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Resumen/Summary

A lo largo de este trabajo, la mayor parte de nuestros esfuerzos se han centrado en investigar
el comportamiento de los llamados medios sucesivos de un cuerpo convexo (Conjunto convexo y
compacto). Nos gustaria comenzar remarcando que el circunradio B, el tnmadio 1, €l digmetro D ¥
la anchure minimea w son casos particulares de tales funcionales, v casi con total seguridad los mas

conocidos v estudiados.

Loz radios sucesivos se construyen a partir de maximos o minimos de circunradios € inradios
de proyecciones o secciones del cuerpo convexo. Esto permite definir un total de siete familias de
radios sucesivos, de entre las cuales nos vamos a centrar fundamentalmente en dos de ellas: los mas
clasicos B; v r;, i = 1,...,n. Estos dos funcionales particulares admiten una definicion alternativa
mucho mas geométrica: el i-ésimo radio suecesivo erterior B;(&) es el menor radio que puede tener
un cilindro con seccion esférica i-dimensional que contenga a A, mientras que el i-ésimo radio

sucesivo miterior ;[ A es el radic de la mayor bola i-dimensional contenida en &

Los radios sucesivos Ry y oo del tetraedro regular

Aunque anteriormente diversos matematicos habian obtenido resultados sobre ciertos radios

particulares, el primer estudio sistematico de tales funcionales se debe a Betke v Henk [2] en 1032,

Fero estas magnitudes no han sido sdlo estudiadas en Geometria Convexa: alo largo del segundo
tercio del siglo XX, los radios sucesivos aparecen en la Teoria de los Espacios de Banach v en la
Teoria de la Aproximacion, siendo conocidos como nidmeros de Gelfand v de Kolmogoron, Estos son

valores asociados a funcionales lineales acotados entre espacios de Banach, los cuales coinciden con
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los radios sucesivos de un cuerpo convexo K, simetrico respecto al origen, cuando se trabaja con
operadores 1dentidad de ™ entre los espacios normados que se obtienen al dotar uno de ellos con la
norma de bola A, ¥ el otro con la norma euclidea | |;. En particular, de esta estrecha relacion se
pueden traducir propiedades conocidas para los numeros de Gelfand v Kolmogorov en propiedades
para los radios sucesivos, Desafortunadamente, el nexo de unidn entre estas dos teorias =e rompe
al entrar en juego un cuerpo convexo A que no sea simetrico respecto al origen. Esto se debe a que
los unicos conjuntos convexos compactos que pueden ser la bola unidad de un espacio de Banach

son, precisamente, los centralmente simetricos.

D2 hecho, uno de los cuerpos convexos que jusgan un papel relevante en €l estudio de los radios
sucesivos, no presenta simetria central: es el simplice n-dimensional §,. Las medidas R[5, ), 1 5,),
D5 ) ¥ w(Sn) del simplice son faciles de obtener; sin embargo, l calculo de sus radios sucesivos no
es en absoluto sencillo ¥ ha sido motivo de estudio a lo largo de los anos por diversos matematicos
(veanse [1, 8, 38, 51, BB, &7, 58]},

Uno de los resultados mas significativos en €l estudio de los radios sucesivos, a la vez que uno
de los problemas centrales en este campo que aun sigue ablerto, es una desigualdad demostrada
independientemente por Pukhov (1979, véase [50]) v Perel'man (1387, véase [48]). Ambos probaron

que sl A &8 un cuerpo convexo n-dimensional, entonces se cumple quse

HZ:(;};,S-K}{E-—FL para todo 1<z < n, [#)
Ademas, Pukhov demostrd que si nos restringimos a la familia de los cuerpos convexos simétricos
respecto al origen, la cota puede reducirse hasta \,*"Emin{ \KE, \m}», por su parte, Perel'man
probs que, en el caso particular del espacio euclides 3-dimensional B®, la desigualdad (%) se mejora
a Rg(#)/rz(K) < 2151 ... Los casos particulares ¢ = 1 e ¢ = n corresponden, respectivamente, a
los teoremas clasicos de Jung (1901, véase [38]) y Steinhagen (1921, veéase [36]), en los cuales, las

cotas Optimas, a saber,

Ra(K) _ [ 2n Ri(K) _ V¥ paran impar,
= ¥ =
(&) n+1 T &) ntl PAara n par,

Wt

respectivaments, distan mucho de las que se obtendrian de (#). For otro lado, en estas dos de-
sigualdades de Jung y Steinhagen el simplice regular 25 un cuerpo extremal [es decir, se alcanza
la igualdad). Se conjetura que, para cualquier otro valor del indice, i = 2,... = 1, €l simplice

regular daria también la cota dptima en [#),

Existen muchos resultados importantes que estudian diversas propiedades de los radios suce-
sivos de un cuerpo convexo, o que los relacionan con otras medidas geométricas, aungue no los
estudiaremos en este trabajo; mencionamos, por ejemplo, las generalizaciones de los teoremas de
Jung [[32]) ¥ Steinhagen ([3]), la relacion entre los radios sucesivos ¥ el volumen o los volimenes

intrinsecos ([2, 33]), o aspectos computacionales de estos funcionales ([28, 29},
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irosso modeo, esta Tesis Doctoral esta dedicada al estudio de los radios sucesivos de cuerpos
convexos, tanto de familias particulares de conjuntos, como su relacion con uno de las noclones
elementales para los conjuntos del espacio euclideo: la suma vectorial o de Minkowski, A contin-
uacion vamos a describir ] contenido especifico de cada uno de los cuatro capitulos en los que se

ha estructurado este trabajo.

L'a memoria comienza con un primer capituio introductorio, en el que se establece la notacion a
seguir v se presentan brevemente los conceptos v resultados que seran fundamentales en el posterior
desarrollo de los contenidos, tanto de convexidad general, como de los radios sucesivos en particular,
Die este modo, la primere secrion esta dedicada a recordar nociones basicas como la de p-bola, suma
de Minkowski, politops, funcidn e hiperplano soportes, cuerpo polar, métrica de Hausdorff, etc.,
asi como algunas de sus propiedades fundamentales. Un concepto especialmente importante sera
el de sume de Firey o p-sume de dos cuerpos convexos, que tiene la suma de Minkowski como un

caso particular (p = 1),

En la segunda seccion del capitulo, introducimos formalmente todas las familias existentes de
radios sucesivos, estudiando sus principales propiedades. En particular, llevamos a cabo un estudio
exhaustivo de la continuidad de estos funcionales (respecto a la métrica de Hausdorff), dado que no
hemos podido encontrar en la literatura especifica ninglin resultado o referencia a esta propiedad;
de hecho, todas las familias de radios sucesivos resultan ser continuas ercepin, sorprendentements,
una de ellas: los radios interiores r; definidos al comienzo de este resumen. Concluimos el capitulo
con una tercera seccidn dedicada a recordar algunas desigualdades v relaciones entre distintos radios

sucesivos de un cuerpo convexo que seran de utilidad en el desarmollo posterior del trabajo.

A continuacion pasamos a describir el contenido del segundo eapiiuls, en €] que nos centramos
en el estudio de los radios sucesivos de familias particulares de cuerpos convexos. En la primemn
seccion presentamos resultados conocidos sobre radios sucesivos de familias de conjuntos, tales como
elipsoides, cajas v crosspolitopos ortogonales v simplices regulares. Como va se ha mencionado al
comienzo de la introduccion, si consideramos €l operador identidad entre dos espacios normados,
uno de ellos dotado con la norma suclidea, entonces los niimeros de Gelfand v Kolmogorov coinciden
con los radios sucesivos de la bola unidad del otro espacio. En la segunda seccidn estudiamos en
profundidad v demostramos la conexidn existente entre estos niimeros v los radios sucesivos de un
cuerpo simétrico respecto al origen, lo que va a permitir obtener, en la éercera seceiomn del capitulo,
€l valor preciso, en unos casos, v cotas, en otros, de los radios sucesivos de cualguier dilatacion
ortogonal de las p-bolas unidad, para 1 =< p < oo, Incluimos también una demostracion, desde el

punto de vista geométrico, de estos resultados.

Es un hecho hien conocido que si A es un cuerpo convexo de anchura constante, es decir, tal que
D{K) = w(& ), entonces se verifica que D[K) =1[A )+ R[A). Enla cusrie seccidn estudiamos los
radios sucesivos de este tipo de conjuntos, ¥ nos planteamos si es posible generalizar la propiedad

anterior a los demas radios sucesivos, lo que, de hecho, va a depender de los radios involucrados.
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Finalmente, consideramos la familia de cuerpos denominados conjuntos p-iengencigies de la bola

euclidea, demostrando que cumplen la propiedad de ser {r,,y,..., 5, 1j-isoradiales.

En &l tercer capitulo consideramos la desigualdad (%) de Pukhov v Ferel'man, la cual estu-
diamos con detalle en la primere seccion. A continuacidn, nos planteamos un problema de fipo
Pukhov-Perel'mern para otra familia de radios sucesivos interiores, es decir, acotar superiormente
la razon B, ;. (& )/ (), donde T;( &) =& define como el maximo de los inradios de proyecciones
i-dimensionales de A, Haciendo uso de la estimacion de este coclente, 2n la ferrern seeridn con-
seguimos mejorar la desigualdad de Pukhov-Perel'man en el caso de un cuerpo convexo de B°
simetrico respecto al origen, para lo cual estudiamos la relacion existente entre los radios sucesivos
interiores Tz &) y rz(#). Al final de la seccidn, y haciendo uso de las técnicas desarrolladas por

Ferel'man, probamos que, para todo cuerpo convexo A C B™, n > 3, se tiene que

Bn 1K) fn_ 1
rz (K 2V n

lo que mejora la cota de Pukhov v Perel'man en el caso general cuando i = 2. Concluimos el
capitulo estableciendo una estimacidon de la cota superior del producto r; (A )R; (") para cuerpos

convexos con el origen en su interior (la cota inferior ya era conocida).

Los resultados centrales de esta memoria se recogen en €l cuarto v ultimo capitulo, Dados dos
cuerpos convexos K, K, resulta natural preguntarse como se relacionan los radios sucesivos de su
suma de Minkowski, & + X', con los de & v K'. De hecho, €l comportamiento del didmetro, la

anchura minima, €l circunradio ¥ €l inradio a este respecto es bien conocido, a saber,

DK+ KY<DIK)+ DK"Y, w4+ K> wE)+wKD,
R(K+ KV<R[KY+R(K"Y, 1[4+ K)Y>2 (K 40K

Asi, en las dos primeres secciones hemos obtenido las cotas inferiores [optimas) para los radios
sucesivos R; (A 4+ X ") [respectivamente, r;[ £+ K")) en funcién de R;[ K} y Ry &) (respectivamente,
n(#) y (K. Se demuestra ademas que, salvo en el caso del circunradio B = R, [respectiva-
mente, £l diametro I¥ = 2ry), no existe cota superior posible. Este “problema”™ desaparece cuando
ge consideran sumas particulares de cuerpos [por gjemplo, cuando uno de los sumandos es la bola
euclidea o cuando se suma un cuerpo convexo H con su opussto  K'), lo que estudiamos en la
fercera seccion del capitulo. La construccidn llevada a cabo en €l caso de la bola euclidea va a
permitir ademas obtener como una sorprendente consecuencia que los radios sucesivos r; no son

funcionales continuos cuando 2 <2< n 1.

A continuacidn realizamos un estudio analogo al de las primeras secciones de este cuarto
capitulo, considerando ahora un tipo de suma de cuerpos convexos mas general: la psuma K 4, &'
de dos conjuntos K v K Esta se define a partir de la funcion soporte, ¥ generaliza la suma de

Minkowski, va que esta ultima no es otra cosa que la 1-suma de cuerpos convexos. La p-suma de
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conjuntos fue introducida por Firey en 1862 ([13]), ¥ ha dado lugar a una importante teoria cono-
cida hov en dia como la Teoria de Brunn-Minkowski-Firey, Asi, en la cuaria seccion obtenemos
todas las cotas posibles [optimas) de los radios sucesivos By (H +, £ v ri(K 4, K') en términos

de los correspondientes funcionales de & v K,

Fara concluir €] capitulo v completar €l estudio de los radios sucesivos respecto a la suma de
Minkowski, en la guinie y uftime seccion demostramos los resultados correspondientes para las

restantes familias de radios sucesivos definidas en 2] primer capitulo,

Los resultados originales que aparecen recogidos en esta memoria pueden encontrarse en los
trabajos [10, 22, 23, 24, 25, 28]
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Throughout this dissertation, we will mainly focus our efforts in studying the behavior of the
so-called successive radii of a convex body [compact and convex set). First, we would like to remark
that the cireumradius R, the inradius 1, the digmeter Db and the mamamal width w are particular

cases of these functionals, and almost certainly the best known and studied.

Successive radii are defined as the maximum or the minimum of the circumradii and the inradii
of projections or sections of the convex body. This allows to define altogether seven families of
successive radii, although we will mainly focus in two of them: the “classic” R;and r;, i =1,..., .
These two functionals admit an alternative geometric definition: the i-#h successive outer Tadi
F;[ K} is the smallest radius of a solid cylinder with i-dimensional spherical cross section containing
K| whereas the i-th successive inner radit ;{K) is the radius of the greatest i-dimensional ball

contained in K.

The successive radil Ry y ro of the regular tetrahedron

Although several mathematicians had previously obtained results on some particular radii, the

first systematic study of these functionals was made by Betke and Henk [2] in 1892,

But these radii have not been only studied in Convex Geometry: during the second third
of the twentieth century, successive radii appeared in Banach Space Theory and Approximation
Theory, known as Celfand and Kolmogorov numbers, These are values associated to bounded linear
functionals between Banach spaces, which coincide with the successive radil of a convex body /|

symmetric with respect to the origin, when identity operators of B™ are considered between finite
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dimensional normed spaces endowed with the norm of unit ball £ and the Euclidean norm |- |5,
In particular, from this close relation, known properties of the Gelfand and Kolmogorov numbers
can be translated to the successive radil. Unfortunately, the link between these two theories comes
to the end when a non-(-symmetric convex body K comes into play. It is due to the only compact

convex sets that can be the unit ball of a Banach space are, precisely, the O-symmetric ones,

In fact, one of the convex bodies playing an important role in the study of the successive radii, is
not Obsymmetric: the n-dimensional stimpler S, The measures B[5,), 1[5}, D[Sn) and w(S,) of
the simplex can be easily obtained; however, the computation of its successive radii is not easy at all

and has been studied throughout the years by many mathematicians (see [1, 8, 38, §1, 56, &7, 58]},

One of the most relevant results in the study of the successive radii, as well as still an open
problem in this field, is an inequality independently proved by Pukhov (1973, see [50]) and Perel'man
(1987, see [45]). They showed that if & is an n-dimensional convex body, then it holds that

Rn i+ (K)

K <i+1l forall l<i<n, (1)

Moreover, Fukhov proved that if we restrict to the family of O-symmetric convex bodies, the
above bound can be replaced by ﬁmin{ \.f?, \m}, whereas Ferel'man showed that in the
particular case of the 3-dimensional Euclidean space B® (with z = 2), inequality (1) can be improved
to Rg[H )/ra[H) < 2.151... Thecases : = 1 and i = n correspond, respectively, to the classical
theorems of Jung (1301, see [38]) and Steinhagen [1921, see [56]), where the optimal bounds,

namely,

Rﬂ[}{){ o . H][K){ VT for n odd,
= an =
1K) n+1 In (&) “ﬂ+4_]2 for n even,

are far away from those obtained in ({). On the other hand, the regular simplex is an extremal
get for Jung and Steinhagen's inequalities (1.2, equality is obtained). It is conjectured that for any

other index i =2,...,n 1, the regular simplex also gives the optimal bound in ().

