n ≥ 1, are well

defined. Moreover, if An are the arcs in I0 with endpoints pn = u(tn) and qn = u(sn),

then all circles Cn = An ∪ u([tn, sn]) have winding number −1 around pN , hence they

separate pS and pN . Let Rn denote the open disk in O enclosed by Cn and construct a

sequence of disks (Mk)
∞
k=1 in O such that pS ∈ Mk for any k and

⋃∞
k=1Mk = O. If Mk

is given, say d(Mk,Ω) = δ > 0, and n is large enough such that maxc∈Cn d(c,Ω) < δ, we

get Cn ∩ BdMk = ∅, which together with pS ∈ Mk ∩ Rn implies Mk ⊂ Rn. Therefore,

we get O =
⋃∞
n=1Rn, and recall that BdO = Ω. This implies that if q ∈ Ω and W is

an arbitrarily small neighbourhood of q, then there is some Rn (and therefore some Cn)

intersecting W . Add to this that diamAn → 0 to easily conclude Ω′ = Ω, as we desired

to prove.

Proposition 5.24 easily follows from the previous lemmas. Namely, there are at most

countably many nontrivial orbits in O whose ω-limit set is a singular point of O (Lemma

5.30). In particular, there is p ∈ O such that αΦ(p) = {pS} and ωΦ(p) is not a singular

point of O (Lemma 5.29). Then ωΦ(p) = Ω by Lemma 5.31.
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Topological classification of limit

periodic sets of polynomial planar

vector fields

I n this chapter, our objective is to characterize topologically all limit periodic sets of

polynomial families of planar vector fields. Namely, we will show that any limit periodic

set is topologically equivalent to a compact connected semialgebraic set of the sphere with

empty interior and, conversely, that any compact connected semialgebraic set of the sphere

with empty interior can be realized as a limit periodic set.

We consider a real algebraic manifold Λ of dimension n ≥ 1, which we call parameter

space. A family of planar vector fields (Xλ)λ∈Λ, is a vector field Xλ defined on R2 × Λ

which is tangent to the fibres of the projection π : R2 × Λ → Λ. For any parameter

λ0 ∈ Λ, we denote by Xλ0 the restriction of Xλ to R2 × {λ0}, which we identify with

R2. We say that the family (Xλ)λ∈Λ is polynomial if for each λ0 ∈ Λ there exist local

coordinate systems x = (x1, x2) of R2 and λ = (λ1, . . . , λn) centered at λ0 such that

Xλ(x) = A1(x, λ)∂x1 +A2(x, λ)∂x2 where A1 and A2 are polynomials.

Given any polynomial vector field X on R2, we will extend it to an analytic vector

field, which we denote by X̂, in the sphere S2 via a Bendixson compactification (see details

in Section 1.4.3). In what follows, we will be identifying S2 and R2 ∪ {∞} (the one-point

compactification of the plane). Also, for every A ⊂ R2, we will write Â to denote the

closure of A seen as a subset in S2 of R2; we will say that Â is the compactification of A.

The notion of limit periodic sets was first introduced by J. P. Françoise and C. Pugh

[31, pp. 141]. Before presenting the definition, we recall the concept of Hausdorff distance

in the context of metric spaces.
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Let (X, d) be a compact metric space. Given any subset A and any ε > 0, we define

the ε-neighbourhood of A as Aε = {x ∈ X : d(A, x) < ε}. Given any two nonempty closed

bounded subsets of A,B ⊂ X, we then define the Hausdorff distance between A and B as

dH(A,B) = inf{ε > 0 : A ⊂ Bε and B ⊂ Aε}.

It is an easy exercise to check that dH is a metric on the set C(X) of all nonempty compact

subsets of X. The topology in C(X) associated with dH is said to be the Hausdorff topology

of X.

Definition 6.1. A limit periodic set for a polynomial family of planar vector fields (Xλ)λ∈Λ

at the parameter λ0 is a closed set Γ ⊂ R2 for which there exist a sequence (λn)n in the

parameter space Λ and a sequence (γn)n of topological circles in R2 such that (λn)n

converges to λ0 in Λ, (γn)n converges to Γ̂ in the Hausdorff topology of S2 and, for every

n, the vector field Xλn has γn as a limit cycle.

In terms of the structure of limit periodic sets, it is well-known that the Poincaré-

Bendixson Theorem implies:

Proposition 6.2. (See [31, Proposition 1]). Let (Xλ)λ∈Λ be a polynomial family of planar

vector fields and Γ be a limit periodic set at the parameter λ0. Then Γ̂ is one of the

following:

(i) a singular point of X̂λ0;

(ii) a periodic orbit of X̂λ0;

(iii) a polycycle of X̂λ0 (that is, a cyclic ordered collection of singular points a1, . . . , ak

and arcs, given by integral curves, connecting them in the specific order: the jth arc

connects aj with aj+1);

(iv) a degenerate limit cycle, that is, it contains non-isolated singularities of the vector

field X̂λ0.

While the above proposition provides some key information about the nature of limit

periodic sets, it does not fully characterize them. The present chapter intends to fulfils

this gap.

A first characterization was provided by D. Panazzolo and R. Roussarie in [67], under

the additional hypothesis that the first jet of the singular points of Xλ0 is non-vanishing.

In the same paper, the authors also showed a first example of a limit periodic set which

is not topologically in the list of possibilities of the Poincaré-Bendixson Theorem [67,

Example 3.1]. Going further, in [10], A. Belotto presented a class of examples of limit

periodic sets which, topologically, are not in the list of possibilities of Poincaré-Bendixson
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Theorem either. Here, we improve and generalize the construction of [10] in order to prove

the converse of the following result.

Theorem G. Let (Xλ)λ∈Λ be a polynomial family of planar vector fields, Γ be a limit

periodic set for (Xλ)λ∈Λ and Γ̂ ⊂ S2 be its compactification. Then there exists a homeo-

morphism ϕ : S2 → S2 such that ϕ(Γ̂) is a compact connected semialgebraic set with empty

interior.

Conversely, if Γ is a nonempty closed semialgebraic subset of R2 with empty interior

whose compactification Γ̂ ⊂ S2 is connected, there exists a polynomial family of planar

vector fields (Xλ)λ∈Λ having Γ as a limit periodic set.

Remark 6.3. A description of the limit periodic sets Γ in the spirit of Proposition 6.2

follows from the proof of Lemma 6.11 below. More precisely, with the notation of the direct

implication in Theorem G, a limit periodic set Γ must be a finite union
⋃m
i=1 Si ∪

⋃n
j=1 γj ,

for some m, n ∈ N, where each Si is a connected semialgebraic subsets of the set of

singularities of X̂λ0 and each γj is a regular orbit of X̂λ0 which converge to a singular

points in
⋃m
i=1 Si. Even more, each γj is characteristic in both extremes; that is, when the

orbit is run in either negative or positive time, the orbit converges in a definite direction

to a singular point of X̂λ0 and, in a sufficiently small neighbourhood of that limit point,

γj is the boundary of a parabolic or hyperbolic sector.

Remark 6.4. If we restrict our study to compact limit periodic sets of the plane, Theorem

G can be extended to the analytic category. More precisely, with the same ideas and

techniques, it is not difficult to show that a compact limit periodic set for an analytic

family of vector fields is topologically equivalent to a compact connected semianalytic set

with empty-interior; conversely, every compact connected semianalytic set with empty-

interior can be realized as a limit periodic set for an analytic family of vector fields.

On the other hand, Theorem G does not extend, in a trivial, to unbounded limit

periodic sets for families of analytic vector fields. The difficulty relies on proving the

converse part of the theorem. Let us first exemplify how our methods could be adapted

to some unbounded analytic varieties: we claim that the set

Γ1 = {(x, y) ∈ R2; f1(x, y) = y2 − sin(x)2 = 0}

can be realized as a limit periodic set for an analytic family. Indeed, it suffices to replace

the function h in Section 6.2.2 by

h(x, y, λ, α) = f1(x, y)2 − λ
(
1− α2(x2 + y2)

)
.

We leave it to the reader to verify that the ideas of Sections 6.2.2 and 6.2.3 can be adapted
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to this function. Nevertheless, it is unclear which connected subsets of

Γ2 = {(x, y) ∈ R2; f2(x, y) = y3 − y sin(x)2 = 0}

can be realized as limit periodic sets. Technically, the difficulty is that our construction

for Γ2 would demand the use of transition points (defined in the last paragraph of Section

6.2.1); but the set of those transition points Tr(Γ2) would need to be infinite in this case.

The following example illustrates the construction performed in Section 6.2 to prove

the converse of Theorem G.

Example 6.5. Let Γ ⊂ R2 be the semi-algebraic set given by:

Γ =
{

(x, y) ∈ R2; f(x, y) = y(x2 + y2 − 1) = 0 and g(x, y) = x2 + y2 ≤ 4
}
.

Following the notation of Subsection 6.2.2, we consider the set of points

S = {(−2, 0), (2, 0), (0, 1), (0,−1)}

(where notice that S = Gen(Γ) ∪ Tr(Γ) and NG(Γ) = ∅, see Definition 6.12). Now,

consider the three variable polynomial

h(x, y, λ) = f(x, y)2 − λ
∏
p∈S

(
‖(x, y)− p‖2 − λ2

)
where λ will play the role of the parameter of the family of vector fields. Let t ∈ R+ and

note that the level curves Zt = {(x, y) ∈ R2; h(x, y, t) = 0} are connected and converge (in

the Hausdorff topology) to Γ when t goes to zero (c.f. Proposition 6.19; see Figure 6.1).

It follows that the perturbation of the Hamiltonian vector field given by

Xλ =

(
∂h

∂y
+ h

∂h

∂x

)
∂x +

(
−∂h
∂x

+ h
∂h

∂y

)
∂y

is an polynomial family of planar vector fields which has Γ as a limit periodic set for the

parameter λ0 = 0 (for every t > 0, the set Zt is a limit cycle for Xt).

The rest of the chapter is divided as follows: the aim of Section 6.1 is to prove the

direct implication of Theorem G while Section 6.2 deals with the converse one.

6.1 Topology of limit periodic sets

Subsection 6.1.1 is a preliminary section, devoted to recall the notion of real semialge-

braic set and some of its elementary properties, while in Subsection 6.1.2 we present the

proof of the direct part of Theorem G.
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Γ

Figure 6.1: Limit cycles for t = 0.001 (red) and t = 0.0001 (blue) approaching the limit periodic set Γ.

6.1.1 Semialgebraic sets

Let x = (x1, . . . , xn) be a coordinate system of Rn. Given any polynomial f on Rn

we will say that (f(x) = 0) = {x ∈ Rn : f(x) = 0} is an algebraic set . A more general

concept is the following one.

Definition 6.6. (See [14, Section 1]). A subset Z ⊂ Rn is semialgebraic if there exist

polynomials fi and gij on Rn, i = 1, . . . , p and j = 1, . . . , q, such that

Z =

p⋃
i=1

q⋂
j=1

{x ∈ Rn : fi(x) = 0 and gij(x) > 0}.

A set Z ⊂ S2 ⊂ R3 is said to be semialgebraic if Z is a semialgebraic set of R3.

A fist collection of examples of semialgebraic sets is given by the finite unions of arcs

linear by parts. For every a, b ∈ R2, we will denote [a, b] = {a + sb : 0 ≤ s ≤ 1}, the

straight arc joining a and b. Let a1, . . . , an be points in R2 and call lj = [aj , aj+1] for any

1 ≤ j ≤ n−1. If lj ∩ lj′ = ∅ when |j − j′| 6= 1 and lj ∩ lj+1 = {aj+1} for any 1 ≤ j ≤ n−1,

we say that L = ∪n−1
j=1 lj is an arc linear by parts. The points a1 and an are said to be the

endpoints of L.

Every connected generalized graphs in S2 (recall the definition in page 37) is topolog-

ically equivalent to a semialgebraic set. This fact will play an important role in the proof

of Theorem G.

Lemma 6.7. Let L ⊂ S2 be a connected generalized graph. Then there exists a homeo-

morphism of S2 onto itself taking L to a semialgebraic set.

Proof. Let us start by noticing that, apart from composing a rotation with the transition

homeomorphism φ : R2
∞ → R2

∞ associated with the Bendixson compactification (see

Section 1.4.3), we may suppose that there exists a compact connected set Γ ⊂ R2 such

that its completion in R2
∞ is equal to L. Also, if we call T ⊂ Γ the subset of points which
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are not star points of order 2, then T is a finite set. It is then enough to prove the result

under the hypothesis of Γ being nonempty.

If T is empty, there is nothing to say: L is a circle [54, Theorem 2, p. 180]. Otherwise,

let us say that T = {a1, . . . , am} for some m ≥ 1. For every 1 ≤ j ≤ m we can take a

neighbourhood Bj ⊂ R2 of aj such that Bj ∩ T = {aj} and Bj ∩ Γ is an nj-star. Without

lost of generality we can also assume that, for every 1 ≤ j ≤ m, Bj is a standard euclidean

compact ball of center aj in R2, that ∂Bj meets Γ in exactly nj points bj,1, . . . , bj,nj
and, as a consequence, Bj ∩ Γ is homeomorphic to Mj = ∪njk=1[aj , bj,k]. Now any of the

components of Γ \ ∪mj=1Bj is a generalized graph consisting only of star points of order 2,

let us say U1, . . . , Uτ are those components. For any 1 ≤ k ≤ τ , we can take an arc linear

by parts Nk whose endpoints coincide with the two points in Cl(Uk) \ Uk and such that

∪mj=1Mj ∪ ∪τk=1Nk is homeomorphic to Γ. This last homeomorphism can be extended to

a homeomorphism from the sphere to the sphere (see Section 1.1.4).