There exist many important results studying different properties of the successive radii of a
convex hody or relating them with other geometric measures, although we will not deal with them
in this work, We mention, for instance, the generalizations of Jung's theorem ([22]) and Steinhagen's
theorem [[3]}, the relation between the successive radii and the volume or the intrinsic volumes

([2, 33]}, or computational aspects of these functionals ([28, 23]).

We can say, roughly speaking, that the thesis is devoted to the study of the successive radii of
convex bodies regarding both, particular families of sets, and the relation with one of the elementary
notions in Convexity: the vectorial or Minkowsk: addition. Next we are going to describe the specific

contents of each chapter in which this dissertation has been organized.

The work starts with an introductory first chepter in which we establish the notation and

introduce the concepts and results that will be needed further on, both about general Convexity
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and, in particular, about successive radii. Thus, in the first section the basic notions such as p-halls,
Minkowski addition, polytopes, supporting hyperplane, support function, polar body, Hausdorff
metric, etc., are recalled, as well as some of their fundamental properties. A particularly important
concept will be the Firey addition or p-sum of two convex bodies, which includes the Minkowski

addition as a particular case (p = 1}.

In the serond section of the chapter, we define all different families of successive radii and study
their main properties. In particular, we carefully study the continuity of these functionals [with
respect to the Hausdorff metric), because we have been unable to find any result or reference to
this property in the specialized literature; in fact, all families of successive radii turn out to be
continuous errept, surprisingly, one of them: the inner radii r; which were defined at the beginning
of this summary, We finish the chapter with a third section devoted to recall some inegualities
and relations between different successive radil of a convex body, that will be useful in the further

development of the work.

Next we describe the contents of the second chapter, which we focus in the study of the successive
radii of particular families of convex bodies. In the first section we list the known results on
successive radil of families of sets, such as ellipsoids, orthogonal boxes and crosspolytopes, and
regular simplices. As we already mentioned at the beginning of the introduction, if we consider
the identity operator between two finite dimensional normed spaces, one of them endowed with the
Euclidean norm, then the Gelfand and Kolmogorov numbers coincide with the successive radii of
the unit ball of the other space. In the secomd section we deeply study and prove the connection
between these numbers and the successive radii of a O-symmetric body. Thiz will allow to get,
in the third section of the chapter, the precise value (in some cases) or bounds for the successive
radii of any orthogonally dilated image of the unit p-balls, for 1 < p € oo, We will also include a

geometrical proof of these results,

It is well known that if X is a constant width set, 1.e., such that D{X) = w(&), then it holds
DiEY = 1(K) 4+ R(A). In the fourth sectiom we study the successive radil of this tvpe of sets,
wondering if there exists a generalization of the above property to the remaining successive radii,
We see that this will depend on the involved radii. Finally, we consider the so-called p-langential
bodies of the Euclidean unit ball, and prove that they satisfy a very particular property called

{Tppty o Tn 1 )-is0Tadiality.

In the third chepier we consider the Pukhov-Perel'man inequality (1), which we carefully recall
in the first section. Next, we study a Pukbow-Perel'man type inequality for a different family of
successive inner radii, i.e., to bound by above the quotient R,y 41 &)/ ( K), where T;( K') is defined
as the maximum of the inradii of all i-dimensional projections of . Using this bound, in the third
section we improve the Pukhov-FPerel'man inequality in the case of a (-symmetric convex body in
3, for which we have to study the relation between the inner radii To( &) and rg(K). At the end

of the section, following the original idea of the proof of Perel'man for dimension 3, but slightly
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modifyving some steps, we show that for any convex body X C B™, n = 3, it holds that

Rn (&) 7 1
a0 <P

which improves the bound in (1), in the general case, when i = 2. We conclude the chapter estab-

lishing an estimate for the upper bound of the product r;( £)F; [ K*) for convex bodies containing

the origin in the interior (the lower bound is already known).

The main results of this work are collected in the fourth and last chapter. Given two convex
bodies £ and K, it is a natural question to ask how the successive radii of their Minkowski addition,
K + K', are related to the radii of X and K'. Indeed, the behavior of the diameter, the minimal

width, the circumradius and the inradius in this respect is well known, namely,

DK+ K< DKV + DK, wK4+ K2 wK)Y 4+ wKD,
RK+KV<R[KY+R(K", 1(K+K)>2(K)+15(K".

Thus, in the first two sections we obtain the [optimal) lower bounds for the outer successive radii
R;(K + K" (respectively, r;(H + K") in terms of B;( &) and B;(K") (respectively, r;( &) and
(")), We also prove that, except in the case of the circumradius R = R, [respectively, the
diameter Db = 2ry), there exists no upper bound. This “problem” disappears when particular sums
of convex bodies are considered (for instance, if one of the summands is the Euclidean ball or when
we take the Minkowski addition of a convex body A and its opposite A}, which will be studied in
the third section of the chapter. The construction carried out in the case of the Euclidean hall will
allow to obtain, as a surprising consequence, that the inner radii r; are not continuous functionals

f2<i<n 1

Then we consider the analogous problem to the one studied in the first sections of this fourth
chapter, but involving a more general type of addition of convex bodies: the psum K 4, K of
two sets K and K. It is defined by means of the support function, and generalizes the Minkowski
addition since the latter is just the 1-sum of convex bodies. The p-sum of sets was introduced by
Firey in 1362 ([19]), and has given rise to a theory nowadays known as the Brunn-Minkowski-Firey
theory. Thus, in the fourth section, we obtain all possible [optimal) hounds for the successive radii
Ri(K 4, K') and 5 (K 4+, K') in terms of the corresponding functionals of X and K.

In order to conclude the chapter and complete the study of the successive radil with respect
to the Minkowski addition, in the fifth and lost sertion we prove the corresponding results for the

remaining families of successive radil defined in the first chapter.

The original results which are contained in this dissertation can be found in the papers [10, 22,

23, 24, 25, 26).



Chapter 1

Preliminaries. The successive radii

The first chapter iz devoted to make a brief survey of the notions and results in convexity that
we will need throughout the dissertation. More precisely, in the first section we introduce hasic
definitions and properties in Convexity, In the rest of the chapter, we define the main concept in
this work, the successive radii, and study all properties and inequalities among them that will be

needed in the other chapters.

1.1 Convex bodies. Basic properties

Throughout this dissertation, we will use the following standard notation. We write B™ to
denote the n-dimensional Euclidean space, endowed with the standard inner product (-, -} and
the Euclidean norm | |,, and we denote by {e;,. .. e,} the standard basis of R™ If =,y € B", we
write [z, y] for the line segment with endpoints =, The closure of a set © C B™ is denoted by
el ite doundary by bd € and its interior by int . The dimension of ', i.e, the dimension of
the smallest affine subspace containing & [its affine hull aff ) is denoted by dim €, and we write
relbd € to denote its relative boundary, i.e., the boundary of € relative to its affine hull.

The set of all i-dimensional subspaces in B™, 1 < i < n, is represented by £7, and for L € £7,

L1 denotes its orthogonal complement, For a set € € B™ and £ € L7, we denste by C|L the

orthogonal projection of ' onto L.

The following definitions and properties are well known and can ke found in any hook on

Convexity, for instance [5, 16, 30, 53]
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Definition 1.1.1. A [nmon-empty) set C C B™ is said {o be convex if, whenever two pointsx, y € T,
then Ax+ (1 Ay €, forall0< A <1 A convex body £ CR" is @ compact conver set.

From now on K™ will denote the set of all convex bodies in B™. The subset of K™ consisting of
all convex bodies containing the origin 0 is denoted by KJ. Let B, be the [closed) unit Euclidean
ball centered at the origin and §" ' = [u € B : |u|, = 1} be the (n  1)-dimensional unit sphere.
If £ € £ then we denote by B;, the unit :dimensional Euclidean ball in £, or in other words,
B;y = B, N L. Moreover, for p = 1 let BY be the unit p-ball associated to the p-norm |- |, ie,

m ]J{'F'
By - z=(z1.....zn:ﬂew~.|z|p=(Zw) <1y,

i=1

with |T|ee = max{|z;| 1 i = 1,...,7} (see Figure 1.1}, In particular we have BZ = B, and, for
L€ L2, we will wiite BY, = BR N L and BZ, = B; .

7 TN

25

2

NN\

Figure 1.1: The 2-dimensional unit p-balls inthecases 1 € p <2< g < oo

Definition 1.1.2. fet " C B, The Minkowski addition of & and € i5 defined by

C+ ={z4+yiccCandyc ]

Figure 1.2: The Minkowski addition of 2 square and a triangle
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If K, K' € X", then K 4+ K’ is clearly a convex body, and we write AKX = {Az : 1z € K},
for A € B. For the sake of brevity we will write £ K'= K 4 [ K'). The special case of the
Minkowski sum # K is called the difference dody of K, which is always a O-symmetric convex
hody (K £ X" is said to bhe Oesymmetric if & = A}, Moreover, the so called centrael symimetral
of K € K™ is defined as K% = (K K)/2 [see [A, p. 78]).

For every (© C ", there exists a convex set containing it. The intersection of all convex sets
containing ' i= the conver hull of €, and it will be denoted by conv 5 thus conv ' is the smallest
convex zet containing €. The convex hull of a compact set is always a convex body; in particular,
the convex hull of a finite number of points is so, and the family of all of them represents a very

important class of convex bodies:

Definition 1.1.3. A polytope 15 the conver kull of finitely many points in B™ [is vertices).

An n-dimensional simpler is the convex hull of n + 1 affinely independent points. In particular,

we will denote by S, the n-dimensional regular simplex given by

1
S = n_l_l[ll...,l}T—l- convier, ..., ens1],
embedded into the hyperplans {x =[(Ty,. .., Tap1)TE R ?:]] Tq= D}.
-1
0
En

gy

Figure 1.3: Obtaining the regular simplex §, embedded into B®

A parailelotope is the Minkowski sum of a finite number of linearly independent line segments,
In the case that those segments are pairwise orthogonal, we call it an ortiogonal boz. In particular,

we denote by O, the n-dimensional cube of edge-length 2, that is
C’rn = [ E]|E]J+ o+ [ E':"I.IE'?'I]'

An n-dimensional erosspolyiope 1= the convex hull of n linearly independent vectors and their
opposites, and it is called orttegonal crosspolytope when those vectors are palrwise orthogonal. In

particular, we denote by € the regular crosspolytope

£ =conv{te;i=1,...,n}.
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Drefinition 1.1.4. fet K € K™, A point 2 € K i5 an evireme point of K if it cammol be writien in
the formz=Ar+ (1 My withr vy € K and A € (0, 1).

Thus, for instance, all vertices in a polvtope are extreme points.

The space of convex bodies X7 is endowed with the Hausdor{f metric, namely,
by [K K')=min{A20: KC K +AB,, K'CK+AB,} for K,K' €X",

which allows to consider continuity of functionals defined on K™ as well as a distance betwsen
convex bodies. We now present the famous Bloschke selection theorem, which provides a very

useful tool for proving the existence of convex bodies with specific properties.

Theorem 1.1.1 (Blaschke selection theorem)}. Any dounded sequence of conver bodies in B7

contains a subseguence converging 0 a conver body [t the Hausdor metric).

Therefore, the pair (K™ dy) is a complete metric space,

In spite of the fact that many of the following properties and definitions are valid for closed
convex sets, in order to simplify the exposition we will restrict them to compact ones, since we will

always work under the hypothesis of compactness,

Definition 1.1.5. Lfet K ¢ K. A hyperplane H is called o supporting hyperplane of the set K if
HNKE #0 and K 15 contained in one of the two halfspeces determined by H, which 1z called the
supparting halfspace of K.

The following classizal result concerning supporting hyperplanes will be needed in the following,

Theorem 1.1.2. At every point af the boundary of a conver body K € K7 there erisis a supporiing
hyperplane of K. Furthermore, for every v € 5 ! there is o supporting hyperplane of K with outer

normal vector .

Let £, K" € K™ A hyperplane H separates K and K'if K C H and &' C H* or viceversa.
Here H and H' denote the two closed halfspaces bounded by H. The sets K, K’ are said to be
strictly separated by H if K CintH and XK' C int H¥ or viceversa.

Definition 1.1.6. The support function of & monver body K € K™ in the direction v € R", denoted
by R( K, w) 15 the real volued function defined by

R(K u) =max{{z v}z € K}

The intuitive geometrical meaning of the support function is simple. For a unit vector v € 8™ 7,
f( K u) is the signed distance of the supporting hyperplane to & with exterior normal vector u
from the origin; moreover, the distance iz negative if and only if @ points into the open halfspace

contalning the origin,

Some other properties of the support function are collected in the next proposition.
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Proposition 1.1.1. fet £ K'c X" end v, vc § 1.
IRE 4+ K w)=h[(K u)+ (K u) and R(AK, u) = AR[K u) for all A= D

2, KC K ifand only if R[K u) < h(K' u).
2 R(K v+t w) < (K v+ k(K v) and R(K Au) = Ar(K v) for all A = 0. Henee, R(H, ) 5 2

conver function.
4. R(K, wi=h{ K u)

5. The value af the support function of K at eny vector is attained in an extrame point,

An important consequence of the first above property is that (A", 4} has the cancellation law,
i.e., the equality £ + M = K’ 4+ A for convex bodies K, K', M € K™ implies K = K"

Using the support function, in [1%] Firey introduced the following binary operation between two

convex hodies, generalizing the usual Minkowski addition.