6.1.2 Topological properties of periodic limit sets

Let (Xλ)λ∈Λ be a polynomial family of planar vector fields and, for every λ ∈ Λ, let

X̂λ be the analytic vector field on S2 described by the Bendixson compactification as in

Section 1.4.3 (we remark that pN = (0, 0, 1) is a singular point for every X̂λ). Together

with the family (X̂λ)λ∈Λ we may consider the associated analytic flow Φ : R×S2×Λ→ S2.

The continuity of the flow already gives some topological and dynamical obstructions

for the limit periodic sets: a limit periodic set at a parameter λ0 must be invariant for

Xλ0 and its compactification by one point must be connected.

Lemma 6.8. If Γ is a limit periodic set at the parameter λ0, then Γ̂ is connected and

invariant for X̂λ0 (equivalently, Γ is invariant for Xλ0).

Proof. Let us start fixing a sequence in Λ converging to λ0, (λn)n, and a sequence of

topological circles in R2, (γn)n, such that (γ̂n)n converges to Γ̂ in the Hausdorff topology

of S2 and, for every n, γn is a limit cycle of Xλn .

Firstly, to prove the invariance of Γ̂, we consider points a ∈ Γ and b = Φ(s, a, λ0) for

some s ∈ R and a sequence of points an ∈ γn converging to a. By the continuity of Xλ,

the points Φ(s, an, λn) converge to b so b ∈ Γ̂.

Next, to obtain a contradiction, let us suppose that Γ̂ is not connected and choose two

disjoint open sets V1 and V2 of S2 which disconnect Γ̂. Since γn → Γ̂ in the Hausdorff

topology, we conclude that γn ⊂ V1∪V2, γn∩V1 6= ∅ and γn∩V2 6= ∅, for every sufficiently

large n. But this implies that γn is disconnected, which is impossible.

From the analyticity of the flow Φ (we only need to use that it is of class C1), the
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following important local property is established: any limit periodic set can meet at most

once with any traversal. We formalize this property below.

If a ∈ S2 is a regular point of X̂λ0 , then we can always find a positive real number

ε > 0 and an analytic embedding σ : (−ε, ε)→ S2 being a transversal section of X̂λ0 with

σ(0) = a. On the other hand, given any transversal section of X̂λ0 , σ : I → S2, it is clear

that for any t ∈ I we can take I(t), a neighbourhood of t in I, and Λ(λ0), a neighbourhood

of λ0 in Λ, such that the restriction of σ to I(t) is a transversal section of X̂λ for every

λ ∈ Λ(λ0). These observations, together with the Flow Box Theorem (see Theorem 1.51)

and the fact that any periodic orbit of a C1 vector fields on the sphere can meet any

transversal section only once (see, e.g., [66, p. 16]), give the following result.

Lemma 6.9. (See [72, Lemma 2, p. 20]). Let Γ be a limit periodic set at the parameter

λ0. Then any transversal section of X̂λ0 meets Γ̂ at most once.

The following auxiliary result is a distinguished property of analytic flows on open

subsets of the sphere. Its proof, which can be found, for example, in [46, Lemma 3.2],

needs the combination of both Theorem A and Remark 2.1.

Lemma 6.10. Let Φ be an analytic local flow on a region O ⊂ S2 and A ⊂ O be an

analytic set. For every p ∈ O, if ωΦ(p) = {q} for an isolated singular point q, then either

q is an attracting focus, ϕ(p) ⊂ A or ϕ(p,+) ∩A is discrete.

The last ingredient we need is the well-known behaviour of analytic vector fields on

the neighbourhood of isolated singular points. An isolated singular point of an analytic

vector field is either an attracting or repulsing focus, a center of it has the finite sectorial

decomposition (see p. 34).

We are now ready to prove the direct implication of Theorem G. The work is done by

the combination of Lemma 6.7 and the following result.

Lemma 6.11. If Γ is a limit periodic set at the parameter λ0, then Γ̂ is a connected

generalized graph.

Proof. According with Lemma 6.8, Γ̂ is a connected subset of S2 which is a union of orbits

of X̂λ0 . Therefore, we only need to prove that all the points of Γ̂ are star points. We fix

a point a ∈ Γ̂ and distinguish three cases.

If a is a regular point of X̂λ0 , the Flow Box Theorem and Lemma 6.9 imply the existence

of a neighbourhood of a, Ua, such that Γ̂ ∩ Ua is a 2-star.

Let us now assume that a is an isolated singular point of X̂λ0 and let Ua be a neigh-

bourhood of a such that every point in Ua \ {a} is a regular point of X̂λ0 . If a is a center

(respectively a focus) for X̂λ0 , we can always find a transversal section accumulating at a

and meeting at least once (respectively twice) any regular orbits of X̂λ0 in Ua so Lemma 6.9
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guarantees that, after shrinking Ua if necessary, Γ̂∩Ua = {a}. Otherwise, we can consider

characteristics orbits c0, . . . , cn−1, with n ≥ 2, defining a sectorial decomposition around

a (we follow the notation of Section 1.4.3). Using once again Lemma 6.9, we note that:

at each parabolic sector there may exist only one regular orbit contained in Γ̂; at each

hyperbolic sector, apart from shrinking Ua, the intersection with Γ̂ can only be the char-

acteristic orbits cj defining this sector; at each elliptic sector, apart from shrinking Ua

and adding two new parabolic sectors, we may suppose that the intersection of the elliptic

sector with Γ̂ is empty. It follows from these observations that, also in this case, Γ̂∩Ua is

a star of vertex a.

Finally, if a is a non-isolated singularity of X̂λ0 , it is well known that there exist a

neighbourhood of a, Ua, an analytic map f : Ua → R and an analytic vector field Y on Ua

such that the restriction of X̂λ0 to Ua coincides with the product f Y and the vector field

Y has no zeros in Ua \ {a} (see Proposition 1.9).

Let us denote by Z the analytic set f−1(0) and note that, after shrinking Ua if necessary,

Z is a star (with a as vertex) decomposing Ua into finitely many connected components

any of which contains no singular points of X̂λ0 . Furthermore, by analyticity, there is

no loss of generality in assuming that the neighbourhood Ua has been chosen such that

each branch of Z is either invariant by Y or a transversal section of Y (see Lemma 6.10).

Accordingly, Γ̂ ∩ Ua is the union of {a} with some of the branches of Z and some regular

orbits of Y .

The above observation allow us to adapt the argument given in the first two cases,

mutatis mutandis, to the case when a is a regular point of Y , or when Y admits a sectorial

decomposition at a (where we are again considering at least two characteristic orbits and

among them appear at least all the branches of Z \ {a} which are invariant by Y ). We

remark that the latter case includes the scenario of a being a node point for Y . Finally, if

a is a center or a focus point of Y , it is elementary to show that in any of the connected

components of Ua \ Z there exists a transversal section accumulating at a and at the

boundary of Ua. Consequently, in these two cases, it may be conclude that, after shrinking

Ua if necessary, Γ̂ ∩ Ua ⊂ Z and a is a star point.

Clearly, the direct implication of Theorem G follows from Lemmas 6.7 and 6.11.

6.2 Construction of limit periodic sets: proof of converse part

of Theorem G

6.2.1 Properties of semialgebraic sets

We are interested in planar semialgebraic sets with empty interior. Associated with

any of these sets, we may introduce a free-square polynomial whose set of zeros will play
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an important role in the rest of the chapter.

Let us start fixing a coordinate system for the plane x = (x1, x2) and let Γ ⊂ R2 be a

semialgebraic set with empty interior and whose compactification Γ̂ is connected. If Γ is

itself an algebraic set we simply take a free-squared polynomial fΓ making (fΓ(x) = 0) = Γ.

Assume now that Γ is not an algebraic set; in particular, and because Γ̂ is connected, we

note that none of the components of Γ can be singletons. Let fi and gi,j , 1 ≤ i ≤ p and

1 ≤ j ≤ q, be polynomials such that

Γ =

p⋃
i=1

q⋂
j=1

{x ∈ R2 : fi(x) = 0 and gij(x) > 0}. (6.1)

Without lost of generality, we can assume that all the fi are irreducible and also,

because Γ has empty interior, that all of them are non-constant and (fi(x) = 0) ∩ Γ is

one dimensional. Using the well-known fact that any two co-prime polynomials on R2

can meet only finitely many times (see, for example, [20, Lemma 4]), it is not difficult to

reason that under such conditions the polynomials fi in (6.1) are uniquely defined (up to

the multiplication of non-zero constants). Let us take fΓ as the free-square polynomial

associated with the product
∏p
i=1 fi; this polynomial verifies Γ ⊂ (fΓ(x) = 0) and is

uniquely defined from (6.1) in the terms just expressed. In any of the two cases discussed

above, we will refer to the polynomial fΓ as the polynomial associated with Γ. The set of

zeros of fΓ, which we will denote by AΓ = (fΓ(x) = 0), will be also said to be the algebraic

set associated with Γ.

Definition 6.12. Let Γ ⊂ R2 be a semialgebraic set with empty interior and such that Γ̂

is connected and let fΓ and AΓ be its associated polynomial and algebraic set respectively.

A point a ∈ Γ is said to be:

(1) an algebraic point of Γ if there exists a neighbourhood of a in R2, U , such that

U ∩ Γ = U ∩AΓ. We denote the set of algebraic points of Γ by Alg(Γ);

(2) a generic non-algebraic point of Γ if a /∈ Alg(Γ) and AΓ is regular at a (i.e. the

gradient of fΓ at a is non-zero). We denote the set of generic non-algebraic points of Γ by

Gen(Γ);

(3) a non-generic non-algebraic point of Γ if a /∈ Alg(Γ) and AΓ is singular at a (i.e.

the gradient of fΓ vanishes at a). We denote the set of non-generic non-algebraic point of

Γ by NG(Γ).

Remark 6.13. The sets of non-algebraic points Gen(Γ) and NG(Γ) are both finite.

Remark 6.14. Let us assume that NG(Γ) is nonempty, say NG(Γ) = {a1, . . . , ar} for

some positive integer r. For every k ∈ {1, . . . , r}, take a sufficiently small euclidean ball

Bk = B(ak, ρk) centered at ak with radius ρk > 0 and denote by nk the number of

connected components of (AΓ \ Γ) ∩ Bk (the number nk is the same for every sufficiently
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small ρk > 0). By Newton-Puisseux Theorem (c.f. Section 2), for every k ∈ {1, . . . , r},
there exist sequences of points (aj,ki )i∈N ⊂ AΓ \Γ, j ∈ {1, . . . , nk}, such that each sequence

is contained in a different connected component of (AΓ \ Γ) ∩ Bk and aj,ki → aj when

i→∞.

The following objects are used in Section 6.2.3: the number nΓ =
∑r

k=1 nk; the se-

quence of points in R2nΓ , (αi)i∈N, given by αi = (a1,1
i , . . . , an1,1

i , . . . ,a1,r
i , . . . , anr,ri ); and

the limit of (αi)i, α0 ∈ R2nΓ .

Remark 6.15. It follows from Remark 6.14 that there exists a sequence of semialgebraic

sets with empty interior (Γi)i∈N such that Γ ⊂ Γi ⊂ AΓ, NG(Γi) = ∅ and Γi → Γ (in

the Hausdorff topology) when i → ∞. Moreover, the polynomials fΓ and the algebraic

set AΓ are also the polynomial and the algebraic set associated with any of those Γi and

Gen(Γi) = Gen(Γ) ∪ {a1,1
i , . . . , an1,1

i , . . . ,a1,r
i , . . . , anr,ri }.

Now assume that Γ is compact and connected. There exists a finite number of (non-

unique) points b1, . . . , bk ∈ Alg(Γ) which are regular points of the algebraic set AΓ and

such that both Γ \ {b1, . . . , bk} and R2 \ (Γ \ {b1, . . . , bk}) are connected. We can always

fix a certain number of these points, which we call transition points, and denote their set

by Tr(Γ). We remark that the minimal number k of transition points corresponds to the

number of connected components of R2 \ Γ minus one. Moreover, with the notation of

Remark 6.15, the set Tr(Γ) is a valid set of transition points for Γi, for all i sufficiently

big.

6.2.2 Construction of generic compact limit periodic sets

Let us fix a compact connected semialgebraic set Γ ⊂ R2 with empty interior and such

that NG(Γ) = ∅. Let f = fΓ be the polynomial associated with Γ and AΓ its set of zeros

and fix a transition set for Γ, Tr(Γ). Fix a coordinate system x = (x1, x2) of R2 and a

parameter λ ∈ R. Denote by S the finite set Gen(Γ) ∪ Tr(Γ).