Definition 1.1.7. Letp > 1 and K, K' € 7. The psum (or Firey addition) of K and K’ is the
unigue conver body K 4, K’ for which the support function

RUK 4, K0P = RIK, )P 4+ R(KE' )P (11}

If p =1, formula {1.1) defines the usual Minkowski sum & 4+ A, and for p = oo it holds that
RIK 4o K' u) = max{h{K u) A[K' w)} ie.,

K 4o K'=conv[K UK,
Moreover, in [13, Theorem 1] it is shown that for all 1 < p < g < oo,

K4, K'CK4, K (1.2)

=

&,

Figure 1.4: 1-sum and co-sum of 2 square and a triangle (left); p-sum of a triangle and its opposite (right)

In [1%, Theorem 1] it was also shown that for any 1 < p < og,

1

W(KJrK’)f;KerK“«; K+ K (1.3
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We observe that for the p-sums of sets, except in the case p = 1, the translation invariance is lost,

In [42, 43] Lutwak studied p-sums of convex bodies systematically, and developed a theory
nowadavs known as Brunn-Minkowski-Firey theory, In the last vears many important developments

of this theory have come out; we mention e.g. [4, 13, 44] and the references inside.

In this point we would like to notice that usually p-sums are defined for convex bodies containing
the origin as a relative interior point, since this condition is needed in some aspects of the Brunn-
Minkowski-Firey theory; however, regarding the functionals we are working on, this condition can

be withdrawn, and thus we allow the origin to lie on the boundary of the convex bodies,

Definition 1.1.8. Let ' ¢ K™ with 0 c int K. The polar body of ' is defined as the set

K*:{ze[ﬁlﬂz (myr =1 fr:l'raEEyEK}.

It can be easily proved that the polar of a convex body K containing the origin in its interior
iz also a convex and compact set with 0 € int K. We enumerate some properties that we will use

in the following sections. Let &, K’ € K™ with 0 € int &, int X', Then:

1. Let M be an (n x n)-regular matrix. Then (MK)* =M TK*. In particular, (AKY = A 'K*
for all A #£ 0.

2. I K C K then (K')* C K*.
3. Bp=£8 and K = K* ifand only if & = B,.

We observe that the cube &, and the crosspolytope € are dual to each other.

Figure 1.5: The cube &, and it= polar, the crosspolytope O

1.2 The successive radii. Definitions and basic properties

The smallest Euclidean ball that contains a convex body & € X7 [respectively, one of the biggest

FEuclidean balls contained in &) is called the efreumbell [respectively, the mball) and its radius is
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the circumradius R(K) (respectively, the inradius r(K)) of K. The greatest distance between two
points of K is called the diemeier of | and is denoted by D(K). The value R[K u) + R[H, u),
v € $ ! is the distance between the two parallel supporting hyperplanes of X with outer normal
vector u (the width in the direction u) and the smallest of all these values is called the nwumnimal

width of B w{HA) (see Figure 1.6

D{K)

wi K

Figure 1.6: A convex body and its circomradius, inradivs, diameter and (minimal] width

The first result we present is a characterization of the circumball and the inball of a convex
body . It makes easier to handle with the in- and circumradius and shows that the calculation

of them is, in some sense, a discrete computation,
Theorem 1.2.1. Let K c X, r, B> 0 and 21,2: € B™ be such that 29 + 18, C K C 2z + RE,.

The foliowing conditions are equivalent;

o 2, + 1B, is the mbaell of K (respectively, 2z + BB, 15 the circumbsll of K ) and therefore
r=1(K) (respectively, R =R[K));

o there erist condact ponts T1,.. @y € bd K Nbdlz) +1B,), 2 < 7 < n 4+ 1 [respectively,
¥, € bd KNbd(ze+RER), 2 < & < n+1) such thet 21 Cconvi{zy,... ;) (Tespectively,
2y © CDDV{le R |yk}/]'

With all the notation above, eight families of surcessive outer and fener radit can be defined in
terms of the circumradius and the intadius of sections and projections of a convex body, For it, if
f iz a functional on X" depending on the dimension in which a convex body K iz embedded, and
if £ is contained in an affine space A4, then we write f[H; 4) to stress that f has to be evaluated
with respect to the space A.

Definition 1.2.1. Let K ¢ K" and i€ {1,... , n}]. Then

F;(K) = IP?EE‘ R(K|L}, [ K) = &%?Irgaﬁrlrffﬂ[:c+.ﬂ):x+l.)l

R[(K) = R(K|LY, L) = mi Knz+Lhz+ L),
Ri(K) = maxR(KIL),  F(k) Lﬂ;ggﬁf( (w+Lyz+L)

(14)
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r+ L

LL

Figure 1.7: Successive radii defined via sections and projections

We observe that Ri( &) is the smallest radius of a solid cylinder with i-dimensional spherical

cross section containing K, whereas r;( 4 ) is the radius of the greatest -dimensional ball contained
in £ [see Figure 1.8),

Figure 1.8: The successive radi R, and r; of a2 tetrahedron

If we replace projections by sections in Definition 1.2.1 (and viceversa) we get four other series

of successive radii.

Definition 1.2.2, fet K € X" andzc {1,... n}.

Ri(K) = Ll:lé}':% max R(K n(z+ L)), LK) = Eré%r[ffﬁ; Ly, 5
Ri(&) = E’g‘%féaLJERI:KF‘I[x—I- L)), rg[f{}=Lnél£rE|r[K|L; Ly,

The first systematic study of these successive outer and inner radil was made in [2].
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It is already known [see [11, Theorem 3.3]) that B;(K) = R;(K) foralli = 1,...,n. The first
and last radius of each family coincides either with the circumradius, the inradius, the minimal

width or the diameter, namely,

R(K) = Ra(K) = Bn(K) = Ra(K), 1(K) = ra[K) = Ta(K) = TulK) =Fa(K),
) i (16)
@ =R (&) =11[K)=T[K), % =Ri[H)=Ry[H) =T [K) =T1[&).

It is clear that all outer successive radil form an increasing sequence in 2, 1.2,
Ri(K) < Rays (), To(K) < Wipy(K) and  Bi(K) < Bopy (),
1< :<n 1, whereas inner successive radii are decreasing in . Moreover, they are all monotone

and homogeneous functions of degree 1.

MNext we deal with the continuity of the successive radii. Since we have been not able to
find any remark/argument regarding this property, we include here the proofs for completeness,

Surprisingly, not all of them will by continuous functionals on [K™ d+).

1.2.1 ©n the continuity of the successive radii

We write

F [{KEK“:dimK:n},ﬁH) — Bep

to denote any successive radii of Definitions 1.2.1 and 1.2.2 restricted to the class of convex bodies

with non-empty interior.

Proposition 1.2.1. § iz ¢ continuous functional

FProof, Let £ € X" with dim £ = n, and let K, € X", m € N, be such that lim,_ . &, = K
(in the Hausdorff metric). Then, dm = dy(Km K) — 0 when m goes to oo, Since int K # 0 and
both, successive radii and Hausdorff distance, are invariant by translations, we can assume that

1B, C K for some r > 0. Choosing m =o large that §,, < r, by the definition of &4 we have that
b
Kn CHAME, T {14 — K
I

and

; 5 ;
(1 —m)K+—mK=K§Km+5mBﬂf;Km+—mK,
I I

I

Le, (1 dn/rK € K,,. Therefors, the homogeneity and monotonicity of the radil imply that

10 fa 2 s < (1407 s,
(% :

and thus, lim,_. . f{ K.} = f(K), as required. |
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However, not all radii are continuous functionals on the full domain X7, Indeed, in Chapter 4
it will be proved that the inner radius r; : " — Rep, forall2 < :<n 1, is not continuous [see
Femark 4.3.3).

Next proposition shows that all other radii are continuous defined on K7,
Proposition 1.2.2. Successive radii R;, R, ﬁ,g, Ti, Ti and T are continuous funciionals on X7,
FProof. Let 1 € {1,... n}] be fixed and let K, K, € X", m € N, be such that lim,_. K, = K.
Then it holds that

b =0 (Km, K) — 0 when m — oo and

(1.7)
KCHK, +é, B, and K, CTHKItME, forall mcH,

First we show that the successive radil Ry, By, T; and T; are continuous. Using (1.7) we get that,

for every L € £7, the circumradius verifies
R(Km|L) < R((K 4 8mBa)|L) = R(K|L 4+ 6 Bn| L) = R(K|L) + b,

(respectively, the analogous inequalities for the inradius r). Then, taking the minimum and the

maximum over all L € £7 in both sides of the above inequalities we get that

Ri(Km) < Ri(K) +dm and PRi(H) < Ri(Km)+ 0m, and

(respectively, the corresponding inequalities for T; and T;). Therefore, limm oo Ri[£m) = Ri (&) and
lim,, oo B[ Kon) = B[ K (respectively, im0 T Hop) = Ti( K ) and lim, oo T (K ) = T5(H0)).

Next we prove the continuity of i, which needs more refined arguments, First we show that

for any £ > 0 and m € M large enough it holds
Ri(Km) < Ri(K) + <. (1.8)

Since limm—po Am = K, for every & € N there exists my € W such that A © K + (1/k) B, for all

m = my., and therefore
= = 1
(k) < Ty (f«: | Esﬂ) |
So, in order to prove (1.8) it suffices to show that
— 1 -
B; { K + EBH <R;[K)4+ e for some k€N, (1.9)
We suppose the contrary and we will get a contradiction. Thus, we assume that

R (K + %Bn) > Ry(K)4+e forall k€N, (1.10)
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On the one hand, let Ly € £ be such that

Ri(K) = max R(K N (z + Lo)), (1.11)
Tcly
for which it clearly holds
1 ~ 1
maxH((K-l——Bn)ﬂ(z—l- Ln)) :jH,;(K—I-—Bn). (1.12)
el k k

Moreover, for each £ € M, there exists 7, € Lé,‘ such that

max R ((K + %Bn) Nz + LD)) =R ((K + %Bn) M (s + LD)) . (1.13)

IEL&

Since the sequence of convex bodies ([K + (1/k)Bn) N (zy + LD))}: is bounded, there exists a
subsequence converging to a convex body (see Theorem 1.1.1). Without loss of generality we can

suppose it is the same sequence. So, let

K = lim [(K + %Bﬂ) M (zy + LD}} .

k—ra

We notice that every set in the sequence is an z-dimensional convex body which is contained in the
affine subspace =, + Lp, &£ € N, Therefore there exists op € Lﬁ‘ such that & © zp+ Lp. Then, the
continuity of the circumradius, (1.13), (1.12}, (1.10) and {1.11) imply that

R(K) = lim R ((K v %Bn) A (zx + Ln)) > Ri(K) e = max R(K N (z+Lo)) 4o (L14)

On the other hand, there exist points p1,...,p; € K such that R[E} = H(u:onv{ph . .,pj})1
2 < §<i+1 (see Theorem 1.2.1). Since py € K = limy_., [(K + (/BB ) N (g + LD}}, 1<f<j,
there exist sequences [L"i)k Z K and [Ui)k Z B, such that

1
: £ £
P = khm (yk + = uk) .

But since limk_m[l,"k)ui = [}, then the sequence [yi)k converges forall #=1,...,7 and

1
: £ # . £
pe = kh_n;c (L"k + Euk) = klingc Y € K.
Therefore, p1,...,p; € K N [zo + Lo) because K C zp + Lo, and thus
R(K) = R[conv{pl o Di)) = R[K M (zo + Lo}),

which contradicts (1.14). It shows (1.3) and hence, for that value of &, there exists my, € N such
that for all m = my [1.8) holds.
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Analogously it can be proved that for all £ = 0, there exist 7 € N such that if m > myr then
Ri(K) < Ri(Km) + & (1.15)
Thus, taking mp = max{m,, my ], for all m = mp it holds

ilkm) Rali)| <,

which shows that lim,,_ . Ri(K..) = R;[&).

Finally we prove the continuity of the functional T;, for which we can restrict to the class of
convex bodies K € K™ with int £ = 0. Let v € B", u # 0, be such that K C u*, and let £ € £7
with v < L. Then, since I:limI:K Mz + L)) =t 1, we have that

f(KN(z+ Lz +L)=0
for every = € L+, and hence T;( K) = 0. It remains to be shown that
n_}ijnwfg[Km) =0
Again, using {1.7) we get that, forall z € Lt

HEmN(z+ Lz 4+ L) S1((K 4+ 8nBa) N (x4 Lz + L) < 6m,

and hence max,c, . I{ K, Nz + L)z + L) < 4,,. Thus we conclude that im,_ . Ti(K,) =0 O

1.3 Inequalities for successive radii

Successive radii satisfy many inequalities. Here we collect some of the most relevant ones, which
will be needed throughout the dissertation. Just from the definitions it can be seen that for & ¢ X7
and all: =1,...,n it holds

Ri(H) < Re(K) < Ru(K), T(K) <T(K) <T(K) and n(K) <T(K). (1.18)

In thiz work we are mainly interested in the “classical” radii B; and r;. So, although many of
the properties we are going to present are also known for the remaining successive radil we will
just state them for these two particular functionals. The following relation holds between the inner

radii ; and the outer radii B 41,

Proposition 1.3.1 {Betke & Henk, [2]}. Let K c X" and ic {1 ..  n}. Then

n[H) < Ry g4 [K) (1.17)
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The inequality is best possible, as B, shows. A famous open problem in this context iz the one
of determining the best upper bound for the ratio B, ;1 (&) /(). Up to now, only the bound
i+ 1is known [see Theorem 3.1.1 in Chapter 3).

Gritzmann and Klee [see [28, (1.2)]) studied the relation between the successive radil B; and 1;

of a convex body K and its polar body A*.

Proposition 1.3.2 {(Gritzemann & Klee, [28]}. Let K € X7 be a O-symmetric conver bagy,
Deint &, and i€ {1,... n}. Then

GIAR( K =1 and RiKIn(K') =1 (1.18)
If we remove the b-symmetry condition from this property, Henk proved a generalization of the
previous result (see [31, Proposition 2.3]).

Proposition 1.3.3 (Henk, [31]}. Let K c X" wnth D€ int K and: € {1,... n}. Then

RUOR(E) > 1 and R(K)m(K*) > 1

Regarding relations between successive radil and other measures (intrinsic volumes, roots of

Steiner polynomials and successive minima), we refer for instance, to [2, 33, 34].

If we restrict to the particular cases ¢ =1 and ¢ = n (ie,, inequalities among 1, D, w and R, see

(1.8)) many other inequalities are known. For instance, from [1.18) the trivial relations
2r(K) < w(K) < D(K) < 2R(K) (1.19)

are obtained for any A € ™, which are best possible. For example, equality holds in the first and
the third inequalities for any O-symmetric convex body, and in the second one for constant width

sets, The reverse inequalities are given by the theorems of Steinfagen and Jung.