We consider the function

h(x, λ) = f(x)2 − λ
∏
p∈S

(
‖x− p‖2 − λ2

)
,

where ‖·‖ stands for the euclidean norm on R2, and the polynomial family of planar vector

fields (Xλ)λ∈R given by

Xλ =

(
∂h

∂x2
+ h

∂h

∂x1

)
∂x1 +

(
− ∂h

∂x1
+ h

∂h

∂x2

)
∂x2 . (6.2)

We devote the rest of the section to show Γ is a limit periodic set of (Xλ)λ∈R at λ = 0.

The key to achieve this is to understand how the level curves (in respect to the parameter
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λ) of h are. We will start giving a local description of (h(x, λ) = 0) in a neighbourhood of

a point (a, 0) with a ∈ Γ; we treat separately the cases a ∈ Alg(Γ) \ Tr(Γ) (Lemma 6.17)

and a ∈ Gen(Γ) ∪ Tr(Γ) (Lemma 6.18).

Let us begin with an auxiliary result (an application of the the local structure of

analytic sets).

Lemma 6.16. Let U be an open and connected subset of the plane and f : U ⊂ R2 → R
be a non-constant analytic map. Then the set of critical values of f is discrete (by critical

value we understand a point b ∈ R such that the level set f−1(b) contains points where the

gradient of f vanishes.).

Proof. Let us proceed by contradiction assuming the existence of a point z ∈ U and a

sequence (zn)n of zeros of ∇f converging to z and such that {f(zn) : n ∈ N} is infinite.

In other words, if we consider the analytic function g : U → R given by

g(z) =

(
∂f(z)

∂x

)2

+

(
∂f(z)

∂y

)2

,

we are assuming the existence of a sequence of zeros of g accumulating in its domain and

whose images under f produces an infinite set. Since g−1(0) is a generalized graph, we

deduce that the set of zeros of g contains a whole open arc L where f is not constant.

The continuity of the composition of any continuous parametrization of L as a curve and

f allows us to conclude that the set of critical values of f contains at least an arc but this

is in contradiction with Sard’s theorem (see, e.g., [55, Theorem 6.10]).

Here and subsequently, given any set A ⊂ R2 × R and any t ∈ R we will denote

A ∩ (λ = t) = {(x, λ) ∈ A : λ = t}; when convenient, we will also understand that

A∩ (λ = t) is identified with {x ∈ R2 : (x, t) ∈ A}. In particular, the set Zt, which stands

for the level curve (h(x, λ) = 0) ∩ (λ = t), will repeatedly be seen as a subset of R2.

Lemma 6.17. For every a ∈ Alg(Γ) \ Tr(Γ) there exist a number εa > 0 and a compact

neighbourhood Va of a such that Zt ∩ Va ⊂ R2 \ Γ for every 0 < t < εa. Moreover, for any

connected component W of Va \ Γ and any 0 < t < εa, Zt ∩W is a nonempty connected

regular curve which converges (in the Hausdorff topology) to Cl(W ) ∩ Γ, when t tends to

0 (see Figure 6.2).

Proof. Let us start considering a number εa > 0, a compact neighbourhood Va ⊂ R2

of a and the coordinate system z = x − a (which is centered at a) such that h(z, λ) =

f(z)2 − λu(z, λ), where u(z, λ) > 0 at all points in Va × (εa,−εa).

By the implicit function theorem, we may assume that there exists an analytic function

λ : Va → R such that h(z, λ(z)) = 0 for every z ∈ Va.
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a Γ

Zt

a Γ

Zt

Figure 6.2: A regular point (left) and a singular point (right).

We note that the curves Zat = Zt ∩ Va correspond to the t-level curves of λ(z), that

is, Zat = (λ(z) = t). By continuity of λ(z), shrinking Va if necessary, this implies that

Zat converges (in the Hausdorff topology) to Γ ∩ Va = (λ(z) = 0). Furthermore, since the

level curves of non-constant analytic functions (restricted to a compact set) are generically

regular (see Lemma 6.16 above), we conclude that Zat are regular for all t > 0 sufficiently

small.

Next, since λ(z) ≥ 0 for every z ∈ Va, we conclude that, for every component W of

Va \ Γ, Zat ∩W is nonempty for all small enough t > 0.

Finally, fix a component W of Va \ Γ and suppose by contradiction that there exists

a sequence (tn)n converging to 0 and such that Zatn ∩W is not connected. Without loss

of generality, we may suppose that Cl(W ) is a compact semialgebraic set. Denote by ΓW

the semialgebraic set Cl(W ) ∩ Γ. By the curve selection Lemma (see for example [61,

Lemma 3.1]), there exists an analytic curve φ : [0, 1] → Cl(W ) such that φ(1) = a ∈ ΓW ,

φ(t) ∈ Cl(W )\ΓW for all t 6= 0 and Cl(W )\φ([0, 1]) is not connected. Since all connected

components of Zat must converge to ΓW , we conclude that the curve φ([0, 1]) intersects

each of the components of Zat . This implies that the function λ ◦ φ is constant and equal

to 0 (the value at φ(1)), which is a contradiction.

Lemma 6.18. For every a ∈ Gen(Γ) ∪ Tr(Γ), there exist a neighbourhood Va of a, a

positive εa > 0 and a coordinate system (y, λ) defined on Va × (−εa, εa) and centered at

(a, 0) such that AΓ ∩ Va = (y1 = 0) and

h(y, λ) = u(y, λ)
[
y2

1 − λ
(
y2

2 − λ2
)]

(6.3)

where u(y, λ) is a unit over Va × (−εa, εa) (see Figure 6.3).

Proof. Consider the coordinate system z = x−a (which is centered at a) and note that in

a sufficiently small neighbourhood of (a, 0) of the form Ua = Va × (−εa, εa), we can write

h(z, λ) = f(z)2 − λ
[
z2

1 + z2
2 − λ2

]
u(z, λ)
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a

Γ
Zt

aΓ AΓ \ Γ

Zt

Figure 6.3: A transition point (left) and a generic point (right).

where u(z, λ) > 0 at all points in Ua. Apart from shrinking Ua, we can suppose that

∇f(z) 6= 0 at all points in Ua. Therefore (apart from a preliminary rotation) the change

of coordinates ỹ1 = u(z, λ)−
1
2 f(z) = ξz1 + ψ(z, λ) (where ξ 6= 0 and ψ(z, λ) has order at

least two) and ỹ2 = z2 is an isomorphism on Ua. We get

h(ỹ, λ) = u(ỹ, λ)
(
ỹ2

1 − λ
(
ỹ2

1 + ỹ2
2v (ỹ, λ)− λ2

))
where v(ỹ, λ) is an analytic function such that v(0, 0) > 0. Finally, apart from shrinking

Ua, the change of coordinates y1 = ỹ1

√
1 + λ and y2 = ỹ2

√
v(ỹ, λ) is an isomorphism

making

h(y, λ) = u(y, λ)
[
y2

1 − λ
(
y2

2 − λ2
)]

and (y1 = 0) = (ỹ1 = 0) = (f(z) = 0) ∩ Va as we wanted to prove.

Proposition 6.19. There exist an open neighbourhood U of Γ× {0} and a number ε > 0

such that, for every 0 < t < ε, Zt∩U contains a compact and regular connected component

γt such that γt → Γ (in the Hausdorff topology) when t→ 0.

Proof. For every a ∈ Γ take a neighbourhood Va of a and a number εa > 0 as in Lemma 6.17

or 6.18. The compacity of Γ allows us to take a relatively compact open neighbourhood U

of Γ× {0}, of the form U = V × (−δ, δ) with V ⊂ R2 and δ > 0, such that U ⊂ ⋃a∈Γ Ua.

Note that, from the two previous lemmas, we can assume that Zt ∩ U is regular for

every sufficiently small t > 0. Also, the continuity of h guarantees that Zt ∩ U converges

to AΓ ∩ V when t tends to 0 (in the Hausdorff topology).

Let us fix a point b ∈ Alg(Γ)\Tr(Γ) and W a component of Vb\Γ. For every sufficiently

small t > 0, let us call γt the connected component of Zt which meets W (see Lemma

6.17). Let γ0 ⊂ AΓ denote the limit of γt when t→ 0 (which contains b ∈ Γ). We are then

left with the task of proving that γ0 = Γ.

We start showing that γ0 ⊂ Γ. We proceed by contradiction assuming the existence of a

point c ∈ γ0\Γ. After shrinking V and Va for a ∈ Gen(Γ) if necessary, we may suppose that
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the points b and c lies in different connected components of the set R = V \⋃a∈Gen(Γ) Va.

In particular, γt ∩ R is disconnected and these disconnected components can only join

each other by passing through one of the open sets Ua with a ∈ Gen(Γ). This leads to

contradiction with Lemma 6.18.

Since γt is a connected regular curve, R2\γt must consists in exactly two connected com-

ponents, say C1
t and C2

t . Now, for every ε0 > 0, consider the set γε0 = γ0\∪a∈Tr(Γ)B(a, ε0).

We claim that, for every small enough t > 0,

γε0 ⊂ R2 \ γt. (6.4)

Indeed, let us suppose that γε0 meets both C1
t and C2

t for all small t > 0. Since γt can only

cross points of Γ near a ∈ Tr(Γ)∪Gen(Γ), we conclude that there exists a point a ∈ Tr(Γ)

such that γt crosses Γ ∩ Va in such a way that γε0 ∩C1
t ∩ Va and γε0 ∩C2

t ∩ Va Γ are both

nonempty. But this gives us again a contradiction with Lemma 6.18.

Finally, let us denote by Wi, i = 1, . . . k, the connected components of R2 \ Γ and set

I as the subset of indexes i ∈ {1, . . . , k} such that Wi ∩ γt 6= ∅ for all sufficiently small

t > 0 (note that, by construction, I is nonempty). The proof is completed by showing

that I = {1, . . . , k} and γ0 = ∪i∈I(Cl(Wi) \Wi). We argue in two steps.

First, suppose by contradiction that γ0 6= ∪i∈I(Cl(Wi) \Wi). Without restriction of

generality, we can suppose that 1 ∈ I and γ0∩ (Cl(W1) \W1) 6= Cl(W1) \W1. We consider

a point c ∈ Cl(W1) \W1 which does not belong to γ0 and an analogous family of ovals

αt ⊂ Zt constructed in the same way as γt but in respect to c and the connected set W1.

By (6.4), we conclude that α0∩γ0 can only contain points which lie in Tr(Γ). This implies

that Γ \Tr(Γ) has at least two disconnected components γ0 \Tr(Γ) and α0 \Tr(Γ), which

is in contradiction with the definition of Tr(Γ).

Next, suppose, by contradiction, that γ0 = ∪i∈I(Cl(Wi) \Wi) but I 6= {1, . . . , k}.
Denote by Γ0 = ∪i/∈I(Cl(Wi) \Wi). Since the level curve Zt can only cross points of Γ

near a ∈ Tr(Γ)∪Gen(Γ) (see Lemmas 6.17 and 6.18), we conclude that γ0∩Γ0∩Tr(Γ) = ∅.
Therefore, γ0 ∩ Γ0 ⊂ Γ \ Tr(Γ) disconnects R2, which is again in contradiction with the

choice of Tr(Γ).

We conclude the proof by remarking that, since γt converges to Γ, for small enough

t > 0, γt must be a compact set contained in the interior of U .

After noticing that any compact and regular connected component of a planar algebraic

set is a topological circle [54, Theorem 2, p. 180], it follows from Proposition 6.19 that

the polynomial family of planar vector fields given by (6.2) has Γ as a limit periodic set at

λ = 0. Indeed, it is enough to prove that, for every sufficiently small t > 0, the topological

circle γt ⊂ R2 given by Proposition 6.19 is a limit cycle set of Xt. To show this, it suffices
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to note that (
∂h

∂x2
+ h

∂h

∂x1

)
∂h

∂x1
+

(
− ∂h

∂x1
+ h

∂h

∂x2

)
∂h

∂x2
= h ‖∇h‖2

and, as a consequence, Zt is an invariant set containing any periodic orbit of Xt. Finally,

the fact that γt is regular guarantees that it is a periodic orbit. This proves the converse

of Theorem G (under the extra assumption that Γ is compact and generic).

6.2.3 Construction of non-generic compact limit periodic sets

Let us now fix a compact connected semialgebraic set Γ ⊂ R2 with empty interior

and NG(Γ) 6= ∅. Denote by f = fΓ the polynomial associated with Γ, AΓ the associated

algebraic set and S = Gen(Γ) ∪ Tr(Γ). Fix a coordinate system x = (x1, x2) of R2 and

parameters (α, λ) ∈ R2nΓ+1 where α = (α1, . . . , αn) ∈ R2nΓ . We consider the function

h(x, α, λ) = f(x)2 − λ
∏
p∈S

(
‖x− p‖2 − λ2

) n∏
i=1

(
‖x− αi‖2 − λ2

)
.