Theorem 1.3.1 {Steinhagen, [56]}. Let K € X", Then

() > ﬁw[ﬁ') Jor n odd, (1.20)
I = :
2(:4"_']2} w(K)  forn even

Theorem 1.3.2 {Jung, [38]). Let K € X", Then

2n+1; R

n

(K) < D(x), (1.21)

These results have been extended to successive radii in [3] and [32], respectively. In particular,

we will need the following generalization of Jung's theorem:
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Theorem 1.3.3 {Henk, [32]}. Lt K c X" and 1 < < i< n. Then

SRR) HATS)

Ri(#) < i+ 1)

L}

and equality hoids for i = 7 if and onily if K contains a regulor i-dimensional simpler with edge-

length /2(7 + 1)/7 B K).



Chapter 2

Successive radii for special families of
convex bodies

Frequently, the study of some general properties of a geometric functional entails the necessity of
a better understanding on particular families of convex bodies. For example, when we obtain a sharp
inequality, the study of the equality case amounts to this particular question. But this problem has
interest by itself; for instance, regarding the successive radii, several mathematicians have worked
on this topic, although so far, only orthogonal hoxes, orthogonal crosspolytopes [6, 8, 17], simplices
[1, 8 12, 51, 57, 58] and ellipsoids [31] have been studied and their radii explicitly given. In the

case of other familiss as unit p-balls, the problem is far away from a complete solution,

We start this chapter recalling the known results on successive radii of the above mentioned
families of convex bodies. The classical successive radii R; and r; are closely related to some notions
in approximation theory, namely, they are particular cases of the so-called Gelfand and Kolmogorov
numbers of identity operators between finite dimensional normed spaces. Next we introduce this
numbers, stating the necessary notation from Banach Space Theory and Approximation Theory,
and we explain their close relation to successive radil. As a consegquence, we obtain the wvalues of
the successive radii of unit p-balls, Finally we consider other families of convex bodies, as constant

width sets and p-tangential bodies, and we prove properties of some of their successive radii.

All new results collected in this chapter appear in [26].
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2.1 Known successive radii of certain families of convex bodies

It is well known (see [31, p. 18]} that if £ is the ellipsoid

2 2
Ez{%tm.--..xnreﬂ“‘(f—]) ++(r) i”}
1 L

with 1 = -+ = iy > 0, then

H4|:E) = in 41 and I.;I:E) = {; [2.1)
fori=1,..., n
We observe that the ellipsoid £ can be represented as £ = D, B,, where D, = diag{ty, .. . in]
is the diagonal matrix with diagonal ¢ = (¢1,...,2n).

We consider now the regular crosspolytope O and the cube €. If we apply on them the linear
transformation J;, we get orthogonal boxes 07, = ;‘:][ ti, ;] and orthogonal crosspolytopes
D = conv{tlyey, ... tiqey | Next proposition was proved in [17]. We state it here following

the above notation.

Proposition 2.1.1 {Everett et al,, [17]} Let 1 <:i<n. Then

PR SRR R
(D) = \/"“—k
i

where £ € 40, ...t 1} iz the smallest integer satisfying
. SRR
k41 = i & 1 1

R;[D,C7) =

ard

] 1
w n Pr+l

where £ € {0,... i 1} is the smallest integer satisfying

; N : k1
k41 = T
L n—#k

We remark here that the second formula is obtained by duality (see [1.18)), since
D,C* = (D, '),

With respect to the outer radii of D,C, (respectively the inner radii of 2,7 ) the following propo-

gition was shown in [8].
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Proposition 2.1.2 {Brandenberg, [8]}. Leti< {1,...,n}. Then

Ri(DCn) = Vi2 iy 4o+ 82

ard

1
L4 4

L

[ D) =

S|

Again, the second identity holds by duality, If ¢y = ... =%, =1 then 1, = I, and the following

corollary holds,

Corollary 2.1.1. Leti € {1, ... n]. Then

Bi(Cn) = ¥i,  1(Ch) = \E

H@tc:>=\/g. H(CY) = 1

We mention here that the outer (inner) radii of the regular crosspolytope [cube) were previously

ared

known. In [61] Pukhov gives the references for the papers in which these values are computed.

The inner radii r; of regular simplices were studied in [1], where Ball used a well known result

of John [27], which also plays an important role in the computation of some outer radii R; of &

The first studied outer radii were Ry by Steinhagen in [56] and B, by Jung in [38] The case
t=n 1 with ¢z odd was studied by WeiBbach in [07, 58] whereas thecase : =n 1 with ¢ even
was studied by Brandenberg in [8]. The remaining cases were proved by Pukhov in [51].

We collect all radii of the regular simplex in the next proposition,

Proposition 2.1.3. Let S, be the n-dimensional reguler simpler of circumradius 1. Then

\/%, ig{l,n 1} orn odd

. — n+1
Ri(5n) = n-ni n%-zu =1 and n even, and  1i(5n) = \,I' i+ Nn

t=n 1 and n even

2.2 Gelfand humbers, Kolmogorov humbers and successive radii of
symmetric convex bodies

The authors of [28] already mentioned the close relation of successive radii to notions of width
studied in approximation theory, see e.g. [14, 48, 43]. Nevertheless, it seems that up to now this

intimate connection has not been so far highlighted in its full generality. So some results proved
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for successive radii in recent vears can be translated from corresponding results about Gelfand
numbers and Kolmogorov numbers of identity operators between fnite dimensional normed spaces.
Our aim in this section is to point out the formal connection between successive radii and Gelfand
and Kolmogorov numbers and to translate results from approximation theory to the geometric

setting of successive radii.

We start introducing the necessary notation from Banach space theory and approximation
theory, The letters X, ¥ always stand for Banach spaces. The dual space of all bounded linear
functionals on X will be denoted by X', In this particular setting, we will also represent the action

ofa € X'onz € X by iz a}. The Banach space £{X,Y ) is the space of all linear bounded operators

from X to ¥ with the usual operator norm, denoted by ||-||. Then, the dual operator T° € £(Y", X"
of T € £(X,Y) is given by (z, T’} = (Tz, b} for t € X and b € ¥, It satisfies |T7] = ||T||. We
denote by || ||, the norm on the Banach space X.

Definition 2.2.1. Let T € £(X|Y"). The k-th approximation number is defined as
o (T)=1inf{||T R||:Re L£(X YY) rankR < k},
the k-th Gelland number as
ce(T) = inf {”Tm | - M iimear subspace of X, codim M < k} \
and the k-th Kolmogorov number as
@ [T) = inf{|lqn T : IV linear subspace of ¥, dim NV < k};

here T is the restriction of T to the subspoce M and gy denotes the guotient mapping ¥ — Y /N,

More explicit descriptions of the Gelfand and Kolmogorov numbers are

ck(T)= inf sup Tz, .
codllrjmcl'v)';-(k IEM‘”I”K’ =1

de(T) = inf sup inf |Tx ¥|,.
dlfrvncj;v};k IEX*"I"X Ej 'LIEN

In the following lemma we collect some basic known facts about these quantities. For this and

more information on s-numbers of operators in the normed case we refer to [33, 48],
Lemma 2.2.1. Let s€ {a,c,d}, k€ {l,... n} and T € £(X V). Then:
TN 2 51 (T) 2 s2lT) 2 sa(T) 2 - 2 0.

1) s [STR) = ||S|se (T &, for ali operators R, S for which the product STR s defined.
i) cp(T) = ap(T) and de (T < ap (T,
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1) cp[T) = ap(T) if X 15 a Hilbert space and di (T) = ap(T) whenever ¥ iz o Hilbert space.

v) ar[T) = ax (T, and dx [T = ce(T) if T is o compact operator between Banach spaces.

In order to state the connection of the above numbers with the successive radii, we need the
well-known correspondence between a O-symmetric convex body A < X7 and the n-dimensional
normed space X = I:JR“,| : |,a;) with unit ball K. For two such bodies K and E, let If; denote
the identity operator of B™ considered as an operator between the corresponding normed spaces,
Xy — Xg If K = BF, then we abbreviate I;": for IE. Similarly, if £ = B}, we write IE{ for IE.
MNow the notation Ig iz selfexplaining.

*

We recall that for a O-symmetric convex body K 2 X7, A
K, e, X,L; = X+ Moreover, it holds

is the unit ball of the dual space of

(18) =18 (2.2)

The following theorem gives the formal connection between the Gelfand and Kolmogorov num-

bers, and the successive radii.

Theorem 2.2.1 {[28]). Let £ € K" be D-symmetric. Foraellt =1,... n 1t holds

1 1

LK) =y gy (1) '=a, vt (F5)  =an e (1)

ard

Ril ) =dn sr1(75) = cn a1 (157 ) = an 511 [I5).

Proaf. The last two equalities between the Gelfand, Kolmogorov and approximation numbers follow

immediately from the properties of these numbers stated above (see Lemma 2.2.1 and (2,23},

For a O-symmetric convex hody K, the definition of r;{ A7) reduces to

[ K) = EE'Z?I[K ML LY,

Let £ € £7 be any i-dimensional linear subspace of B™. Observe that
||I§: L|| = min{R} O |z|g = Rl|z|g forall z & L}
and
1
I[KﬁL;L}=max{r} 0:rB;y CKHL} =maxqr>0:|z|g £ —|xlzforallc e L.
r

Thus it follows that

fEnLEy=|# ||

and taking the maximum over L € £7, which is the same as taking the maximum over all L with

codiml <n 41, weget (K =10, 543 [IZK) g
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The equality for the successive outer radii is now deduced from the above stated duality relation
A ip1 I:IE:] = Cn il [1’;‘“)1 the previously proved identity r;[K*) = o, 549 I:IZKM) ]1 and the known
relation Fi{Ari(K*) = 1 (see (1.18)). We would like to emphasize that this identity can be also
seen as a special case of the duality relation cx(T") = di(T) between Gelfand and Kolmogorov

numbers. For completeness we give a self-contained short argument. To this end, we observe that
R(K|L) =min{R > 0: K|L C RB,} =min{R> 0:|Fex|s = Rlz|x forall z € R"} = ||PLI%]|,

where F; denotes the map giving the orthogonal projection onto L in the Euclidean space £7.
Then, since R[K|L) = || P i | (see [47, Proposition 11.6.2]), it follows that

El - * 1
Rs() = min R(X|2) = min||Pelicll = dn s0s (2] = on s (57) = . O

2.3 Successive radii of p-balls

In this section we use the general characterization of inner and outer successive radil by approx-
imation quantities given in Theorem 2.2.1 to deduce exact values and sharp asymptotic estimates
for successive radii of p-kalls. This also shows that the results for p=1 and p = oo referred to in

Corollary 2.1.1 can be also derived from known results about Gelfand and Kolmogorov numbers,

We start collecting the known results for Gelfand and Kolmogorov numbers cx({§) and dk(I?JE)

for 1 < p < oo, It was proved by Steckin [35] and Pietsch [46] that forall K =1,... R,

oo n k41 o
dk“i?)=f3k“2)=‘l,a'T and k() = (IF)=vn k41

By Theorem 2.2.1 this immediately implies Corollary 2.1.1. Pietsch actually computed all the
s-numbers
ﬂ.k[lg):c;;[f,g):dk(f_g) =|:ﬂ. k‘l'l:]]"(a ]I,l‘-p

when 1 < g < p < oo, In particular, it holds
Ty 172 1o T g 1/2
de(fy)=1(n k4+1) and c(fg)=[n k+1)

for “ <« p <ocand 1 £ ¢ < 2. Then, using Theorem 2.2.1, we get as a direct consequence for

successive radil the next theorem.

Theorem 2.3.1 {[26]}. fetp > 2 and 1 <g =2, Foralli=1..  n it halds

R.;I:Bfl:l =i1.-"2 1fp ariel I-j[B.El) =3-1|f2 ll."ql

Here we also sketch a geometrical proof of this theorem. We point out that it partly follows
the idea of the proof of [47, Theorem 11.11 4], from a geometric point of view. In order to prove
it, we start by computing the circumradius of the p-balls BY, p = 1. We include the proof for

completeness, since we have not been able to find it in the literature,
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Lemma 2.8.1. if1<p< 2 then R(BE)=1. if p> 2 then R{BY) = n'/? /7,

FProof. The case 1 < p < 2 is trivial, because BF € B, and the points £e; € bd BY. So, we assume
p > 2. Notice that it suffices to show that

— 2 i
2

1,...,17

macd T = |5
I.,:_bd.gﬁl 2 ‘n’f?’[

It is an easy computation to check that the maximum of the function
f[I],...,In;l'.Z I?++I-E|_

under the condition |z + -+ + |z, |F = 1 is attained precisely when |7y| = -+ = |z|, 1.8, for

|z:f|=[12fn)1'fp1j=1l-"|n- |

We also observe the following property. If P Z B" iz a polytope with 0 € int P then, for any
Ll Pp=FnNLisani-dimensional polytope. Let v be a vertex of P, and we denote by F the
smallest (in the sense of dimension) face of F containing #, which gives £ ML = {v}. If we assume
that dim #/ > n  Z, then it would he dim(F + L} = i + dim # > n, which is not possible. Therefore

dim#F <n i lea, we have proved the following fact;

If F Z B" is a polytope with 0 € int P, then any L € £7 intersects P in

23
one of its (n #)-faces. (23)

Proof of Theorem 2.5.1. In order to prove that R;(BY) = /2 e 5 =3 it suffices to show
R(BPNEL) =7 % forall Ledhy (2.4)

then, using Lemma 2.2.1, since R(BE|L) = R{BEI N L) and
R(B?|linle;, ..., &}) =R(BENlinfe;,..., 5)) =312 117,

we get that R;(BR) = i/ /7 as required.
Let L € £7. By (2.3) there exists an (n #)-face Fi, ; of the cube B such that LN F, 1 #0.
Let T € LN F, ;. Without loss of generality we may assume that

Fn .5={[£]|...It.n §|1|"'I1}T€Rﬂ"|tj|<:—:1|j=1""'n 2’}'

e, z=1(71,...,Tn 5,1,..., )T with |z;| =< 1,7=1,...,n i Moreover, let
m o1 llllrlp
A= i Jzl € (0,1].
=1
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Then z = Az € L Nbd BY, and since p > 2 and |z;| = 1, we clearly get

— (i_l_ ?=f|x_.,-|2)1"{2 b [i+ ?=f|x:f|p)]f2 _{: = i e ~ ;172 1/
|z|2_ - no% e lfm = - mo% o lfm 1+Z|IJ| =1 )
RS (i + 3250 I=il) py

It shows (2.4). Finally, the value for the inner radii comes from [1.18) and the fact that (B5)* = B2
with 1/p+1/g = 1. O

The computation of the remaining Kolmogorov and Gelfand numbers of identity operators I
turned out to be more complicated. In the relevant cases for us, the exact values seem to be
very difficult to determine. Nevertheless, matching lower and upper bounds up to multiplicative
constants are known., Here we use the notation on; = By ; for some double sequences anj, bns
of non-negative real numbers to mean that there exist absolute constants ¢, > [ such that

Clp; = bn; = Cay ;. The result we need is due to Gluskin [21], who proved that, for g = 2,

[w]]fz for 1< k<nd1 niv

m

Ck[IE)E
nlfe 1/2 for n+1 nz-"rq‘i_ikiin.l

and, by duality, for 1 < p < 2,

I\fﬁ)]'{z for 1<k<n41 nl 1-'(“’:',

m

nliz 1fe for n4+1 I WP o g g
By Theorem 2.2.1, the direct consequence for successive radii is the next theorem,.