Let us take the number nΓ, the sequence (αi)i∈N and the point α0 as in Remark 6.14

and, for every i ∈ N, let us consider hi(x, λ) = h(x, αi, λ). For any i ∈ N, we can apply

Proposition 6.19 to the semialgebraic set Γi introduced in Remark 6.15 to deduce that

there exists a value 0 < λi <
1
i such that the level set (hi(x, λ) = 0) ∩ (λ = λi) contains

a subset γi which is regular connected, compact and 1
i -close (in respect to the Hausdorff

topology) to Γi. Furthermore, apart from shrinking λi if necessary, we can suppose that

γi ∩ NG(Γ) = ∅, because NG(Γ) ⊂ Alg(Γi) and Lemma 6.17. In particular, note that

γi → Γ when i→∞ since Γi converges to Γ.

Remark 6.20. We note that, for every point a ∈ Γ, there exists N > 0 such that γi∩{a} =

∅ for every i > N . Indeed, by construction γi only crosses Γi ⊃ Γ near the points

Tr(Γ) ∪ Gen(Γi). So, assuming by contradiction that there exists a point a ∈ Γ so that

γi ∩ {a} 6= ∅ for an infinite number of i, we conclude that a ∈ Tr(Γ) ∪ Gen(Γ) ∪NG(Γ).

Next, by Lemma 6.18 we conclude that a ∈ NG(Γ), which contradicts the choice of λi.

It follows from the above considerations (just as in the previous Section) that the

algebraic family of vector fields

Xα,λ =

(
∂h

∂x2
+ h

∂h

∂x1

)
∂x1 +

(
− ∂h

∂x1
h+ h

∂h

∂x2

)
∂x2

has Γ as a limit periodic set at (α, λ) = (α0, 0).
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6.2.4 Construction of unbounded limit periodic sets

Finally, let Γ ⊂ R2 be a closed and unbounded semialgebraic set with empty interior

whose compactification Γ̂ is connected. Apart from considering a translation of R2, we

can assume that (0, 0) /∈ Γ.

Let us consider the transition homeomorphism associated with the Bendixson com-

pactification φ : R2 \ {0} → R2 given by φ(x1, x2) = (x1/r,−x2/r) where r = x2
1 + x2

2 (see

Section 1.4.3).

Note that φ(Γ) is a semialgebraic set (by e. g. [14, Corollary 1.8]), whose closure

Z = φ(Γ) ∪ {0} is a compact connected semialgebraic set with empty interior. By the

previous Sections, there exist a polynomial family of planar vector fields (Yλ)λ∈Λ and a

parameter λ0 such that Z is a limit periodic set for the family (Yλ)λ at λ0. We denote by

(zλn)n the sequence of limit cycles of Yλ which converge to Z.

Let us now consider the map Φ : (R2 \ {0}) × Λ → R2 × Λ given by Φ(x1, x2, λ) =

(φ(x1, x2), λ). The pull-back Φ∗(Yλ) is rational and there exists an integer d ≥ 0 such that

Xλ = (x2
1 +x2

2)dΦ∗(Yλ) is a polynomial family of vector fields. According to Remark 6.20,

for every sufficiently big n, zλn does not intersect the origin so Φ−1(zλn) is itself a limit

cycles of Xλn . It follows from the construction that Γ is a limit periodic set of (Xλ)λ at

λ0.



Chapter 7

Existence of minimal flows on

nonorientable surfaces

Existence of minimal flows on

nonorientable surfaces

A local flow Φ on a surface S is said to be transitive if there exists an orbit of Φ dense

in S (that is, such that its closure in S equals S). When all the orbits are dense, Φ is

called minimal . A surface is transitive (respectively minimal) when it admits a transitive

(respectively minimal) local flow.

The problem of finding transitive local flows on manifolds has a long tradition (see

for instance the bibliography in [75]). Two works contributed to solve the problem for

surfaces. Firstly, in 1998, J. C. Benière proved in his Ph.D. Thesis [12] that all non-

compact orientable surfaces which are not embeddable in the real euclidean plane possess

a minimal flow. Independently, in 1999, G. Soler in his Master Thesis [76] and in [44],

with V. Jiménez, characterized all transitive surfaces of finite genus. However, up to our

knowledge, the minimality of nonorientable surfaces has not been characterized so far. In

the paper [29], with D. Peralta-Salas and G. Soler’s collaboration, we closed this gap. We

were able to fully characterized the case of nonorientable surfaces of finite genus, while

some progress was made in the study of the infinite genus ones. This chapter is devoted

to expose the results in that project.

There is nothing to say about the study of compact minimal surfaces. According to

the Poincaré-Hopf Index Theorem (see Theorems 1.43 and 1.44), if a compact surface S

admits a C1 minimal local flow, the Euler characteristic of S must be zero and either S

is the torus T2 or the Klein bottle B2. The latter case can be discarded because B2 does

not admit nontrivial recurrent orbits [65, Corollary 2.2.2, p. 27]. On the other hand, T2

admits in fact an analytic minimal flow because so is the irrational flow.
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Thus, it suffices to focus on the study of noncompact surfaces. No subsurfaces S of

the sphere, the projective plane or the Klein bottle can possess minimal local flows. The

reason is that any such flow could be extended to a (global) flow on the whole sphere, the

whole projective plane or the whole Klein bottle (see Section 1.3). But these three compact

surfaces do not admit flows with nontrivial recurrent orbits, in fact they are the only three

compact surfaces with that property (see e.g. [7, Section 2.2]). The nonorientable compact

surface of genus 3 (the torus with a cross-cap) and any of its subsurfaces of genus 3 cannot

possess minimal flows either. This result is stated in [7, p. 14] without a proof; for the

sake of completeness, we provided a proof in [29, Appendix A].

In the literature, it is possible to find some isolated examples of noncompact nonori-

entable surfaces of finite genus with a minimal flow. For instance, in 1978 C. Gutierrez

constructed a minimal flow on the compact nonorientable surface of genus 4 minus two

points [37]. Similarly, it can be checked that, for any positive integer 2 + n, the surface

obtained after removing n points from a compact nonorientable surface of genus 2 + n

admits a minimal flow [77].

Instead of talking about minimal flows we could indistinguishably use the notion of

minimal vector fields. Given a surface S we may say that a Cr vector field X on S (for

some r ≥ 1) is minimal if its associated local flow is minimal. Our aim in this chapter

is to complete the characterization of noncompact surfaces of finite genus which admit a

minimal Cω vector field and to give an example of a nonorientable surface of infinite genus

with the same property.

The following is the first main result of the chapter.

Theorem H. Let S be an orientable noncompact surface of finite genus g ≥ 1 or a

nonorientable noncompact surface of finite genus g ≥ 4. Then S admits a minimal com-

plete analytic vector field.

As already mentioned, the case of orientable surfaces in Theorem H was proved by

Benière [12]. Nevertheless, in order to make our exposition as self-contained as possible,

we also include a proof of that case.

Benière’s approach for proving Theorem H in the orientable case relies on a geometri-

cal method for gluing together different foliated elementary models. Once the pieces are

glued, one gets a compact surface endowed with a foliation with only one singularity and

whose regular leaves are all dense. Such a foliation has the additional property of admit-

ting a transversal circle whose associated Poincaré map is an oriented interval exchange

transformation. Our proof follows a kind of opposite path. For proving Theorem H (for

both orientable and nonorientable surfaces), our approach consists in building surfaces and

vector fields by suspending certain kind of interval exchange transformations. This idea

is usually employed in the literature to get flows on surfaces with different properties. As

far as this procedure is concerned, the reason why the case of nonorientable surfaces has
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remained unsolved up today has to do with the enormous difficulty involved in the task of

constructing nonorientable minimal interval exchange transformations. Accordingly, the

keystone of the proof of Theorem H is a recent work by A. Linero and G. Soler which fully

characterizes nonorientable interval exchange transformations all whose orbits are dense

(see Theorem 7.5 below). Suspending an appropriate nonorientable exchange transforma-

tion for every finite 4 ≤ g <∞, we get a minimal flow on the noncompact surface obtained

from the nonorientable compact surface of genus g after removing one point. Nonetheless,

in order to achieve minimal flows on any nonorientable noncompact surface of genus g,

additional nontrivial work is still needed: one has to remove a Cantor set of points from

the compact surface in such a way that the restricted flow is still minimal. This task

follows similar ideas to those presented in Benière’s work.

Generalizing his geometrical method, Benière also established the minimality for ori-

entable surfaces of infinite genus. When dealing with nonorientable surfaces of infinite

genus, we can prove the following result.

Theorem I. There exist nonorientable surfaces of infinite genus which posseses minimal

complete analytic vector fields.

We emphasize that the proof of Theorem I is independent of the aforementioned The-

orem 7.5: the construction of such a minimal vector field is obtained by applying the

suspension method to a minimal interval exchange transformation with infinitely many

discontinuities. In particular, we prove that:

Proposition 7.1. There exists a minimal interval exchange transformation with flips and

with infinitely many points of discontinuity.

It is worth pointing out that, as far as we know, such an example is new in the literature.

We conjecture that a future development in the study of interval exchange transformations

with infinitely many discontinuities will allow to prove that any nonorientable surface of

infinite genus is minimal.

The content of the chapter is organized as follows. In Section 7.1 we introduce the

notion of generalized interval exchange transformation and summarize some related results.

The proof of Proposition 7.1 is presented in Section 7.2. In Section 7.3 we explain how

to construct minimal vector fields by the suspension of interval exchange transformations.

Finally, Theorems H and I are proved in Section 7.4.

7.1 Generalized interval exchange transformations

Let a < b be two real numbers and D be an open subset of (a, b). The connected

components of D form a countable family of open intervals of R; that is, there are some
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n ∈ N ∪ {∞} and a family of pairwise disjoint open intervals {Ii = (ai, ai+1)}i∈Nn with

D = ∪i∈NnIi (if n = ∞, we are admitting here degenerated intervals (ai, ai+1) with

ai = ai+1 for some indexes i, that is, we are considering the empty set as an open interval).

Following [39] we say that an injective map T : D → [a, b] is a generalized interval exchange

transformation in (a, b), abbreviated as g.i.e.t., if both D and its image T (D) are open

and dense subsets of (a, b) and T homeomorphically takes each connected component of

D onto a connected component of T (D).

We will focus only on the family of g.i.e.t.’s T : D → [a, b] with the extra property that

the restriction of T to any of the components of D is an affine map of constant slope equal

to 1 or −1; given a g.i.e.t. T of such a family we will say that it is an interval exchange

transformation (of n-intervals), abbreviate as n-i.e.t.

In Subsection 7.1.2 we will analyse some properties of n-i.e.t.’s with n ∈ N, while the

case of ∞-i.e.t.’s is relegated to Section 7.2; beforehand, in Subsection 7.1.1, we present

some definitions equally valid for both cases.

7.1.1 Definitions

Let T : D → [a, b] be an n-i.e.t. (n ∈ N or n = ∞) and {Ii = (ai, ai+1)}i∈Nn be the

collection of the connected components of D. Observe that T−1 is also an n-i.e.t. The

points in {ai}i∈Nn+1 are called the discontinuities of T . A discontinuity ai /∈ {a, b} is

said to be a false discontinuity if limx→a+
i
T (x) = limx→a−i

T (x). In the absence of false

discontinuities we say that T is a proper n-i.e.t., in whose case T−1 is also proper. If T

reverses the orientation in some of the interval Ii (i.e. the slope is −1 in that interval) we

say T is an n-i.e.t. with flips; otherwise we can say that T is an i.e.t. without flips or an

oriented i.e.t. When T reverses the orientation exactly in k components of D, we remark

it by saying that T is an interval exchange transformation of n-intervals with k-flips or,

simply, an (n,k)-i.e.t.

If we replace [a, b] by S1 = [a, b]/ ≡, (where a ≡ b), we receive the notion of cir-

cle exchange transformation of n-intervals, abbreviated as n-c.e.t. Given an n-i.e.t.

T : D → [a, b] as above, we will denote as T c the n-c.e.t. obtained after identifying a

and b. The meaning of the notions of n-c.e.t.’s (respectively g.c.e.t.’s) with flips and of

(n, k)-c.e.t.’s are obvious; same comment works for the concepts of false discontinuities

and of properness. When working with S1 = [a, b]/ ≡, and for the sake of simplicity, given

any x, y ∈ [a, b] we will still name them as x and y seen as points in S1 (with the only

precaution that a = b in S1). Given two points x < y in [a, b] (which are different when

they are seen in S1), the set S1 \ {x, y} possesses two components, two open arcs: one of

them is exactly the interval (x, y) ⊂ [a, b] seen in S1 (under the convention above), the

other one will be denoted as (y, x) (this corresponds with the points [a, x)∪ (y, b] ⊂ [a, b]).

Let T be an n-i.e.t. with n ∈ N ∪ {∞}(respectively an n-c.e.t.). Let x ∈ (a, b)
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(respectively x ∈ S1) then the forward (respectively backward) orbit of x generated

by T is the set O+
T (x) = {Tm(x) : m ∈ N ∪ {0} and Tm(x) is defined} (respectively

O−T (x) = {T−m(x) : m ∈ N∪{0} and T−m(x) is defined}). The orbit of x generated by T

is OT (x) = O−T (x)∪O+
T (x). Moreover, reducing in this sentence only to case of T being an

i.e.t., we define OT (a) = {a} ∪ OT (limx→a+ T (x)) and OT (b) = {b} ∪ OT (limx→b− T (x)).