Theorem 2.3.2 {[268]}). fetl < p<2andg>=2 Foralli=1 ..  n it halds

I:l:)]'lfz fg':r' ignztl ]f'p:'l
R:(B7) =

/2 We  for 5« gl Ve

ard
(E.)]"'rz for i = a7,

BB =4
nlfe 1fa for i< nilT,

We also have been able to state a different lower (respectively, upper) bound for the outer
{inner) radii in thecase 1 < p < 2 (g = 2). We observe that both results are not comparable since,

in many cases, the previous bounds are better, but not always.

Theorem 2.3.3. fet 1< p<2amdg>2. Foralli=1,.. . n it kolds

R;[BF) = (n i+1)]’{2 e and (B = (n 3'_;_1)1;'? e
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FProgf. Again, by [1.18), the lower bound for B; would immediately imply the upper bound for ;.
The proof is similar to the one of Theorem 2.3.1 but now considering the crosspolytope B,,],_. Let
L € £, By (2.3) there exists an (n i)face £, ; of B! such that £ N F, ; # 0, and we may

assume that

n o1
Fni=13 (ot 440,00 DTSR 14, 20, Z =1
=1
For o =[x, ., Tn 441, 0,... )T € LN Fr 4, it clearly holds that
1
2= & LNhbdBE,

noir1 _p\ 1P
i=1 Ty

and since 1 = p < 2, Hilder's inequality for 2/p [see e.g. [30, p. 15]) implies that

) 1/2 _ /2
n 4] = n itl o
2 = _ |
z n +1 7. Ifp = n il o 7ie n it (2 m/E i [ﬂ. 1+1)]I|,r,p 172
( T=1 z:I') ( =1 IJ’) ( =1 1)
Therefore,
RIBFIL)ZR(BFENE = (n i+ 121

for all L € £, which shows that R; (B2 = (n i+ 1)1,.-’2 1fp. -

In connection with the approximation of embeddings between function spaces, considerable
work has been done to compute the Gelfand and Kolmogorov numbers of diagonal operators. We
will now translate some of this work into results for successive radii. Let £, be the diagonal matrix
with diagonal t = (¢, ... ,¢,) with &; > #g = .. = &, = 0. The following result is a special case of
[47, Theorem 11.11 4].

Proposition 2.3.1 {Pietsch, [47]}. Let 1 < ¢ < 2 and p > 2 and define positive numbers r s by
1/r=1/g 1/2 and 1/==1/2 1/p. Then
1fr /s
ck[Dt:fE —>£';]= Zi; arid dk(Dt‘.f,; —‘-fg)z Zt;
=K 1=K

Let K, = D\BE 5= 2 and K7 = B, ]Bﬂ, 1< g < 2 Thisis, K, and K7 are orthogonally
dilated images of the balls B and By, ¢; and ¢; ! being the respective lengths of the half-axes in
the direction . Thus from the properties of the Gelfand and Kolmogorov numbers, we directly
obtain from Proposition 2.3.1 that

17 1fs

(15 = | 38 and  de(f% )= [ 4
=K 1=k

Finally, Theorem 2.2.1 leads to the following result.
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Theorem 2.3.4 ([26]}. Letl < g < 2 and p > 2 and define positive numbers r s by 1/r = 1/g 1/2
and 1/s = 1/2  1/p. Let i = (ty,... t,) be such thatty 2 ig = -+ 2 &, > 0 and let K, = D, BY
and K7 = D, 'BY. Then

lll""r 1II(5

kal m

oKD= 3 & amd  Rilf)=| > i

7=mn 1i+1 T=mn i1

For 3 =1 and p = oo, the values of the inner radil of orthosonal crosspolytopes and the outer
radii of orthogonal boxes are obtained [see Proposition 2.1.2); for p = g = 2 the successive radii of
the ellipsoids can be deduced [see [2.1)),

We also remark that the values of the outer radii of orthogonal crosspolytopes (and so the inner
radii of orthogonal boxes) can be derived from [47, Theorem 11.11.7] via Theorem 2.2.1 (se= Propo-
gition 2.1.1). Finally, we mention that the results from [35, 36] can be used to compute [estimate,
up to multiplicative constants) the successive radii of unit balls of symmetric n-dimensional normed

spaces; in particular this applies to unit balls of Lorentz and Orlicz sequence spaces.

2.4 Successive radii of constant width seis

A convex body A < X" iz =aid to have constant width b if it has the same width b in all
directions, i.e., if
wH)=D[K)=h
The =et of convex bodies of constant width will be denoted by W™,
Constant width sets have been intensively studied along the last century. In the plane they are
well known [the unit disc and the Reuleaux triangle are the best known examples, see Figure 2.1},

whereas the situation becomes much more complicated in dimension n = 3 (see eg. [5, §15], [16,
Ch. 7] and [15] for detailed surveys).

Figure 2.1: The Reuleaux triangle and itz revolution in dimension 3

The kest known 3-dimensional constant width sets are the revolution of planar convex bodies

with constant width [see Figure 2.1}, and the so-called Meissner hodies, which are constructed,
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roughly speaking, in the following way. Let T: be a 3-dimensional regular tetrahedron with edge
length b, and consider the intersection K of four balls of radius b having the vertices of T5 as
centers. Then K is bounded by four pileces of sphere which mest in six circular arcs. However,
# iz not a constant width set, because the distance between two of those opposite circular arcs is
strictly greater than b. The Meissner bodies are then obtained rounding suitably three of those
arcs (see Figure 2.2}, Notice that two Meissner bodies can be constructed, depending on the three
rounded arcs either converge to a vertex or form a triangle. For a more detailed construction of
the Meissner hodies we refer to [5, p. 144].

Figure 2.2: A Meizzner body. Figure obtained from [40]

Let &£ € W™, It is well known (see e.g. [16, p. 120]) that the inball and the circumball of &

are concentric and both,
RE)+r(H)=bh and DHE)+w(K)=2h (2.5)

S0 the natural question arises if an analogous relation holds for the more general in- and outer
radii, namely, if

B E)+(K)y=b, i=1,... n (2.8)
The next theorem shows that this relation is, in general, not trus except, of course, when i =1, nn,

Theorem 2.4.1 ([26]}. Let K < W™ wnth width b, Then B (K + (K) < b, and the mmeguality

can be strict, as the Meissner body shows.

Froaf. For the proof of this theorem the inner radii T; will play an important role. For & < W7
with width b, let L' € £7 be such that

r(K|L LY =T K). (2.7)

It is well-known (see e.g. [53, p. 135]) that every orthogonal projection of a constant width set is

also a body of constant width having the same width. Then, using (2.5} one can easily obtain that
b=R[K|LY 4+ r(K|L L = By K) 4+ T;(K) = By (K) 4 5[ K). (2.8)

80 it remains to prove that the inequality can be strict. Let &4 € W* be a Meissner body with
width b. It is known [see e.g. [7, p. 37]) that the orthogonal projection of £y onto the plane I1
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determined by two opposite edges of the generating tetrahedron is a 2-dimensional ball with radius
b/2. Then, since Rg (K ) = Ry (K ) = b/2 and B[ K |I1) = b/2, we get Ro[K ) = b/2. So, we
have to prove that rz{ ) < b/2. In order to show it, we assume 1z{ £sr) = b/2, and we will get

a contradiction.

From the definition of ra{ K p), there exist L € £3 and ¢ € L* such that

SZIE(KM)ZI(KMH[I+L);I+L)'

and thus there exists a circle € of radius b/2 contained in Ko M (z + L) Moreover, we observe
that €' = K N (z + L), otherwise there would exist a point p € [Kw N (= + L))4, and then the
diameter DK ) = D[Klw N[z + L)) = b, which iz not possible. Let y € int Ky be such that
O =y+(b/2)B; ., and let v € relbd B; ;. Then the point y+ (b/2)v € y+(b/2)relbd B; ¢ = relbd &
and thus, y+ (b/2)v cannot be a vertex of Ay,

On the one hand, if the point ¥ + (b/2)v lies on one of the four pieces of sphere bounding the
set K 4y, by the construction of the Meissner body and taking into account that the line segment
[v  (R/2)v, ¥+ (b/2)v] C € and that it has length b, then y  (b/2}v should be the opposite
vertex, which is not possible. On the other hand, if  + (b/2)v lies on one of the (rounded) arcs,
then ¢ should touch one of the opposite sphere pleces of Ay, which leads to the previous case and

again to a contradiction. O

It can be easily seen (see Froposition 2.4.1) that if the radii T; are involved, then it is possible
to get an equality relation of the type (2.68). Moreover, it is well-known that for any constant width
et < W of width b it holds

n

2(n+1) 29

(see e.g. [15, p. B8] or [16, p. 125]); the analogous result for these inner and the outer radii can be

easily obtained.

Proposition 2.4.1 {[28]). For eany £ ¢ W™ of width b and elli =1,... ,n it holds
R-_;I:K) —I—?-g[K} =h

ared

b (1 %) <HIK) < R(K) < b (2.10)

it 1) 2024+ 1)

Proof. Notice that for any K € W™, say of width b, and for any i =1,... n, the i-plane L' € £7
giving the value for R;[K) gives also T;(A ) indeed, if Ry(K) = R[K|L"), since K|L is also a
constant width set of width b satisfying R(&|L) 4+ r(K|L; L) =b for all £ € £ (see (2.5)), then

KLY =b R(K|ILN2b R(K|L)=r1(K|L; L)
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forall L € £7, and so T;(K) =1(K|L; L"), Therefore,
Ri( )+ ([ K) =R(K|LY + r[K|L LYy = b,

and moreover, applying [2.9) to the i-dimensional set K|L' gives the left and right inequalities in
(2.10). In order to conclude the proof of (2.10) we notice that, since K is a constant width set and
TI(K)=D{&)/2 and Ry[ &) = w[K)/2, then

- - DK w(

550 < () = 20 = U () < i),
We observe that the equality T; [A) = R;(A) holds for any constant width set £ € W™ such that
K|L' = (b/2)B, ¢, O

Now we prove an analogous result in the case of the successive radii T; (4 and B; (K, for which
the involved inegualities are sharp. We recall here the equality E[K} = ﬁ;[}(’), which would allow

to write next proposition in a more “tasteful” way,
Proposition 2.4.2. For any K c W™ of width b and all i=1,...,n it holds

B (k) +T(K) = b (2.11)
and

(2.12)

All megualities are best possible.

Froof. Since K|L is a convex body of constant width b for all L € £7, we obtain using [2.5) that

B (K = R(K|L) = b r[K|L:L)i=h inr(K|L:L1=h T(K).
Rd)gg}g[l)ggg[ (KL L)) E&%IEIJ &)

Let L' € £ be such that R;(&) = R(KX|L"). The right inequality in (2.9) applied to the
i-dimensional set K|Z’ and [2.11) imply the left and right inequalities in [2.12).

Finally, since K is a constant width set and T)(K) = w(&)/2 and R ;(K) = D{K)/2, then
LK) <Ti(K) =w(K)/2 =D[K)/2 =Ry[(&) < Re(K).

Now we show that all inequalities are sharp. Let i £ {2, ... n] be fixed and let & € W™ be of
constant width b such that T;(K) = R;(&). This implies that r(&|L;L) = R(&|L) for all L € £7,
and therefore, K|L is an z-dimensional ball of radius b/2. Then K is the ball (b/2)B, (see [20,
Corollary 3.1.8]).

Let z € {1,... ,n} and let & < W™ be of constant width b such that equality in the last
inequality in (2.12) is attained. Let L' € £7 be such that B;(K) = R(X|L'). The identity
z

R(K|LN=h WL
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is Jung's equality condition, and holds (see [32, 38]) if and only if X|L’ contains an i-dimensional
regular simplex of edge-length /2(7 + 1)/iR[X|L") = b. We would like to remark that there exists
at least a constant width set satisfving the above condition. Indeed, if we take the i-dimensional
regular simplex S; of edge-length b, by [, Theorem 1], there exists & € W™ such that §; C K,
R{K) = R(5;) and D{K) = D{5;) = b. Then

R(K) = R(S;) = Ri(S3) < Re(K) < R(K),

Ri(K) =R(5;) = D@imz[i—in = D[K)\/ﬁ = b\/g[i—il)'

The above identity together with (2.11) also imply equality in the left inequality of [2.12):

H(K)=h (1 m) . O

2.5 A property on p-tangential bodies

and thus

We conclude the chapter stating a property for the so-called p-tangential bodies. A convex
body K < X containing the Euclidean ball B, is called a p-tangential bodv of B, 0<p<n 1,
if each support plane of K that iz not a support plane of B, contains only (p  1)-singular points of
K [63, p. 76]. Here © € bd K is said to be an r-singular point of K if the dimension of the normal
cone at T is at least n 7. We recall that the normal cone of A at x consists of all outward normal
vectors of £ at = (together with the zero vector). For further characterizations and properties of

p-tangential bodies we refer to [53, Section 2.2].

So a Htangential body of B, iz B, itself, and each p-tangential body of B, is also a g-tangential
body for p< g<n 1 We observe that a 1-tangential body can be seen as the convex hull of B,
and countably many points such that the line segment joining any pair of those points intersects
the ball (see Figure 2.3},

Figure 2.3: A ltangential body (cap-body) and a 2-tangential body

A celebrated result of Favard [18] states a nice characterization of n-dimensional p-tangential

bodies in terms of the so-called guermassintegrals of K, namely, that then p41 first ones coincide.
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We are not going to enter in the definition and study of these measures; for the interested reader
we refer to [33, p. 367]. Here we show a result in the spirit of the above mentioned Favard theorem,

in the sense that now, for a p-tangential body, many inner radii also coincide.