We say that T is minimal (respectively transitive) if for any x ∈ [a, b] (respectively if for

some x ∈ [a, b]), OT (x) is dense in [a, b]; this implicitly means that, in particular, x has

either a full forward orbit (Tn(x) is defined for any n ≥ 0) or a full backward orbit (Tn(x)

is defined for any n ≤ 0). A point x ∈ (a, b) is said to have full orbit if it has full backward

and forward orbit.

7.1.2 Minimal interval exchange transformations

For any pair (n, k) ∈ N2 with 1 ≤ k ≤ n and n + k ≤ 4, there are no minimal (n, k)-

i.e.t. (in fact there are no transitive (n, k)-c.e.t., as Gutierrez et al. proved in [40]). For

all the rest of the pairs (n, k) with n ∈ N and 1 ≤ k ≤ n it is always possible to consider

a minimal (n, k)-i.e.t. The role of this subsection is to clarify these claims.

Here and subsequently, when working with an n-i.e.t. T : D → [a, b], for some n ∈ N,

with D ⊂ (a, b) having as connected components the open intervals {Ii = (ai, ai+1)}1≤i≤n
we will always assume that a = a1 < a2 < · · · < an+1 = b.

We will write T (a⊕i ) = limx→a+
i
T (x) for 1 ≤ i ≤ n and T (a	i ) = limx→a−i

T (x) for

2 ≤ i ≤ n + 1. We also write T (a	1 ) = T (a⊕1 ) and T (a⊕n+1) = T (a	n+1). A saddle

connection for T is a set S = {ai, T (a⊗i ), . . . , T k(a⊗i ) = aj} with k ≥ 1, ⊗ ∈ {⊕,	},
S ∩ {ar}n+1

r=1 = {ai, aj} and possibly i = j. Observe that any i.e.t. has saddle connections

with j ∈ {1, n+ 1} and Card(S) = 1 or 2, these are called trivial saddle connections.

Remark 7.2. When T is minimal it is obvious that it has no nontrivial saddle connections

(by definition of minimality we have, for every 2 ≤ j ≤ n, OT (aj) = O−T (aj) is dense

and therefore infinite in particular). Conversely, if T has no nontrivial saddle connections,

then T is minimal and in fact any forward or backward orbit through any point is dense

when it exists (see [48, Corollary 14.5.12]). It is important to stress that in the statement

of [48, Corollary 14.5.12] the hypothesis on the absence of saddle connections refers to the

absence of nontrivial saddle connections.

There is a natural injection between the set of n-i.e.t.’s and Cn = Λn × Sσn , where

Λn = (0,+∞)n and Sσn is the set of (signed) permutations, where by a permutation we

mean an injective map, π : Nn = {1, 2, . . . , n} → Nσn = {−n,−(n− 1), . . . ,−1, 1, 2, . . . , n},
such that |π| : Nn → Nn is bijective. A signed permutation π is said to be a non-standard

permutation if it is such that for some i it holds π(i) < 0 (otherwise, π is simply a

standard permutation). As in the case of standard permutations, π will be represented by

the ordered n-tuple (π(1), π(2), . . . , π(n)). We claim that n-i.e.t.’s can also be represented
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with another notation which is more convenient if one needs to use the Rauzy-Veech

operator, see [6, 81]; however, the notation we follow is more intuitive for our purposes

and agrees with the one followed in [40].

Let T be an n-i.e.t. like above, then its associated coordinates in Cn are (λ, π) where

λ = (λi)i with λi = ai+1 − ai for all i ∈ Nn and with π(i) being positive (respectively

negative) if T |Ii has slope 1 (respectively −1) and such that, if we order the set {T (Ii)}ni=1

in a n-tuple taking into account the usual order in R, then |π(i)| is the position of the

interval T (Ii) in that n-tuple.

Conversely, given any (λ, π) ∈ Λn × Sσn we can associate it an n-i.e.t., T : ∪ni=1Ii ⊂
[0, b]→ [0, b], where b =

∑n
i=1 λi, I1 = (0, λ1), Ii = (

∑i−1
j=1 λj ,

∑i
j=1 λj) for any 1 < i ≤ n

and

T |Ii(x) =

|π|(i)−
σ(π(i))+1

2∑
j=1

λ|π|−1(j)

+ σ(π(i))

x−
 i−1∑
j=1

λj

 (7.1)

for any 1 ≤ i ≤ n, where σ(z) = z
|z| (the sign of z).

These coordinates allow us to make the identification T ≡ (λ, π).

Notice that if T ≡ (λ, π) then T−1 ≡ (µ, τ) with τ(j) = σ(π(|π|−1(j)))|π|−1(j) and

µj = λ|π|−1(j). Combining this fact with Equation (7.1) we see that, for any m ∈ Z, if x

is in the domain of Tm then

Tm(x) = σ(m)x+ k1(m)λ1 + · · ·+ kn(m)λn (7.2)

with σ(m) ∈ {−1, 1} and for certain k1(m), . . . , kn(m) ∈ Z (all depending on x).

Minimal i.e.t.’s and c.e.t.’s without flips were characterized many years ago by M.

Keane (see [49]). Let T be an n-i.e.t. in (a, b) without flips and with domain D =⋃n
i=1(ai, ai+1). Let T be the right continuous extension of T to [a, b). Then, we say

that T satisfies the Keane condition if T
m

(ai) 6= aj for all m ≥ 1, 1 ≤ i, j ≤ n and j 6= 1.

Theorem 7.3 (Keane). Let T be an oriented n-i.e.t. that satisfies the Keane condition,

then T is minimal.

A permutation π : Nn → Nσn is called irreducible if |π({1, 2, . . . , l})| 6= {1, 2, . . . , l} for

any 1 ≤ l < n. Naturally, if T ≡ (λ, π) is a minimal i.e.t. then π must be irreducible. On

the other hand, when T has no flips and the components of λ are rationally independent,

the converse is also true. We formalize this statement in the following lemma (stated and

proved in [49]).

Lemma 7.4. If T ≡ (λ, π) is an i.e.t. without flips, π is irreducible and the components

of λ are rationally independent, T satisfies the Keane condition and hence it is minimal.
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For the case of i.e.t.’s with flips, A. Linero and G. Soler have recently obtained [58]

the following result, which will play an essential role in this chapter.

Theorem 7.5 (Linero and Soler). Let n ≥ 4 and 1 ≤ k ≤ n. Then there exists a proper,

minimal and uniquely ergodic (n, k)-i.e.t.

Remark 7.6. A proper minimal (n, k)-i.e.t. in (a, b), T , always generate a minimal (n, k)-

c.e.t., T c, after identifying a and b. However the second does not have to be proper if we

receive a false discontinuity in a ≡ b; this occurs if for some 1 ≤ i ≤ n, either T preserves

the orientation in both Ii and Ii+1, limx→ai+1
− T (x) = b and limx→ai+1

+ T (x) = a (in

this case T c is a proper minimal (n − 1, k)-c.e.t.) or T reverses the orientation in both

Ii and Ii+1, limx→ai+1
− T (x) = a and limx→ai+1

+ T (x) = b (here T c is a proper minimal

(n−1, k−1)-c.e.t.). Here, we are calling In+1 = I1. In other words, a proper minimal (n, k)-

i.e.t., T , with coordinates (λ, π), produces a proper minimal (n− 1, k)-c.e.t. (respectively

a minimal (n − 1, k − 1)-c.e.t.) only if, after calling π(n + 1) = π(1), we have π(i) = n

and π(i+ 1) = 1 (respectively π(i) = −1 and π(i+ 1) = −n) for some 1 ≤ i ≤ n. So if T

is proper and we suppose T c has been extended by continuity, there exists n′ ∈ {n− 1, n}
and points {ci}i∈Nn′+1

⊂ {ai}i∈Nn+1 such that T c is a proper n′-c.e.t. which exchanges the

intervals (ci, ci+1).

The i.e.t. in (a, b) given by the previous result in the case k = n−2 can in fact be taken

with the extra property of obtaining a (n − 1, k)-c.e.t. after identifying a and b in [a, b].

Indeed, in [58] the authors build a minimal proper and uniquely ergodic (n, n − 2)-i.e.t.,

T ≡ (λ, π), with π = (−3,−4,−5, . . . ,−[n− 1], n, 1,−2).

7.2 Infinite interval exchange transformations: proof of Propo-

sition 7.1

Despite the fact that there are some examples of g.i.e.t.’s in the literature, see for

example Chacon transformations in [17] and the interesting way of modifying g.i.e.t.’s

analysed by Gutierrez et al. in [39], we have not found such examples when dealing with

∞-i.e.t.’s with flips. We dedicate this section to fill this gap.

For the sake of clarity, we divide our exposition in two subsections. In Subsection 7.2.1,

we present a procedure for building new minimal i.e.t.’s modifying the definition of a given

i.e.t. in certain interval. In Subsection 7.2.2, we iterate that method to construct examples

of ∞-i.e.t.’s with flips and, in particular, to prove Proposition 7.1.

7.2.1 Modifying minimal i.e.t.’s in intervals

Let us consider a proper (n, k)-i.e.t. in (0, 1), T : D = ∪ni=1(ai, ai+1)→ [0, 1], for some

1 ≤ k ≤ n <∞ and an interval ∆ ⊂ [0, 1].
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A direct application of the well-known Poincaré Recurrence Theorem (see, for ex-

ample, [48, Theorem 4.1.19, p. 142]) shows that the set D∆ = {x ∈ ∆ : Tm(x) ∈
∆ for some m ∈ N} contains almost every point of ∆ (i.e. ∆\D∆ has zero Lebesgue mea-

sure). Associated with this D∆, we may define the Poincaré map (or the first return map)

of T on ∆ as the map T∆ : D∆ → ∆ which takes every point x ∈ D∆ to T∆(x) = Tmx(x)

where mx = min{m ∈ N : Tm(x) ∈ ∆}. As it is proved in [48, Lemma 14.5.7], T∆

determines a proper (n∆, k∆)-i.e.t. in the interval Int(∆) with 1 ≤ k∆ ≤ n∆ ≤ n+ 2.

Remark 7.7. A precise examination of the proof of [48, Lemma 14.5.7] shows that if

c ∈ Int ∆ is a point of discontinuity of T∆, then there exists m ∈ N such that {T l(c)}m−1
l=1 ∩

∆ = ∅ and either Tm(c) = aj for some j ∈ {2, . . . , n} or Tm(c) ∈ ∂∆.

Combining T and T∆ we are now able to consider a new i.e.t. in (0, 1) with more

discontinuities than T .

Definition 7.8. We call D∗∆ = (D \ ∆) ∪̇D∆ and consider the map T ∗∆ : D∗∆ → [0, 1]

given by

T ∗∆(x) =

{
T (x) , if x ∈ D \∆,

(T ◦ T∆)(x) , if x ∈ D∆.

It follows directly from the definition, that T ∗∆ gives an i.e.t. in (0, 1) which has as

discontinuity set the union of the discontinuity sets of T , {ai}n+1
i=1 , and of T∆, {ci}n∆+1

i=1 .

Also, for every x ∈ [0, 1], OT ∗∆(x) ⊂ OT (x).

Lemma 7.9. If in the procedure above we suppose that T is minimal, that ∆ = (d, f) does

not contain discontinuity points of T , that

∂∆ ∩
n+1⋃
i=1

(
OT (ai) ∪ OT (T (a⊕i )) ∪ OT (T (a	i ))

)
= ∅ (7.3)

and that

OT (d) ∩ OT (f) = ∅, (7.4)

then T ∗∆ is a minimal (n∗∆, k
∗
∆)-iet with n∗∆ = 2n+ 3 and k∗∆ ≥ 1.

Proof. According to Remark 7.2, showing the non existence of nontrivial saddle connec-

tions for T ∗∆ is sufficient to guaranteeing its minimality. Let us proceed by contradiction

and let S be such a nontrivial saddle connection. There exists k ∈ N and ⊗ ∈ {	,⊕} such

that S is in of one of the following four cases.

Case 1. S = {ai, T ∗∆(a⊗i ), . . . , (T ∗∆)k(a⊗i ) = aj} with 1 ≤ i, j ≤ n + 1. In this case S is

clearly contained in a nontrivial saddle connection of T which contradicts its minimality.

Case 2. S = {ai, T ∗∆(a⊗i ), . . . , (T ∗∆)k(a⊗i ) = cj} with 1 ≤ i ≤ n + 1 and 1 ≤ j ≤ n∆ + 1.

Observe that, in light of (7.3), j 6∈ {1, n∆ +1}. Remark 7.7 and again (7.3) imply the exis-

tence of h ∈ N∪ {0} and 2 ≤ l ≤ n for which T h(cj) = al; on the other hand, the equality
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(T ∗∆)k(a⊗i ) = cj means in particular that there exists m ∈ N such that Tm(a⊗i ) = cj . Then

we deduce that S ′ = {ai, T (a⊗i ), . . . , T h+m(a⊗i ) = al} is a nontrivial saddle connection of

T .

Case 3. S = {ci, T ∗∆(c⊗i ), . . . , (T ∗∆)k(c⊗i ) = aj} with 1 ≤ i ≤ n∆ + 1 and 1 ≤ j ≤ n + 1.

As before, (7.3) and Remark 7.7 guarantee that i 6∈ {1, n∆ + 1} and the existence of

h ∈ N ∪ {0}, m ∈ N, 2 ≤ l ≤ n, satisfying T h(ci) = al and Tm(a�l ) = T ∗∆(c⊗i ) for

some � ∈ {	,⊕}. Thus we obtain the existence of p ∈ N for which T p(a�l ) = aj and

S ′ = {al, T (a�i ), . . . , T p(a�l ) = aj} is a nontrivial saddle connection of T .

Case 4. S = {ci, T ∗∆(c⊗i ), . . . , (T ∗∆)k(c⊗i ) = cj} with 1 ≤ i, j ≤ n∆ + 1. First, assume that

{i, j}∩{1, n∆ + 1} 6= ∅ then several possibilities arises. The first one, {i, j} = {1, n∆ + 1},
cannot occur since it contradicts (7.4), then either i ∈ {1, n∆ + 1} and j 6∈ {1, n∆ + 1} or

j ∈ {1, n∆ + 1} and i 6∈ {1, n∆ + 1}. In both cases, reasoning respectively as in the second

and third item, we obtain a contradiction with (7.3). Assume now that 2 ≤ i, j ≤ n∆,

reasoning in the same manner that in the previous item we can obtain p ∈ N, 2 ≤ l ≤ n

and � ∈ {	,⊕} for which T p(a�l ) = ci. Now we obtain the existence of m ∈ N and

2 ≤ s ≤ n from Remark 7.7 such that Tm(cj) = as. Then T p+m(a�l ) = as which implies

again the existence of a nontrivial saddle connection for T .

Furthermore, since T is minimal we have that for every 2 ≤ i ≤ n the backward

orbit O−T (ai) meets the open interval ∆: this produces a minimum of n− 1 discontinuity

points of T∆ in ∆. Moreover, conditions (7.3) and (7.4) and the density of the backward

orbits of d and f produce two more discontinuity points of T∆ different from these n− 1

previous ones. In total there are exactly n+ 1 discontinuity points of T∆ in Int(∆). Since

∆ ⊂ (ai, ai+1) for some 1 ≤ i ≤ n, and by condition (7.3) we know that in fact it must be

[d, f ] ⊂ Ii, we can conclude that n∗∆ = 2n+ 3.

7.2.2 Proof of Proposition 7.1

Let us now begin with a proper minimal (n, k)-i.e.t. in (0, 1), T : D = ∪ni=1(ai, ai+1)→
[0, 1], a fix dense set {xi}i∈N on [0, 1] and a point p ∈ (a1, a2) with full orbit.

We will build inductively a sequence of i.e.t.’s, (Si)i∈N∪{0}, whose combination allows

us to get an example of a minimal ∞-i.e.t. with flips.

We start defining S0 = T .

Given any i ∈ N, suppose Si−1 has been already defined with the property of being a

minimal i.e.t. such that p has full orbit under it. Hence, by Remark 7.2, there must exist

a minimal natural ni such that for every 1 ≤ h ≤ i both {Sji−1(p)}nij=0 and {Sji−1(p)}0j=−ni
meet

(
xh − 1

i , xh + 1
i

)
. We then define Si = (Si−1)∗∆i

where ∆i = (di, fi) ⊂ (p, a2) is such

that

C-1. |∆i| = fi − di < di − p and, when i ≥ 2, fi < di−1;
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C-2. fi − p < 1/i;

C-3. ∂∆i ∩ OT (p) = ∅;

C-4. If Qi−1 is the set of discontinuities of Si−1, then

∂∆i

⋂ ⋃
x∈Qi−1

(OSi−1(x) ∪ OSi−1(Si−1(x⊕)) ∪ OSi−1(Si−1(x	)) = ∅,

and

OSi−1(di) ∩ OSi−1(fi) = ∅;

C-5. ∆i ∩ {Sji−1(p)}nij=−ni = ∅.

Notice that, because of Lemma 7.9, properties C-1 and C-4 ensure that Si is also a

minimal i.e.t. and, because of property C-3, p has also full orbit for Si.

Let us call E =
⋃
i∈N ∆i and observe that, for every i ∈ N,

1. Si−1|∆i is continuous;

2. if x ∈ (0, 1) \ E, then Si(x) = T (x);

3. if x ∈ ∆i, then Sk(x) = Si(x) for any k ≥ i.

This allows us to define S : DS → (0, 1), where DS = D \ ∪i∈NQi, by

S(x) =

{
Si(x) if x ∈ ∆i,

T (x) if x ∈ D \ E.

Proposition 7.10. The function S is a minimal ∞-i.e.t. with flips.

Proof. The fact that S is an ∞-i.e.t. with flips is clear. We prove the minimality of S by

stages.

Firstly, for any x ∈ (0, 1) the orbit OS(x) is infinite, that is, either x has full forward

orbit or full backward orbit. Indeed, if for some x ∈ (0, 1) and some ∗ ∈ {−,+} the set

O∗S(x) is finite, we may take the maximal natural i such that O∗S(x)∩∆i 6= ∅ and observe

that O∗S(x) = O∗Si+1
(x). But, on account of the minimality of Si+1, O−Si+1

(x) and O+
Si+1

(x)

cannot be simultaneously finite.

Secondly, p ∈ Cl(OS(x)) for any x ∈ (0, 1). If p 6∈ Cl(OS(x)), then OS(x) would only

intersect a finite number of intervals ∆i (because of C-2) and, as in the previous paragraph,

we arrive to a contradiction with the minimality of some Sk, k ∈ N.

Thirdly, limx→p+ S(x) = T (p) and therefore S is continuous on p. Indeed, fix ε > 0 and

observe that S(x)−T (x) = 0 if x ∈ Ec and |S(x)−T (x)| < |∆i| < x−p if x ∈ ∆i (because
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of C-1). Thus, for a sufficiently small δ > 0 we have that for every x ∈ (p − δ, p + δ),

|S(x)− T (p)| ≤ |S(x)− T (x)|+ |T (x)− T (p)| < 2|x− p| < ε.

Fourthly, both the backward and the forward orbits of p generated by S are dense in

[0, 1]. To prove it, it is clearly sufficient to see that, for any h, i ∈ N with h ≤ i and any

∗ ∈ {−,+}, O∗S(p) ∩
(
xh − 1

i , xh + 1
i

)
6= ∅. But if h ≤ i and ∗ ∈ {−,+}, we know that{

Sji−1(p)
}∗ni
j=0
∩
(
xh − 1

i , xh + 1
i

)
6= ∅ and that, by C-5,

{
Sj(p)

}∗ni
j=0

=
{
Sji−1(p)

}∗ni
j=0

.

Finally, we take x ∈ (0, 1) and we see that for any c ∈ (0, 1) and any ε > 0, OS(x) ∩
(c − ε, c + ε) 6= ∅. Since O∗S(p) is dense (for any ∗ ∈ {−,+}) we can take an integer m2

(note that the sign can be chosen as desired) for which |Sm2(p) − c| < ε
2 . Observe that,

because of C-3 and the fact that S is continuous at p, Sm2 is continuous at p. So there

exists δ > 0 such that if |y − p| < δ then |Sm2(y) − Sm2(p)| < ε
2 . Since p ∈ Cl(OS(x)),

there exists also an integer m1 satisfying |Sm1(x) − p| < δ. Thus |Sm1+m2(x) − c| ≤
|Sm1+m2(x) − Sm2(p)| + |Sm2(p) − c| < ε

2 + ε
2 = ε. Then Sm1+m2(x) ∈ (c − ε, c + ε) as

desired.

7.3 Building vector fields from circle exchange transformations

Circle exchange transformations and vector fields are related by means of a standard

procedure called suspension of circle exchange transformations. In this section we intro-

duce this procedure following [39, Section 6] (with minor changes). We have been also

strongly inspired by [8, 57] and [77].

Let D be an open dense subset of (0, 1) and {Ii = (ai, ai+1)}i∈Nn be the family of its

connected components (n ∈ N∪{∞}). Let T : D → [0, 1] be a proper (n, k)-i.e.t. (for some

1 ≤ k ≤ n). When n ∈ N, recall the convention of supposing that 0 = a1 < a2 < · · · <
an+1 = 1. Take also the proper (n′, k′)-c.e.t. T c : ∪i∈Nn′ (ci, ci+1) ⊂ S1 → S1 associated

with T where k′ ∈ {k − 1, k} and n′ ∈ {n − 1, n} (see Remark 7.6). Consider the set of

points ∪i∈Nn′ ∂ T c((ci, ci+1)) and label them as {bi}i∈Nn′+1
⊂ [0, 1] such as to verify, for

every i, j ∈ Nn′+1, ci ≤ cj if and only if bi ≤ bj . Let σ : Nn′ → Nn′ be a bijection such

that, for every i ∈ Nn′ , T c((ci, ci+1)) = (bσ(i), bσ(i)+1).

7.3.1 The construction of the suspended surface

Figure 7.1 intends to clarify the following construction. We start considering the

noncompact ∂-surface N = (S1 × [0, 1]) \ (P0 ∪ P1) with P0 = {bi}i∈Nn′ × {0} and P1 =

{ci}i∈Nn′ × {1}.

Call also N̄ = S1 × [0, 1] and consider both N and N̄ as ∂-surfaces equipped with

the natural analytic structure compatible with their euclidean topological structure (as

subsets of S1 × R).
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For every i ∈ Nn′ , we consider hi : [ci, ci+1] × {1} → [bσ(i), bσ(i)+1] × {0} given by

the formula hi(x, 1) = (T c(x), 0) for every x ∈ (ci, ci+1) and either hi(ci, 1) = (bσ(i), 0)

and hi(ci+1, 1) = (bσ(i)+1, 0) (if T c preserves the orientation in (ci, ci+1)) or hi(ci+1, 1) =

(bσ(i), 0) and hi(ci, 1) = (bσ(i)+1, 0) (if T c reverses the orientation in (ci, ci+1)).

Let R ⊂ N̄ × N̄ be the smallest equivalence relation of N̄ containing all the pairs

(p, q) satisfying that, for some i ∈ Nn′ , p ∈ [ci, ci+1] × {1} and q = hi(p). Consider the

topological quotient MT = N̄/R and let ρ : N̄ →MT be the associated natural projection.

When (x, y) ∈ R we will also write x ∼ y or [x] = [y].

Since N̄ is compact and connected so is MT . The subset of MT given by ST = ρ(N)

has not only topological structure but it is also an analytic surface with boundary: ST

is nothing else than a set built following the standard process of attaching surfaces along

their boundaries. We collect this information in the following result.

←−−−−
T (m6)

←−−−−
T (m1)

−−−−→
T (m2)

←−−−−
T (m3)

−−−−→
T (m4)

−−−−→
T (m5)

m1 m2 m3 m4 m5 m6

V3

W3W2W1 W4W5 W6

V1 V2 V4 V5 V6

b
a1

b
a2

b

a3
b

a4
b

a5
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b b b b b

b
3
4

b
1
4

b

C

Figure 7.1: Construction of MT by means of a (6, 3)-i.e.t. with π = (−3, 4,−5, 6, 1,−2). The circle C is

nonorientable. The arrows on the images of the mi mark if they are flipped by T .

Lemma 7.11. ST is an analytic surface. The surface is orientable (respectively nonori-

entable) when T c has no flips (respectively has flips). Moreover, if n ∈ N, MT is a compact

surface which coincides with ST in genus and in orientability class.

Proof. We start defining, for every index i ∈ Nn′ , two open subsets of N as Vi =

(ci, ci+1)× (3/4, 1] and Wi = (bσ(i), bσ(i)+1)× [0, 1/4) and continuous maps φi : Vi ∪Wi →
(bσ(i), bσ(i)+1)× (−1/4, 1/4) by

φi(x, t) =

(T c(x), t− 1), if (x, t) ∈ Vi,
(x, t), if (x, t) ∈Wi.

(7.5)

Since the restrictions of φi to Vi and to Wi are both embeddings with closed images

in (bσ(i), bσ(i)+1) × (−1/4, 1/4), it follows that φi is not only continuous but also closed.

Moreover, since φi take the same value in all points (x, y) and (x′, y′) such that ρ(x, y) =
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ρ(x′, y′), we can define a map Φi : ρ(Vi∪Wi)→ (bσ(i), bσ(i)+1)×(−1/4, 1/4) by Φi(ρ(x, t)) =

φi(x, t) for every (x, t) ∈ Vi∪Wi. This map is bijective and the continuity and closeness of

φi guarantees that it is, in fact, an homeomorphism and, in particular, that ρ(Vi ∪Wi) is

a surface. On the other hand, the restriction of ρ to IntN is an embedding and, therefore,

every point in ST possesses an open neighbourhood homeomorphic to an open connected

subset of R2.

The fact that ST can be rewritten as a countable union of open subsets each of

them being second countable shows that ST is second countable itself: ST = ρ(IntN) ∪⋃
i∈Nn′

ρ(Vi ∪Wi). This union also allows us to claim the connectedness of ST : all the sets

in the union of the left term in the equality are connected and all of them meet ρ(IntN).