Proposition 2.5.1 {[26]}. Let K € K" be & p-tengentiol body of B, 0<p<n 1. Then

I'-"I[K)= mn ](K)== p_;_][K:I:l.

Proaf. It i= a direct consequence from the definition that any p-tangential body of B, has inradius
1. So,if p=n 1 then r,,[K) = 1 and the result follows. Thus, we assume 1 < p<n 2

Since the inner radii form a decreasing sequence then
1 ZIN(K) = I I[K;' = "_:I.p+]|:K),

and it suffices to show that rp 1 (K < 1. So we assume 1541 (#) > 1 and we will get a contradiction.
On the one hand, by definition of inner radii, there exist t € B™ and L £ £;+1 such that

T+ Tpyt (K )Bppr € K. (2.13)

On the other hand, in [32, Lemma 2.5] it is shown, in particular, that A is a p-tangential body
of B,,1<p=<n 2 ifand only if K|ut iz a p-tangential body of B

.t [or any unit vector

¢ € @™, From this result it can be easily obtained that the orthogonal projection K |L is again a

p-tangential body of the ball B,|L = B, ., and then
K| L L) =1(Bppr.e: L) =1 (2.14)

Moreover, from (2.13) we et that z|L+ 1, [K) By . € K|L, and then, togsther with (2.14), we

obtain the desired contradiction:

1=r{H|L;L) Zrpp (K) = 1 O

This results shows (see (3, Lemma 2.2]) that p-tangential bodies of the Fuclidean hall B, are
{Tpt1, . Tn 1 }-i5oradial We recall that a convex body K is called ry-isoradial if for every L € £7
there exist = € B such that (z 4 1;(K)Ba) N (z + L) C K, and is said to be {r; : j € I}-isoradial,
for a subset FZ {1,...,»n 1}, ifit is r;-isoradial for all 7 € /1.
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Chapter 3

On the ratio between successive radii

The well known relations between diameter and circumradius, and minimal width and inradius,

were obtained by Jung and Steinhagen (see Theorems 1.3.2 and 1.3.1, respectively):

Ball) o [ 20 pe Rul&) [ VR formodd (3.1)
(&) T ¥n+1 mif) ~ ntl  for n even. '
Vntg

The regular n-simplex gives equality in both inequalities [see Proposition 2.1.3). These relations
can be seen as particular cases of a more general question: to determine the optimal upper bound
for the quotient Rn i41/r;. In 1979 and 1987 Pukhov and Perel'man proved that i+ 1 hounds from
above this ratio, but it is far away from the optimal value. In this chapter we first study this tvpe
of inequality for b-symmetric convex bodies for the same outer radii but involving a different inner
radii, namely, T;. Next we prove upper bounds for the quotient between these two inner radii, r;
and T;, which will allow to get an improvement of the Pukhov-Ferel'man inequality for n = 3 in
the D-symmetric case. We also improve the Pukhov-Ferel'man's bound for general convex bodies

in arbitrary dimension when ¢ = 2,

All new results collected in this chapter appear in [10, 23]

3.1 On the Pukhov-Perel’'man inequality

Pukhov [50] and Perel'man [45] showed independently the following result:

Theorem 3.1.1 (Perel’man, [45] & Pukhov, [50]). Let K € X™ and 1 <1< n. Then it holds

R, i1 &)

o) it (3.2)
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Eut the optimal bound is still not known, It is conjectured that the regular n-simplex provides
the optimal upper bound: if i = 1 rn, then R, ;;(5,)/1;(5,) takes the values of [3.1); fori =2
and n even,

1(S.)  (2n 1)W3
(S0 en(n+ 1)

in the remaining cases

gf) Vil 41 ~ (14 1041

(see Proposition 2.1.3).

In [2] the best possible lower bound for the above ratio was obtained [see Proposition 1.3.1):
forany K e X" and i€ {1,... n}, it holds B, o (&) /(K = 1, with equality for the ball.

Moreover, in the particular case n = 3 (and = 2}, Perel'man [45] improved the result reducing
the bound in [3.2) from 3 to 2,151 .. .:

< 2.151.... (3.3)

On the other hand, in the case of a O-symmetric convex body & < ¥, Pukhov proved in [50] that

PL'n 141 K)
;[ K)

<vemin{Viva i+1}. (3.4)

The optimal bound is also not known. It is conjectured that both, the regular cube and the regular

crosspolytope provide the optimal upper hound:

Rn 1 (K] < (m z24+1)
(&Y ~ n '
The precise values of the successive radii of the regular cube and crosspolytope can be found in
Corollary 2.1.1.

In [50] Pukhov also improved the bound given in (3.4) in the particular case : = 2, obtaining

that the ratio
Rn (K},
rz( K

In [22] we gave an alternative geometrical proof of this Pukhov result for n = 3. In this dissertation

we have slightly improved this last bound (see Section 3.3).

We notice that the problem on bounding the ratio R;/r;, 1 < ¢, 7 < n, has only interest when
i=n 1+

Proposition 3.1.1 ([22]}. {f7 >n :+ 1 there 15 no upper bound for B (K)/5; (&),
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Proaf. Notice that since we assume 7 > n i+ 1, then i > 1. We are going to find a convex
body i such that for 7 > n i+ 1, the above ratio is arbitrarily large. It suffices to consider the
(¢ 1)-dimensional ball B; 1., with L € £7 |, On the one hand, since dimB; ;. =: 1, then
;[ B; 1..) = 0; on the other hand, we can assume that B; . C [RB, ] x (L4, for suitable
R0, where L' € £7. Since

dimf 4+dimf' =i 147>:i 14n i4+1=n,
then [ and L' have, at least, a common straicht line £, Hence
By NE=[ wuC RE; ., with |ulz =1,

and thus £ > 1. Therefore Ry (B; 1) = R = 1, and then the quotient R;/r; is not bounded by
above, It suffices to consider the convex hull of B; 1 ¢ and suitable sufficiently close points in order

to get a convex body in B™ with nonempty interior and verifying the same property. O

As it was already noticed in [45], we observe that if < »n 24 1, since the outer radii form an
increasing sequence, knowing the optimal bound for the ratio Rn iy1/5 would give immediately

the required upper bound for B;/r;. Therefore, By 541/1; is the only ratio needed to be considered.

We can also state the same problem but when other successive radii are considered.

3.2 A Pukhov-Perel’'man type inequality for inner radii defined via
projections

We consider here the Fukhov-Perel'man problem for the ratio B, 441/T

Theorem 3.2.1 {[22]}. Let K € X" be a D-symmetric conver wdy and 1 <7 < n. Then

R, p1(4) -
ﬁ«; n i+ 1 (3.5)

We observe that if i = n, equality holds for all -symmetric comvex bodies,

Froof. Let Ly € £7 be an arbitrary linear subspace and we consider K'|L, which is also a 0-symme-
tric convex body. For the sake of brevity we write T; = T;(K). Then it holds

o =1 K[L; L)) £

Let uy € L1 be the unit vector such that w({K|Lq; L) is the width in the direction w1, ie, such
that w(H |L L) =R(K|Ly wy )+ RIK|Ly, uy). Then,

w{HK|L1; L)

Klec{yellfliLf.mH‘E 5

}={y€-‘51‘-|(y.u1}|£m}
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hecause K|L; is D-symmetric, which implies that w(K|L;; L) = 2p;. Moreover, since we are

working with the orthogonal projection onto L4, it holds
Kz e |(zu)l < o).

Notice that we can assume £ € n 1, because for i = n it is trivial that for any O-symmetric
convex set, w(K) = 2r[K). Now we consider uy € £7 | and let L5 C u{ be an i-dimensional linear
subspace. With an analogous argument to the above one we know that there exists a suitable

ttp € Lo such that
KLz C{y € Lz [{y ug)| = gz},

with pp = r{ & |Lg; Lg) < T;. Again we can conclude that

KC iz e R |(z us}| < oa)

Next,if < n 2, weconsider lin{uy,uz}+ € £7 ., and we take L3 to be an i-dimensional subspace

of lin{uy, uz )t

Using an iterative argument, in the (n i+ 1)-step we obtainn {4 1 pairwise orthogonal unit
vectors uy, ..., un 4+1 [ by the construction) and positive real numbers p; < T, forj =1,...,n i+1,
such that

n o+l
K C ﬂ [t eR™: |(z, u;}| < py } = {IER“ imoug =g forj=1....n i+ 1}. (2.6)

=1

Thus writing H,, ;11 = lin{uy,.. ., 2y 441} and denoting by €, _.. the D-symmetric orthogonal
hox contained in H, ;,; with edge-lengths #;, .. i, ;y1, #e get as a consequence of (3.6) that
KlH-n it 1 - CE;JL,...,E;:I“—='+L - CE"F,-,...,ZFH [ST)

e, it is contained in the (n i + 1}-cube of H, ;41 with edge-length 21;. Hence
RiK|Hn 1) SR(Co, ax) =vn 1417,

and therefore

Rn ip1(H) <R(K|Hn ap1) € vn i+l =vn i+ 1G(K). O

If & € X" is an arbitrary convex hody [not necessarily Obsymmetric) then, a similar argument
to the above one allows to show that a suitable projection of A onto an (n ¢ + 1)-dimensional
linear subspace H is contained in an orthogonal box € .._., (see (3.7} with edge-lengths
wi = w(H Ly L), where L; € £3, 7 =1,...,n i+ 1, are suitably chosen.

Using Steinhagen's theorem (see (1.20)) in the subspace L;, namely,

2vifK|L; L) for i odd,
2 ::H—]zr[h’ﬁj; L) for i even,
and since r{K|L; L) <T;(K)forall 1< 7<n i4 1, we finally obtain the following result.

w(K|Ly L) <
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Proposition 3.2.1 {[22]}. Let K € K™ and 1 < i< n. Then

R, iy (&) Vvivn i+1  fori odd,
i K %wn i+ 1 forieven.

We observe that in order to avold the parity distinction for Z, both bounds above should be
replaced by \/i +1/3v'n 1+ 1. Wealso notice that these bounds for the ratio R, ;1 (&)/5;( &),

depending on the values of n and i, can improve Fukhov-Ferel'man's bound 7 + 1.

3.3 On the ratio between two successive inner radii. Improving the
Pukhov-Perel’'man inequality

We prove now a relation between ;[ K) and T;(K) for O-symmetric convex bodies. From the
definition of inner radii we trivially have r; (&) <« (A) forall: =1, ..., n and any K € K™ [see
(1.16}). We would like to point out the existence of a reverse relation: the following proposition
provides a (non-sharp) lower bound for r;( A} in terms of T;( &) when X is (bsymmetric. We remark

that in the cases i = 1,n kroth inner radii coincide.

Proposition 3.3.1 ([22]). Let K € K" be o D-symmetric conver body end 1 < ¢ < n. Then
?.i[K:I = \-ff_il'.i[ff).

Froof. Without loss of generality we assume that L =lin{e;, ... &} € L7 is the ;-dimensional linear
subspace such that T;(K) = (K |L; L), The central symmetry of £ ensures that T; (K B; , € K|L.
Now let

v, =T;(K)e; € (T;(K)relbd B; ) CK|L, 7=1,... 4
These points u; are projections of points of the original body K| i.e., there exist numbers G.L = R
fork=:i41,...,n,i=1,...,% such that

Uj.:=uj+(D|"'|D|ﬂ'g+]|"'|ﬂ"?:['-l)T€K| j=1|"'|i|
and since K is a b-symmetric convex body, & = conv{+tw;,. .. v} © K. Next we show that
(€5 lin ) = r(conv {£uy, ..., ;)5 L),

Since ¢ is D-symmetric, then

£ lind) = i
A(CilinC) = _min lal,

and so we may choose T € relbd € such that r(C;linC") = |z|,. Let

i

z=> (A v,

7=1
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with Ay py > Dfor 5=1,... i and 3 :,(A; +45) = 1. Then

. 2 A 3
2 J r
wlz = >0 i) 4D 0 w0 By, ed)T
=1 o 7=1 5
N Z
2
230wyl ==L
i=1 .
Since x|L € relbd conv{+uy, ..., Lu;}, we get that
r[Cilind) = |z = |I|L|2 = r(conv{duy, ..., ] L),
Thus we can conclude that
1
L(HYy = r(Ch in ) = r(conv{:l:ul oo i L) =?.5[K)I(CDHV{:I:E] oo el B =}'.;[K)\?,
i
and we get the required inequality, T; (K ) = \/EI.,;(K:I. O

If K is an arbitrary convex body [not necessarily D-symmetric) then, a similar argument to the

above one allows to show the next proposition.

Proposition 3.3.2, fet K c¥" and 1 < 1< n. ThenT;[H) < i (&),

Proof. After a suitable rigid motion we can suppose that there exists L € £7 such that

L(K)B;, CK|L.

We take points py, ..., Py € relbd(5 (£ B; ;) being the vertices of an i-dimensional regular sim-
plexof L, 5 =conv{p; 1 7=1,...,t 4+ 1}, There exist points ¢;,..., @41 € K such that ¢;|L = p;,
i=1,...,i+1, and wecall 8 =convig;:7=1,...,:4+ 1} C K. Using a similar argument to the

one of Proposition 3.3.1, it can be shown that
! ! ! ! |' 1~
() (K Naff §aff §) =08 naff8;af 8 2SN L L) = -5 [H). (]
z
In the case n = 3 and : = 2, we have been able to improve the bound given in Froposition 3.2.1,
Theorem 3.3.1. Lot £ € K* be a D-symmetric conver body. Then
- 2
IQ[K) << —IE[K:I.

V3

The mequality is best possible.

We first show a lemma that will be needed in the proof of Theorem 3.3.1.
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Lemma 3.3.1. Let K € X% be a D-symmetric conver body, L = lin{ey ez} and 1 > 0 be such that
rBy; © K|L. Then, there erist a Tegulor heragon convi{tp; 1 i = 1,2,3] insecribed in 18z, and
points g € K, i =123, such that £|L = 4w, 1 =123, and dimeonv{tg i =123} =2,

FProof. For a fixed uy € relbd(r8z; ), we consider the regular hexagon inscribed inr 8y ; and having
@y as a vertex, and call @y, @y the closest vertices to uy [see Figure 3.1).

_ Wi = wy

Ha g

i = Wz (758

=

ul

Figure 3.1 The starting regular hexagon and the construction of the sequences

Since wy, g, 2y € K|L, there exist points =3, T}, T} € A such that
| L =uy, Ty|L =7 and IY|L =1

If =} € lin{%}, =7}, then conv{tz} £7} £x}]} is a 2-dimensional convex body whose projection
onto L is the regular hexagon conv{dwu +%, £%1}. In this case, p1 = w1, pz :=T1, p3 1= U1, and

g1 =75, g2 :=TY, g3 1= T} show the lemma. So, we assume z§ € lin{7%} T} .

We ohserve that =3 € lin{T} 7] if and only if there exist ¢, s € & such that
ey T )+ s, 7)) T =T + 57 = =% = (w75,

which holds if and only if 1% + suy = w; and iTY; + sTi; = 71;. Since wy, %1, & are consecutive
vertices of a regular hexagon, the unigque solution of i@, + s%, = u; is ¢ = s = 1. Therefore,
oy ¢ lin{zy, 73} if and only if @7, + T, # =3, We suppose without loss of generality that
Ty5 + T = ;. For the rest of the proof we will use the same notation in the construction of the

points, namely: from any point v € relbd{rBg ; ), we derive 7, 7, =¥, ete.

We write wy = wuy. Then®wy = T, @) = uy and the symmetry of K imply that =¥ = =¥,
TV = T, 7y = =Y, and thus
—ay -y —=u fam T} 1 w
Tiz+ Tz = Tyj3 T3 < T3 = T3
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Let ug € relbd(r 85 ;) be the "midpoint” on the circumference relbd(rBg ;) between u; and wy.

If =5, = 7o, + T, then py 1= ug, pg = Uy, pz := Uz, and gy := 7}, gz ‘= Ty, ¢z 1= Ty show the
lemma. If that is not the case, then we can assume that T8; + 75, > 78, and define wg 1= wy (see

Figure 3.1}; otherwise we just take wg to be the midpoint and define wg 1= uy. In the next step we
take again the midpoint w3 = [uz + wz)/ [wz + wsz|; € relbd(rBz ¢ ) and do the same construction.

Iterating the process, either we find three points p;, £ = 1,2, 3, verifying the required condition in

some step, or we get two sequences (un)n, [wnjn C relbd(rBs ), satisfying the following properties:

o dlu,, wy) = (1/23d(uy y,w, 1), where d(a, b) is the length of the shortest arc in relbd (1 Bg ;)
joining the points a, & € relbd(r 85 ¢ ).

o limn o ttn = liMin—po wn € 1elbd(18z ;). Let p1 1= limin— oo 0.
s The vertices of the two corresponding hexagons sequences tend to the appropriate limit, say
limg o Tn = liMg g Wn = pz and limp_pq iy = limg o e =1 p2.

o Too+ To, = xh. and T, 4 T, < abh, forall n € W,
With this process, we also get sequences of points in £, namely [(z2)n, (Tainy (T2 Iny (T2, (T2 00
and [To)n. Since they are bounded sequences [because they are contained in A'), there exist
convergent subsequences in A and we can suppose without loss of generality that they are the

same sequences. Lhus

lim z* =z € K, lim T =T K, lim =7 K
g T ] ' e . I e 1} I !
lim oz =z’ c K, lim T, =T K, lim 7, =7y c k.
71— n—ra n—ra

We observe that

L = (nlln;lu zﬁ) |2 = lim (z2]L) = lim un = py,

and analogously,

Tp|l =Ty |

' |L =p1, Tp Tp |L =pz and TH|L =T |L = pa.

We notice also that

—=u —u H —=u H —u H —u H -~ . —=u —u H o o
ot T = (lm %), + (i ), = Jin T+t o = i (75 4 F) 2 lim =5 = =

and analogously, Tph + Thh < Tphh.

If Tf; + Th; = Tz then the set of points g = =}, gz := T}, ¢z = T§ together with pi, pz, p2

show the lemma. Otherwise, Tps + Ths > Thz. We observe that if T + Thz < T then the lemma

is proved: in fact, if this is the case, there exists A € [0, 1) such that

(AZg + (1 AVTR ), + Tpz = ATZpa + (1 A)Tpa + Tpe = ha,
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with
g+ (1 Mz e K, [M3p+ (1 NTH)L=Api+(1 Apr =pi,
and thus the set of points gy = zf, gz = Azf + (1 A)T}, g3 := T shows the lemma.

So we assume that TH: + Thy > = Similarly, we now have that if Tf; 4+ Ths < xf2, then there
exists A € [0, 1) such that

Thy + (‘}‘Elnl + (1 }‘)‘Eﬁ})g =Ty 4+ AT + (1 A)Zpe = 703,

and hence the set of points gy 1= 2}, gz =7}, gz = ATp + (1 Az} shows the lemma,

So we assume once more that this is not the case, i.e., that T + T3 > ©f;. But then, since

The + The = Tpe there exists A € [0, 1) such that
Tos + T = Axfs + (1 Awps = (Axf 4+ (1 A)af),,
and thus the points gy = Az + (1 A)zy, gz =T, ¢z := T show the lemma. (|

We now prove Theorem 3.3.1.

Proof of Theorem 3.5.1. By definition of To( K), there exists L € £3 such that To(K) = r{K|L; L),
After a suitable rigid motion, we can assume without loss of generality that £ = lin{e;, ez} and

that r(K|L; D)8y, C K|L. We now apply Lemma 2.3.1 and find an inscribed regular hexagon
H=conv{xp;:i=1223] Cr(K|L;L)Bs
and points +g; € ', : = 1,2, 3, such that
+g|Ll =xp;, =123, and dimeonv{tg::=1223} =2
Wa call ' =conv{tg;: =123} and L' =linC". Then,
re(K) =K n L EY = (e LY,
We now show that r(C; L") = r(H; L). Clearly,
(i) = min l|zly = =0l

for some xp € relbd €. We can suppose that the points g1 and gz are consecutive vertices and that

Tp = Agy+ (1 A)ge, for some A £ (0, 1). Since g;|L = p;, we have ¢; = (p;, ¢42)7, 7 = 1,2, and then
2 2 2 2
Zols = [Aa 4+ (1 Maz|;=[Ap 4+ (1 Apef; + [daz+ (1 Agwm| = |Am + (1 Apels
The point Ap; + (1 A)pz € relbd H, and therefore

|Apy + (1 Ape|, 2 Lmin [yl = s(Hi L)
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From that, we get r{C L") = |zg|, = r[H; L) and then

(KY = 1r[Ch LY = 1(H L) = ??E[K}.

It remains to be shown that the inequality is best possible. Let P, = conv{tw;, twg, Lus] be

the non-regular triangular antiprism in B® with vertices

£ D (see Figure 3.2). First we prove that r5(F.) = v'3/2 for £ small enough.

T
T ]
B iy Tz s
oy iz
ks r
N -
A3 A
s r|'_.|::3 '3

KA + .

L N s 4 Tt
L
ik vz

Figure 3.2: Triangular antiprism with rel{ Fe + 785 > rx{ Fe) + 7

Let uy = (1/2) vz + uz), uz = (1/2) (w1 + vz}, uz = (1/2)(v1 + vz) be the middle points of the
edges of the triangle contained in the plane 2 = ¢, and let my; = (1/2)( wy + u4), 7 =1,2,3 [see
Figure 3.2). It is easy to check that [m;|, = v3/2 and |uy|, = V' 1/3 4+ forall j =1,2,3. Then
lul, < v3/2 if and only if £ < '3/12 and hence, for any £ < /5/12, all segments

&
{[[D, 0,237 g, [y, ] 1 5 = 1,2|3} ChdA N %33.
Now we can prove that rz(F) = \/ﬁ,@ for £ € +/5/12. Notice that since F: is D-symmetric, then
rz(F) = maxLeﬁgr(PE inL; L). If L = lin{ey, ez}, then F: M lin{ey, ez} is the regular hexagon with
apothem |m;|z, and so with incircle [V@IE}BZJin{ELH} (see Figure 3.2}, Therefore,

[ Fe Mlin{e; ez}; lin{e; ez}) = ?

Now let £ = ﬂ%, L # lin{ey, eg}. Clearly LN linde; e5} isa 1-dimensional subspace which intersects
the relative interior of, at least, one of the segments with end-points my, 7 =1, 2,3, say [my, mg].

Then there exists a point

ve LNbdEnN {[mj,m], [T_f.] \ [D,D,E)T}, [[D, DIE}T,EQ},[ug,mg]}



3.3 Improving the Pukhowv-Perelman inequality 41

with |u|, < +3/2, which ensures that r{F. NL; L) = 3/2 forall £ € £3, L # lin{e; ez}, Thus we

can conclude that

rg[FE)zﬁ if &= E
2 12
Since the set Fo|lin{e;, ez} is a regular hexagon with 2-dimensional inradius 1, then T3(Fc) = 1.
Therefore
L ne) < e = 20 =1
and thus To( P} = (2/v/3) re( Fo). O

We observe that for n = 3 and i = 2, Theorem 3.2.1 and Theorem 3.3.1 together improve the
upper bound proved by Pukhov, namely, Rz £} /rz(K) < 2.

Corollary 3.3.1. fet K € X° be a D-symmetric conver body. Then

RE(;:;' < (V—F — 1.832

Froaf. From Theorem 32.2.1 and Theorem 3.3.1 we get

Ra(#)  Ra[H)Ta(H)
2 () [mmm—JT‘”w -

We observe that forn = 3 and ¢ = 2 the optimal bound is still far away, since it is supposed to

be 2/v3=1.154. ...

In the particular case ¢ = 2, we also have been able to improve the Pukhov-Ferel'man's bound
for general convex bodies in arbitrary dimension. We follow the idea of the proof of Perel'man
in [48] for dimension 3, slightly modifying some steps. Unfortunately, this technique cannot be

extended to all indices 2z = 1,

Theorem 3.3.2. fet K ¢ K™ with n > 3. Then

R. 1[&) n 1
ECIRRE

FProaf. After a suitable translation of A, we can suppose that the diameter of A is given by
D{K)=2|p|, for p, p& K. Let py, pz € K|p* be such that |py pz|l, = D(K|p-). We are going
to prove that

D(K|p") < 4raK). (2.8

So, we assume the contrary, D[ K|p") > dr=z(K ), and we will get a contradiction. Let g1, gz € K be
such that g;|p" = py, for 7 = 1,2, and we write (see Figure 3.3)

1
P = -
conv{z[

1 )
;o+n:1';f).§[ p+a;f}=3=1.2} C K.
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Figure 3.3: The parallelogram £ (for the sake of clearness, the hyperplane ¢t has been translated to —p)

We first observe that £ is a [2-dimensional) parallelogram, because

spta) Ste)=gla w=30 pta) gl pte) e
Spta) S pta)=p=glpta) Ll pta) (39

and since F is a O-symmetric convex body, r(F;aff P) = w(F;aff F)/2.

Next we compute the width w(F;aff P). Let &, & denote the heights of the parallelogram P
corresponding to the edges [[p +q1)/2 (p+ qzj,’ﬂ and [[p +a)/2( p+m )f2]| respectively (see
Figure 3.3). From (3.9) we get, on the one hand, that £ is just the distance between the orthogonal
projections onto pt of the points ([p 4+ ¢;)/2 and (p + g2),/2, 1., the distance between p; /2 and
pz/2. Thus, R =|p; pzl, /2 = D(K|p*)/2. On the other hand, since

| gL otaL | |E+gl Pz |
z 2 2 _ 2 2 2
h N R '
then we have , ,
2k |pls R D{K) .
= = R
lgr  gelz o gels

where the insquality comes from the fact that ¢y, ¢z € K and then |g;  gg|; < D{A) Therefore

=

1
w(FP; aff P) = min{k, K} = k' = %,

and hence

w(Piafl P) _ D{K|p")

r(& naff Fyaff P) = o[ FPaff Py =
2

= IE[KL

a contradiction.

This shows [3.8), and then, applying Jung's Theorem 1.3.2 to the (n  1)-dimensional convex
bhody X |p*, we finally get that

R, (%) < RIE|p*) <y 2 D(xlp) < 2VE (k) O
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3.4 Additional properties for successive radii

We recall that for any convex body K e X" with e int K and alli =1,..., n, it holds
RUKOR(E) 21 and  Ra(K)n(K*) 2 1.
Moreover, the equality (in both inequalities) is attained for all D-symmetric convex bodies [see
Proposition 1.3.3 and (1.18)).

One might think about upper bounds for those quotients. Unfortunately they are, in general,
not bounded by above. A simple example is given by the sequence of 1-dimensional convex bodies
K= e, ee1] CR with D <e <1, Then K* = [ ey, (1/c)e;] and therefore

1+el4+l  (146)°

R{K)s(K*) = = = =

If = goes to D, then the product becomes arbitrarily large. This shows the necessity of imposing

more restrictions on &, We have proved the following result.

Proposition 3,41, Let K c X" with Dcint K, 1 <i<n and A, p> 0 be such that
ABn © K C B,

Then

Bi(K)n (K*) < min{M E}

V2 oTA
Proof. Since K € B, then Ri(K) < 4, and since AB, © K we get £* C (1/A)B,, and hence
[ A%y = 1/A Thus we get the bound B (K (K*) < u/A

So we have to prove the inequality By K)r(H*) < (14 u/A)/v2. We first show the inclusion

1
214 u/A]

Let ©y,xz € K* and y1, yz € K. From the definition of polar body we have (zy, 11}, (T2, 2y = 1
and it also holds that =y € K* C [(ABn)* = (1/A)Bn and y; € 4By for 7= 1,2 Therefore

(K* K)YC(K K). (3.10)

1 1
S — Y < —— (1414 + |z
<2[1+Hf/\)(1 2)1!1 sz> 2[14_“;/\}( |1|z|y2|z |2|2|L"1|z:'
1 i
«5—(2+2—)=1,
2014 u/A) A
and then
! K Ky
St g I El |

It shows [3.10). In the next chapter we will prove that

1 ;
Ril ) < Vavi+l

Ri(K k) (3.11)
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(see Proposition 4.3.2). Then, the known inequality r;(K*) < r;(K*  K*) [see [33, Lemma 2.1,
Femark 2.1] and also Proposition 4.3.2) together with [3.10) and (3.11) imply that

1 ]

2vz Viv1
- ;2(1+E)Hﬂ:[f«: Kyn((k Kyy=2EeA [ E 1HelA

22 ¥ i41 A NG i+ 1 V2

where in the above equality we have used [1.18) because £ K is a D-symmetric convex body, O

R K ( ) < Ri(#& H)n(&® &)

I

In this dissertation we have also considered the following natural question. We know that
(K) > 2K} >0 and 0< Ry(K) <. . < Ra(K) (3.12)

for any convex body K £ X" [see Section 1.2). So, we can ask whether any given set of non-
negative numbers satisfying the above left (respectively, right) inequalities can arise as the inner
(respectively, outer) successive radii of some convex body, The following proposition answers this

question in the positive.