Finally, ST is clearly Hausdorff. All together shows that ST is a surface.

Let us denote by (x, y) the components of the identity map on IntN and by (xi, yi) the

components of the map Φi for every i ∈ Nn′ . As an atlas for ST we can take the collection

of the following coordinates charts {(ρ(IntN), (x, y))}∪{(ρ(Vi∪Wi), (x
i, yi))}i∈Nn′ . It is an

immediate computation to verify that the transition maps associated with these coordinate

charts are all given by analytic maps and, when T has no flips, have all positive Jacobian

determinant everywhere in their domains. Indeed, the only coordinate neighbourhoods

with nonempty intersections are the pairs {ρ(IntN), ρ(Vi ∪Wi)}i. Let i ∈ Nn′ , we have

ρ(IntN)∩ ρ(Vi ∪Wi) = ρ(IntVi ∪ IntWi). Let Fi be the restriction of φi = Φi ◦ ρ to IntVi

in its domain and to φi(IntVi) in its codomain and with formula Fi(x, y) = φi(x, t) where

the last term is computed as in equation (7.5). The transition map from (ρ(IntN), (x, y))

to (ρ(Vi ∪Wi), (x
i, yi)) is the map Hi : IntVi ∪ IntWi → φi(IntVi ∪ IntWi) defined as

Hi(x, y) = Fi(x, y) if (x, y) ∈ IntVi and as Hi(x, y) = φi(x, y) = (x, t) otherwise. All

these transition maps are therefore analytic diffeomorphisms. Moreover, their Jacobian

matrices are trivial. When T preserves the orientation in (ci, ci+1), the map Fi has as

Jacobian matrix at any point in its domain the identity; when T reverses the orientation

in (ci, ci+1) the Jacobian matrix of Fi at any point (x, t) equals
(−1 0

0 1

)
. From here we

can already conclude that ST is an orientable surface when T has no flips (in such a case

all the transition maps have the the identity as Jacobian matrix so in particular all have

positive determinant and hence we have an analytic and consistently oriented atlas for

ST ). On the other hand, when T has flips, say for example its slope equals −1 in (ci, ci+1)

and take an open Γ arc in IntN having as endpoints the middle points of (ci, ci+1)× {1}
and (bσ(i), bσ(i)+1)×{0}, then ρ(Cl(Γ)) is clearly a nonorientable circle, see the circle C in

Figure 7.1.

Suppose now that we are in the case n ∈ N. To begin with, a direct examination on

the family of open subsets of MT show that MT is not only compact and connected but

also Hausdorff. Besides, the set MT \ST is totally disconnected and nonseparating on MT .

Corollary 1.34 together with the Remark 1.35 finish the proof.
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In what follows, we will refer to ST as the suspended surface associated with T . When

T is an n-i.e.t.for some n ∈ N, MT will be called the compact suspended surface associated

with T . In this last case, the points in the set MT = {[(ci, 1)] : 1 ≤ i ≤ n′} are called the

marked points of MT .

7.3.2 The construction of the suspended vector field

With the notation introduced in the proof of Lemma 7.11, we can consider a vector

field X on ST defined in local coordinates as

X(p) =


∂
∂y

∣∣∣
p
, if p ∈ ρ(IntN),

∂
∂yi

∣∣∣
p
, if p ∈ ρ(Vi ∪Wi).

The trivial shapes which have all the Jacobian matrices associated with the transition

maps guarantee that these definitions are consistent (they agree in the non-disjoint coor-

dinate neighbourhoods). Furthermore, X is analytic on the whole ST because so are its

local representatives.

Now, observe that [S1×{1/2}] is a transversal circle to any orbit of X and the Poincaré

first return map which is defined over it is given exactly by T c (when we see T c as a map

from S1×{1/2} to S1×{1/2} after naturally identifying S1×{1/2} with S1). This simple

observation allow us to claim that X is an analytic minimal vector field if and only if T c

is minimal.

Associated with X we can always take an analytic positive map fT : ST → R such

that XT = fTX is a complete analytic vector field. We will refer to this analytic vector

field XT as the suspended vector field associated with T .

7.4 Proofs of Theorems H and I

Let us start with the proof of Theorem I, which is immediate from Proposition 7.1.

Indeed, Proposition 7.1 gives an infinite minimal g.i.e.t. T with flips, and associated with

it we may take the suspended surface ST and the suspended vector field XT . To conclude,

we only need to notice that the surface ST must be of infinite genus due to the Structure

Theorem of [38].

In order to deal with the proof of Theorem H, we will restrict now to the case n ∈ N in

the procedure above. Recall that, since n ∈ N, the suspended surface ST is a noncompact

surfaced contained in the suspended compact surface MT . The analytic map fT : ST → R
considered above to define the suspended vector field XT can in fact be taken such that

after defining it as zero in the marked points MT = MT \ ST we get a C∞ map on MT .
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Then, the vector field XT can also be seen as a C∞ complete vector field on the compact

surface MT whose restriction to ST is analytic. When X is understood as a vector field

on MT we will refer to it as the suspended compact vector field associated with T .

Given p ∈ MT , denote by γp : R → MT the integral curve of XT starting at p. We

already know that for every point p ∈ ST , the orbit Γp = γp(R) is dense in MT . Even

more, owing to Remark 7.2, if p ∈ [S1 × {1/2}] there are three possibilities:

1. if p /∈ [{c1, . . . , cn′} ∪ {b1, . . . , bn′} × {1/2}], then both Γ+
p = {γp(t) : t ∈ [0,∞)} and

Γ−p = {γp(t) : t ∈ (−∞, 0]} are dense in MT ;

2. if p ∈ [{c1, . . . , cn′}×{1/2}], Γ+
p = [({ci}× [1/2, 1)] with limt→∞ γp(t) = [(ci, 1)] and

Γ−p = {γp(t) : t ∈ (−∞, 0]} is dense;

3. if p ∈ [{b1, . . . , bn′} × {1/2}], Γ−p = [({bi} × (0, 1/2])] with limt→−∞ γp(t) = [(bi, 0)]

and Γ+
p = {γp(t) : t ∈ [0,∞)} is dense.

7.4.1 Computation of the genus of the surface MT

In order to deduce the genus of the surface MT , we begin computing the index of the

singular points of XT . For doing so, it is enough to notice that all the singular points

of XT have neighbourhoods which are topologically equivalent with an open disk on the

plane decomposed in evenly many hyperbolic sectors (if in such a decomposition there are

exactly 2m hyperbolic sectors, we say that the singular point is a 2m-saddle point) — see

Figure 7.2.

Figure 7.2: A standard saddle point (left) and a 6-saddle point (right).

Any of the marked points [(ci, 1)], 1 ≤ i ≤ n′, is a 2k-saddle point for XT for some

k ≥ 2. Indeed, since T c is proper, for any 1 ≤ i ≤ n′ we have that limx→c+i
T c(x) 6=

limx→c−i
T c(x) and limx→b+i

(T c)−1(x) 6= limx→b−i
(T c)−1(x) so the class of equivalence

[(ci, 1)] contains at least some other [(cj , 1)] (1 ≤ j ≤ n′) with cj 6= ci and as many

points of the type [(ck, 1)] as of the type [(bl, 1)] (1 ≤ k, l ≤ n′). Let us say [(ci, 1)] =
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{(ci1 , 1), · · · , (cik , 1)} ∪ {(bj1 , 0), · · · , (bjk , 0)} (with both {i1, · · · , ik} and {j1, · · · , jk} be-

ing sets with k ≥ 2 different points in Nn′). For every 1 ≤ l ≤ k, the semiorbit Γ+
[(cjl ,1/2)]

has {[(ci, 1)]} as ω-limit set while the semiorbit Γ−[(bjl ,1/2)] has {[(ci, 1)]} as α-limit set. If

Bi is a sufficiently small open ball centred in [(ci, 1)], then it is clear that the orbits of XT

through any point of the semiorbit Γ+
[(cjl ,1/2)] or of the semiorbit Γ−[(bjl ,1/2)], for 1 ≤ l ≤ k,

are the only regular ones meeting Bi and having [(ci, 1)] in one of their limit sets. The

rest of the regular orbits Γ meeting Bi are such that Γ∩Bi is an open arc with endpoints

in the boundary of Bi. This produces exactly 2k hyperbolic sectors in the decomposition

of Bi (Theorem B in Chapter 3 justifies this geometrically clear claim). The index of the

point [(ci, 1)] is then exactly 1
2(2− 2k) = 1− k.

By the Poincaré-Hopf Index Theorem (see Theorems 1.43 and 1.44), we can already

compute the Euler characteristic of the surface ST . Let us say that MT presents m ≥ 1

marked points, [(cι1 , 1)], . . . , [(cιm , 1)], and that for every 1 ≤ l ≤ m, [(cιl , 1)] is a 2kl-

saddle point. Then then χ(ST ) =
∑m

l=1 (1− kl) = m−n. Consequently, if ST is orientable

(respectively nonorientable) its genus equals

g(ST ) = 1 +
n−m

2
(respectively g(ST ) = 2 + n−m). (7.6)

7.4.2 An intermediate result

In this subsection we prove a special case of Theorem H, which plays a key role in the

next subsection when proving the theorem in its full generality.

Theorem 7.12. For any n ≥ 4 there exists a proper minimal (n, n − 2)-i.e.t., T , which

produces, after identifying 0 and 1, a (n − 1, n − 2)-c.e.t., T c. The associated suspended

compact surface, MT , is a nonorientable compact surface of genus n and the suspended

compact vector field, XT , is of class C∞ and has exactly one singular point p0 (with a

neighbourhood decomposed in h = 2n− 2 hyperbolic sectors). The restriction of XT to the

suspended surface ST = MT \ {p0} is analytic and minimal. With more detail, given any

point in ST if its orbit is not both backwardly and forwardly dense, then either it has {p0}
as α-limit set and is forwardly dense or has {p0} as ω-limit set and is backwardly dense

(these last two cases arising only for exactly h orbits).

Proof. Theorem 7.5 and Remark 7.6 provide, for n ≥ 4, a proper, minimal uniquely

ergodic (n, n− 2)-i.e.t., T = (λ, π), with π = (−3,−4,−5, . . . ,−[n− 1], n, 1,−2). Denote

by (ai, ai+1), 1 ≤ i ≤ n, the intervals exchanged by T . Take the minimal (n − 1, n − 2)-

c.e.t., T c, obtained after identifying 0 with 1 and write (ci, ci+1), 1 ≤ i ≤ n− 1, to denote

the intervals exchanged by T c. Then we have c1 = a1 < c2 = a2 < · · · < cn−2 = an−2 <

an−1 < cn−1 = an < cn = an+1 = 1.
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Next we show that the number of marked points appearing in the compact surface MT

in the construction of the suspension is exactly one (see Section 7.3.1). By the construction

of MT it is clear that the permutation π gives the identifications (ci, 1) ∼ (ci+2, 1) for any

1 ≤ i ≤ n − 4. Furthermore, π also gives the relations (cn−3, 1) ∼ (cn−2, 1), (cn−1, 1) ∼
(c1, 1) and (c2, 1) ∼ (cn−1, 1).

Finally, from Equation (7.6), we deduce that g(ST c) = n.

Remark 7.13. The same argument can be used to guarantee that, considering appropriate

c.e.t. without flips, the statement of the result works analogously for compact orientable

surfaces of genus g ≥ 1. Indeed, for any n ∈ N∪{0} we may take the (standard) irreducible

permutation π given by π(i) = 2i for every 1 ≤ i ≤ n+ 1 and π(i) = 2(i− n+ 2) + 1 for

every n+ 2 ≤ i ≤ 2n+ 2: π = (2, 4, . . . , 2n, 2n+ 2, 1, 3, . . . , 2n− 1, 2n+ 1).

Consider also a vector λ = (λi)1≤i≤2n+2 with its components being rationally indepen-

dent. Then T ≡ (λ, π) satisfies the Keane condition and it is minimal (see Lemma 7.4).

After identifying 0 and 1 we get a proper minimal (2n+ 1)-c.e.t., T c. This oriented c.e.t.

produces also a unique boundary component when we suspend it and equation (7.6) says

now that g(ST c) = 1 + (2n+1)−1
2 = n+ 1.

7.4.3 Completing the proof of Theorem H

To complete the proof of Theorem H, we still need to present a couple final technical

lemmas regarding Cantor sets.

A nonempty topological space K is said to be a Cantor set if it is metrizable, compact,

totally disconnected and perfect (i.e. without isolated points). All the Cantor sets are

homeomorphic; in particular every Cantor set is homeomorphic to the ternary Cantor set

in R . Even more:

Theorem 7.14. Let K be a Cantor set and fix a point p0 ∈ K. Then, for any compact,

metric, totally disconnected space L there exists an embedding h : L→ K with p0 ∈ h(L).

Proof. This is an elementary consequence of a well-known topological result stating that

any compact metric totally disconnected space has a homeomorphic copy inside any Cantor

set (see [53, p. 285]). Indeed, if L is itself a Cantor set there is nothing to say: two any

Cantor sets are homeomorphic. In the contrary case, L has isolated points; let us fix

one of these isolated points q0 ∈ L. Let h : L → K be an embedding and suppose that

p0 /∈ h(L). It is enough then to consider the map h̃ : L→ K given by h̃(q) = h(q) if q 6= q0

and h̃(q0) = p0. This new map is also injective (because so is h), continuous (because q0

is isolated) and closed (all the continuous maps from compact spaces to Hausdorff spaces

are closed).
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The following result is cited in [12, pp. 14–15], we give a detailed proof. A subset K ⊂
R is called rationally independent if for any nonempty finite subset F = {x1, . . . , xk} ⊂ K
there are no integers n1, . . . , nk such that n1x1 + · · ·+nkxk ∈ Q and (n1)2 + · · ·+ (nk)

2 6=
0 (i.e. such that they do not vanish simultaneously); K is said rationally dependent

otherwise.

Lemma 7.15. Let I ⊂ R be an open interval. Any rationally independent finite set F ⊂ I
is contained in a rationally independent Cantor set K ⊂ I.

Proof. Let I be an open interval and F ⊂ I be finite and rationally independent. We

will construct, by induction, a nested sequence of compact sets whose intersection gives a

Cantor set K such that F ⊂ K ⊂ I.

Given any p1, . . . , pj ∈ Z we name fp1,...,pj the polynomial which, for every y1, . . . , yj ∈
R, is defined by fp1,...,pj (y1, . . . , yj) :=

∑j
i=1 piyi.

If G ⊂ R is a finite subset (say G has exactly m elements), the set H = {∑m
i=1 piyi :

pi ∈ Z, yi ∈ G} is infinite. This trivial observation implies that, when G is rationally

independent, all but countably many elements of every connected component of R\H can

be added to G and generate a new finite rationally independent set.

Therefore, we can assume we have a finite sequence a0
1 < a0

2 < a0
3 < · · · a0

2m−1 < a0
2m (in

I), for some positive integer m, such that F ′ = {a0
i : 1 ≤ i ≤ 2m} is rationally independent

and F = {a0
2i : 1 ≤ i ≤ m}. Call K0 = ∪mi=1B

0
i with B0

i = [a0
2i−1, a

0
2i] (1 ≤ i ≤ m).

Since F ′ is rationally independent, for every choice of integers p1, . . . , p2m in Z which

do not vanish simultaneously, fp1,...,p2m(a0
1, . . . , a

0
2m) /∈ Z. By continuity we can then

guarantee the existence of 4m real numbers, a1
1 < · · · < a1

4m, with a1
4i−3 = a0

2i−1 and

a1
4i = a0

2i for every 1 ≤ i ≤ m such that fp1,...,p2m(y1, . . . , y2m) /∈ Z whenever p1, . . . , p2m ∈
{−2m, . . . ,−1, 0, 1, . . . , 2m}, not all zero, and (y1, . . . , y2m) ∈ B1

1 × · · · ×B1
2m where B1

i =

[a1
2i−1, a

1
2i] (1 ≤ i ≤ 2m). We also assume, changing the interval for smaller ones if needed,

that 0 < a1
2i − a1

2i−1 < 1/(2m). Call K1 = ∪2m
i=1B

1
i

Proceeding recursively, we build a infinite nested sequence

K1 ⊇ · · · ⊇ Kn ⊇ Kn+1 ⊇ · · ·

such that, for every positive integer n:

• Kn is the union of 2nm compact connected intervals Bn
i = [an2i−1, a

n
2i] (1 ≤ i ≤ 2nm)

with

an2i − an2i−1 < 1/(2nm) (7.7)

and where an1 < · · · < an2n+1m and an+1
4i = an2i and an+1

4i−3 = an2i−1 for every 1 ≤ i ≤
2nm;
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• F ⊂ Kn;

• for every p1, . . . , p2nm ∈ {−2nm, . . . ,−1, 0, 1, . . . , 2nm}, not all simultaneously zero,

and every (y1, . . . , y2nm) ∈ Bn
1 × · · · ×Bn

2nm

fp1,...,p2nm
(y1, . . . , y2nm) /∈ Z. (7.8)

We now take K = ∩∞n=1Kn and claim that K is the desired Cantor set. Indeed, K

is compact, perfect and totally disconnected set of real numbers containing F . Firstly,

K is a compact set containing F because it is an intersection of sets with that property;

even more, K contains the set {ani : n ∈ N ∧ 1 ≤ i ≤ 2n+1m}. Secondly, K is rationally

independent. Indeed, for every finite sequences y1, . . . , yl ∈ K and p1, . . . pl ∈ Z we can

take a large enough integer n such that |pj | ≤ 2nm for all 0 ≤ j ≤ l and apply (7.8) to

guarantee that
∑m

j=1 pjyj /∈ Z unless p1 = · · · = pl = 0. Thirdly, K is totally disconnected

because, using (7.7), for any two different points x, y ∈ K there exist some big enough n

and two different i, i′ such that x ∈ Bn
i and y ∈ Bn

i′ . And, finally, K is perfect. Indeed, let

x ∈ K and ε > 0. Let n be a large enough integer so 2nm > 1/ε, then x ∈ Bn
i for some

1 ≤ i ≤ 2nm and therefore an2i−1 and an2i are points in K ∩ (x− ε, x+ ε).

We are now ready to present the proof of Theorem H. Let S be a nonorientable (respec-

tively orientable) noncompact surface of finite genus g ≥ 4 (respectively g ≥ 1). According

to Corollary 1.34, given any compact nonorientable surface S′ of genus g ≥ 4 (respectively

any compact orientable surface of genus g ≥ 1), there exists a (metric compact) totally

disconnected subset K ⊂ S′ such that S′\K is homeomorphic to S (and therefore analytic

diffeomorphic, see Remark 1.17).

Let n = g (respectively n = g − 1), take T a (n, n − 2)-i.e.t. (respectively a (2n + 2)-

i.e.t.) as in Theorem 7.12 (respectively as in Remark 7.13) and let T c be the associated

(n − 1, n − 2)-c.e.t. (respectively (2n + 1)-c.e.t.). Let MT and XT be, respectively, the

suspended compact surface and the vector field associated with T . Call p0 be the only

singular point of XT (the restriction of XT to ST = MT \ {p0} is analytic).

On account of Theorem 7.14, we are done with the proof if we are able to find a

Cantor set in ST c , K, containing p0 and with the extra property that any other orbit of

XT meeting K is dense backward and forwardly and meets K in exactly one point.

Let k = n (respectively k = 2n + 2) and a1 = 0 < a2 < · · · < ak+1 = 1 be the

discontinuity points of T . Call, for every 1 ≤ i ≤ k, λi = ai+1 − ai. Scaling the interval

[0, 1] by an appropriate irrational number if necessary, there is no loss of generality in

assuming that all the λi are irrational numbers.

Let us consider a maximal rationally independent set F = {λj1 , . . . , λjN } contained

in {λ1, . . . , λn} (i.e. any λi /∈ F makes F ∪ {λi} be rationally dependent). The previous

observation guarantees F is nonempty. We may also assume that λj1 = λ1.
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Use Lemma 7.15 to take a rationally independent Cantor set, K ⊂ [0, 1], containing

F . We show that, for any k ∈ Z\{0}, T k(K) ∩K 6= ∅. Indeed, assume by contradiction

the existence of x, y ∈ K and k ≥ 1 such that T k(x) = y. Using Equation (7.2) and the

maximality of F , we deduce that there are some nx, ny, n1, . . . , nN ∈ Z, not all vanishing,

such that nxx + nyy + n1λj1 + · · · + nNλjN ∈ Z contradicting the rational independence

of K. An analogous reasoning justifies that {λ1} = K ∩⋃n
i=1OT (ai). If we then identify

again 0 and 1, K can be seen as Cantor set in S1. Finally, call K = [K × {1}] ⊂ ST c and

observe that p0 = [(λ1, 1)] ∈ K and that any other orbit of XT meeting K does it exactly

once and it is dense backward and forwardly. This completes the proof of Theorem H.
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Cent. Eur. J. Math., 10(6):2110–2128, 2012.

[19] E. A. Coddington and N. Levinson. Theory of ordinary differential equations.

McGraw-Hill Book Company, Inc., New York-Toronto-London, 1955.

[20] M. J. de la Puente. Real plane algebraic curves. Expo. Math., 20(4):291–314, 2002.

[21] B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov. Modern geometry—methods and

applications. Part II: The geometry and topology of manifolds, volume 104. Springer-

Verlag, New York, 1985.

[22] F. Dumortier, J. Llibre, and J. C. Artés. Qualitative theory of planar differential

systems. Springer-Verlag, Berlin, 2006.

[23] F. Dumortier, R. Roussarie, and C. Rousseau. Hilbert’s 16th Problem for Quadratic

Vector Fields. J. Differential Equations, 110(1):86–133, 1994.
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Univ. Uč. Zap. 155, Mat., 5:94–136, 1952.

[83] H. Whitney. Analytic extensions of differentiable functions defined in closed sets.

Trans. Amer. Math. Soc., 36(1):63–89, 1934.

[84] H. Whitney and F. Bruhat. Quelques propriétés fondamentales des ensembles
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2m-saddle point, 129

Cr map, 14

differential, 25

embedding, 25

α-recurrent orbit, 13

ω-limit set, 13

ω-recurrent orbit, 13

action of a group on a set, 15

free, 15

proper, 15

smooth, 15

algebraic set, 103

analytic function, 7

arc, 1

endpoints, 1

arc linear by parts, 103

arcwise connected, 2

bracelet, 82

cactus, 82

canonical regions, 45

Cantor set, 131

center, 13

chain, 82

characteristic orbit, 34

circle, 1

circle exchange transformation (c.e.t.), 118

closed annulus, 16

connected sum of two compact surfaces, 18

continuum, 2

covering space, 26

dendrite, 90

discrete set, 2

disk, 1

elementary strip, 64

elliptic saddle, 57

essential singular point, 30

Euler characteristic (of a compact surface),

17

feasible set, 66

canonical, 68

finite sectorial decomposition, 35

attracting sector, 35

elliptic sector, 35

hyperbolic sector, 35

repelling sector, 35

flow, 11

heteroclinic orbit, 13

homoclinic orbit, 13

minimal, 115

orbit through a point, 11

periodic orbit, 12

regular point, 12

semiorbit, 12

singular point, 12

transitive, 115

flow box, 31

semi-flow box, 31

semi-open flow box, 31

generalized graph, 37

generalized interval ex-change transforma-

tion (g.i.e.t.), 118

global attractor, 13
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ω-point of a heteroclinic orbit, 60

α-point of a homoclinic orbit, 60

ω-point of a homoclinic orbit, 60

configuration of a set of orbits, 60

global repeller, 13

gradient of a real function, 8

graph, 85

half-plane, 82

Hausdorff distance, 100

hereditarily disconnected, 3

homotopy between two paths, 2

horizontal singular point, 30

index of a point with respect to a vector

field, 27

integral curve, 24

interval ex-change transformation (i.e.t.), 118

interval exchange transformation (i.e.t.)

discontinuity, 118

false discontinuity, 118

flips, 118

Keane condition, 120

minimal, 119

proper, 118

saddle connection, 119

suspended surface, 128

marked points, 128

suspended vector field, 128

transitive, 119

trivial saddle connection, 119

Klein bottle, 19

limit periodic set, 100

locally compact, 4

locally connected, 2

locally finite, 4

Möbius band, 16

manifold, 14

manifold with boundary, 14

minimal set, 30

net, 89

non-recurrent orbit, 13

open arc, 1

open disk, 1

orbit

almost fine, 48

fine, 48

ordinary, 44

separator, 48

separatrix, 44

parallel region, 44

annular, 44

radial, 44

solid, 58

strip, 44

strong strip, 47

toral, 44

path connected, 2

Poincaré map, 122

power series, 7

absolutely convergent, 7

sum, 7

projective plane, 16

region, 2

regular, 3

repelling focus, 88

saddle point, 86

semialgebraic set, 103

algebraic point, 107

algebraic set associated with a, 107

generic non-algebraic point, 107

non-generic non-algebraic point, 107

polynomial associated with a, 107

separator configuration, 48

equivalent, 48

separatrix configuration, 45
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equivalent, 45

signed permutation, 119

irreducible, 120

standard, 119

simply connected, 2

sphere, 1

stable orbit, 31

standard region, 48

standard strip, 64

star, 37

branches of a, 37

center of a, 37

endpoint of a, 37

stereographic projections, 14

surface (with boundary), 13

Cr coordinate charts, 14

atlas, 14

combinatorial boundary points, 14

coordinate chart, 14

coordinate domain, 14

coordinate map, 14

end of, 21

finite genus, 20

generalized boundary component, 20

ideal boundary, 21

infinite genus, 20

infinitely nonorientable, 20

interior points, 13

local coordinates, 14

planar, 20

transition map, 14

tangent bundle, 23

tangent space at a point, 23

topological equivalence, 12

torus, 16

totally disconnected, 3

transition points of a, 108

transversal, 31

complete, 44

semi-complete, 44

strong, 47

tree, 90

tubular neighbourhood, 31

lateral tubular region, 31

vector field, 23

complete, 30

integral curve, 24

vertex, 89

vertical singular point, 30

wristlet, 82