Proposition 3.4.2. feto; = > o, = 0,0 < b = < b, be two seguences of positive Teal
numbers. Then there erist conver bodies K, K' € K™ such that r; (K) = a; and R;(K") = &;, for all

i=1,...,n.

Proaf. Let

K = conv {ﬂ'ijJin{EL,...,Ej} H _'|i' = 1| e ﬂ.} .
Clearly r;(#£) > a; for all 7 = 1,... n, and thus we have to show that r;(A) < a;. Since { is a
O-symmetric convex body, let L = E"; be such that

R K)y=r(KNL;L)= IEr\Elrl:l..\-ldilg]KﬂL:l lz|s

We observe that dim(L MNlin{e; ... ,eqn}) 254+ (n 741) n=1, and therefore, there exists a
point Tp € relbd K N [L MNlin{e;, . .. ,en}). Then, on the one hand, we can write Tp = ¥ ., Asz;,
with 4 20,i=1,... . n, >, Ay =1and 2 ¢ airelbd By jinre, .
since z; € airelbd B; jinfe,.. g, ), there exist Iui =0 k=1, .1 with ZizI[lui)z = 1 such that
2 = 4 [Zi:] ,uiek). Therefore,

To= Aiz= > Mo (Zﬁiek) =3 (Z Amwi) ek,
i=1 i=] k=1

k=1 i=kK

en} for i =1,... n. Moreover,
En

On the other hand, since zp € lin{e;, ... e, ], the above expression reduces to

Ip = Z (Z /\q:cami) gy = Z Aidg Z Hiek |
k=7

k=7 %=k i=7
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and hence,
m b m b
|Znls = Z Asg (Z ,ulek) = Z Ai Z TN
=1 k=17 5 i=7 k=1

k1l m
) hm<e) ke
i =7 i=j

mn T 172
= Z Ay (Z(Hi)z)
5 i=r k=1

Thus we can conclude that

;[ = min Tl = |T < Qg
3 LK) IEFE|bd(KﬂL:I| l2 < [wol = a5,

as required. It shows the first part of the proposition,

Now we assume 00 < by = - .- = by, and we consider the set of numbers {1/61,. .. ,1/6q]}, which

satisfies that

1 1

— = x—2=0

f b
Then, we have shown that there exists a convex body K € X7, which iz in addition O-symmetric,
such that r;[K) = 1/b;, foralli =1,..., n. Thus, using (1.18) we get that

1

Ri(K) = e =t

The set &* gives the result. |

A collection of inequalities relating m geometric measures, which assure that any set of m non-
negative real numbers satisfving the inequalities arise as the corresponding measures of a convex
hody, is called a full (or complete) system of inequalities. Thus, Proposition 3.4.2 shows that the
gets of inequalities 0 < By =< .- < Ry and ry = -+ = 1y = 0 are full systems. In [10] we have
determined the full system of inequalities corresponding to the successive radil Ry, Rn, 11,10 of

planar convex bodles.
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Chapter 4

Successive radii and (Firey-)Minkowski
addition

It is well known [see [B3, p. 42]) that in the case of the diameter, the minimal width, the

inradius and the circumradius, for two convex bodies K, K’ € A7 it holds
DK+ KV<D(EV+ DK, wK4+KE)>wK) +w(KD),

R(K + K')< R(K)+ R(KD, (K + K2 1(K)+ (K —

Equality holds in all inequalities, for example, when K = K,

We observe that inequalities (4.1) can be translated as inequalities for the first and the last of

all possible outer and inner radii, since

D[;{—:' =Ry[H) =1 [K) =T (&), # — Ry(K) = By (5) =14 () =5 (K).

Hence the gquestion arizses to study the relation between Minkowski addition and all remaining

successive inner and outer radii.

In this chapter we first study all possible upper and lower bounds for the classical outer and
inner radii B; and r;, with respect to the Minkowski addition. We also show that these bounds can
be improved when special sums of convex bodies are considered. Next we relate these radii with
the more general p-sum of two convex bodies. These results extend the previous ones, =since the
psum coincides with the Minkowski addition in the case p = 1. Finally, we study the remaining

families of successive outer and inner radii.

All new results collected in this chapter appear in [23, 24, 25].
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4.1 Bounds for the outer successive radii and Minkowski addition

We start this section showing the relations between the outer radii B; and Minkowski addition.
Theorem 4.1.1 {[25]}. Let K K’ € K. Then

Ri(K+ K'Y= R[K)+R (K (42)
VER;(K + K') 2 Ri(K)+ Rs(K'), i=2,...n |

All mequalities are best possible.

Proof. The lower bound for Bj[K + X') (minimal width) is wellknown [cf. {4.1)), and equality

holds for instance when K = X', So we prove (4.2) for:=2,... n.

Let £ € £7. Without loss of generality we may assume that R(K|L)B; ¢ and R(K'|L)B; ¢ are
the circumballs of K |L and K'|L respectively. Then it is well-known [see Theorem 1.2.1) that there

exist contact points

{ur, o g} € relbd( K| L) Norelbd [R[K|L)B§‘L)I
foy, ...} C relbd{ K'|L) ﬁrelbde[K'|L)B.;‘L:]|
with 2 < £,1 < ¢4+ 1, such that 0 € conv{wuy, ... ug} Noonviv, ... o)

Now we assume that there exist ¢+ € L and a positive number ¢ < (R(K|L)? + H[K’|L)2)]'f2
such that (# + AL C ¢ 4+ pB; ., and we will get a contradiction.

Notice first that since 0 € conv{w;,... , ux}, there exists a point, say u,, such that (u; ¢} < O
indeed, if for all Z = 1,... % it holds {wu;, ¢} > 0, then conv{w;,..., &} and the origin O can be
strictly separated by a hyperplane with [outer) normal vector ¢ (see [53, p. 12]), which contradicts
the fact that 0 € conv{u;,. .. ux}. Then we get

ey t3 =R(K|L)® 2{w 1)+ |if; > R(K|L),

Next we take the vector uy ¢ Notice that uy ¢ # 0 because {u;, ¢} < 0 and =, # 0. Since
0 € conv{wy,..., %}, an analogous argument to the previous one shows that there exists a point,

gay vy, such that {wy, 2y ¢} = 0. Finally we consider the point
w +wm € K|L+K'|L=({K+KNLCt+ pBiy,
for which, using the above conditions, we get
- 5 z 5 - g
lus + w1ty =l Ez4+2{m  fwi4 jnfp = RIKIL) + RIKL)® > 07,

a contradiction. Therefore p = (R(K|L)* + R[K'|L)2)]’{2 and, in particular, the same holds for the
circumradius of (& + A ")|L. Hence we finally get

V2

R((K + K|E) 2 (R(K|LY + R{K|L)P) 1 > - (RK|L) + R(K'|L)
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for all £ € £, Now let L; € £ be such that R;(K + K') = R[(K + K")|L;). Then, together with
the above property, we can conclude that

Re(K + K') = R((K + K')|Ls) 2 —=(R(K|Ls) + R(K'|Ls)) 2 \%[mm +Ri(KY),

-

which proves (42) fori =2 ... n.

It remains to be shown that these inequalities are best possible We fix ¢ € {2,... , n}] and

consider the convex bodies

K= e eal+ Z [ exiex], K =] egez]+ Z [ exiex] (4.3)
k=i+1 k=i+}1
Here for i = n we are just taking & = ey,e], £ =[ ez,ez] Since X and X' are both [n i41)-

cubes with edges parallel to the coordinate axes and length 2, it is clear that R{&|L), R{K'|L) = 1
for all £ € £7. Woreover, if L = lin{e;,...,e;} then R{&|L) = R(K'|L) = 1. This shows that
Ri(K) = Ri(K") = 1. Now we take the sum

K+ K'= [ = |EIJ + [ Ezuez]‘l' 2 Z [ Eklele
k=141
an [n ¢+ 2)-dimensional parallelepiped with edges again parallel to the coordinate axes and
lengths 2 and 4. Then it is easy to see that
¢ ¢ . 1 f
Bs[K + KV =R((K + K")|linfey, ... e)) =v2 = = (Ri(K) 4+ Bs(KD),

which concludes the proof of the theorem. d

S5l

We already know that there exists an upper bound for Ry (% + K') in terms of the sum of the
circumradii, namely,
Rn(K + K') < Rn(K) + Ra(K")
(cf. [4.1})). So, the natural question arises whether there exists an upper bound for the remaining

outer radii. Next proposition answers this question.

Proposition 4.1.1 {[25]}. Let K, K' € X", Foralii=1,...,n 1, there erists no constantc > 0
such that cB; (K + K') < R;(K) 4+ Ry (K.

Progf, Forany : €41,...,n 1} fixed, we define the convex bodies

K= & it1.8n 441] and KF=Z[ ek k]
k=1

Notice that the projections K|lin{en i,€n a1z, ... ,8n} = K'|linf{en i31,...,8n} = {0}, and hence
both Ri(K) = Rs(K") =0, ie, Ri(K) + R (K'Y = 0. However, K + K' = 5. 7_1""[ e, e is an
(n i+ 1)-dimensional convex body, which implies that the dimension dim (K + K')|L) = 1 for
all L € £7, and thus R[K 4 K') > 0. Hence we conclude that there exists no constant ¢ > 0 such
that cR;(K + K') < Ry(K)+ Ry(K") foranyi=1...,n 1. O
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4.2 Bounds for the inner successive radii and Minkowski addition

First, we state some preliminary results in Linear Algebra which will be needed in the proof of

the main theorem.

Lemma 4.2.1 {[25]}. Forl< i< n/2,let L, L' € £7 be such that LN L' = {0}, Then there emst
orthonormal bases {uy, ... u;] and {vy, ... v] of L and L' respectively, such that the 2-dimensional

subspaces lin{wy, vy}, ... linf{u;, v} are patrurise orthogonal.

FProof Throughout the proof we will always work with £ 4+ L' as the main vector space instead of
[®™ when considering subspaces, orthogonal complements, projections... Moreover we will identify

L+ £' = B* for the sake of brevity, We distinguish two cases.

Case (i): First we suppose that LN L't = {0}. Denoting by =’ the orthogonal projection onto £,
it clearly holds that «'(L) = L', We assume, without loss of generality, that L' = lindeipq, ... 2= ],
and let w; € L be such that «'(w;) = ey for 7 =1,...,i. Let W = (wy . wy) € B¥** be the

(22 x z}-matrix with column vectors wy, which takes the form
M L
W= . Mo B
I;
Here I; denotes the (¢ x z)-identity matrix. Then the singular value decomposition of a real matrix

(see e.g. [41, p. 80]) ensures the existence of orthogonal matrices &, V' € B*** and a diagonal matrix

D = diag{d;,..., d;} such that UTMV = D, We write U = ()] ) and V = (v} o), with
wy = (ugy, ... )T and vy = (v, ..., v, 7. Notice that, on the one hand,
Wy = (Z W wg Z U,::kUJk) |
k=1 k=1

1.2, the column vectors of WV are linear comhbinations of {wy, ..., w;}. So they lie in L. On the
other hand,

A MV irn dyu; o dyu;

Wy = V= = = , , .

L % V ) R ¥

Therefore, the column vectors (dyu;, vi)Te Lforall j =1,... i Notice that d; 0, 7 =1,... 1,

otherwise we would get (0,v})T € LN L' = {0}, which is a contradu:tlon. Moreover, it holds that

the ==t {[dju;, H;}T a=1,... ,i} consists of non-zero pairwise orthogonal vectors, since

([d:,-u;, U;-)T, [dku;c, U:{:IT> (ri u dkuk> + (U;-, UL} =0

forall £ &, 7 ke {1,..., 2], because I, V¥ are orthogonal matrices. Then, we define the vectors
__r (dy Te L ! w)Te L',
Uy = ul, o L = - 0,
| r:L?'Il-'l"l’;r'-'I"r;r:l |2 T | DU) |2 J
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for § = 1,...,4 By construction, {u,..., %] and {v;, ..., v;] are orthonormal bases of L and
L' respectively. Moreover, for au; + bu; € lin{w; v} and cuy + dvy € lin{uy, vy} with 7 # £,
ke dl, ... i}, we get

{auy; + bug, cug + duky = ad (uqj, vet + bo vy, uxy =0,
L.e., the 2-dimensional subspaces lin{uy, w1}, ..., lin{u;, v} are pairwise orthogonal, as required.
Case (ii): Now we assume L N L™ # {0}, Since L+ N L' = (L + L5+, we have
dim(LN LY = dim(L 4+ L") =28 dim L dim £ 4 dim(£ 0 L") = dim(L 0 L"),

So, let m =dim[L+-NLY) =dim[L NL™), 0 < m < 4, and let {uy,... &m} and vy, ... vy} be
orthonormal bases of LML and L4 N L', respectively. We define L = (LN L) 4 (L4 N L"), Then
LrNE =L+ LYn(L+ L) nE=(Et 4+ LN L

and hence
dim(I* ML) = dim{(Z- 4+ L") L)
= [dim It +dim L' dim(£* N L) +dim L dim(Lt+ L'+ L)
=i4+i m4: 2H=i m.
Analogously we get dim(Zt NLY =i m. Moreover it is clear that the intersection
(ZXnLyn(Lrne)t =40},

and thus we can apply the previous case (i) to the subspaces ErnE Lt L c Lt to get ortho-
normal bases {¥my1, ... i) and {tmy1, ... v} of EL N L and L+ N L' respectively, such that the
2-dimensional subspaces lin{wmy1, ¥m+1], ..., lin{u;, v} are pairwise orthogonal. Embedding these

vectors in the canonical way in B¥ we get orthonormal bases of £ and £ verifying the required

property, |
Lemma 4.2.2 ([25]). fet L L' € £T. There exist orthonormal bases {uy, ... w3} and {vy, ... %)
of L and L' respectively, such that (u; v} 2 0 for allj = 1,...,% and such that the vectors
{uy + vy, .. ug + v ore pairwise orthogonal.

Proof. Let £ =dim LN E' < iand let wy, ..., ws be an orthonormal basis of LN £, Then we define
u; =w; € L and wy = wy € L', for all1 < 7 < k. The vectors {uy 4+ vy,... wg + vy} are trivially
pairwise orthogonal since w; + v; = 2wy, and moreover, {u;, vy = 1, 7 =1,..., &k So, they verify

the required properties, and we have to complete them to bases of £ and L'

Let L = LN L' and consider £ N L+ and £/ N L+, MNotice that

dimf N i+t =dimZ +dimZit dim(Z+ LYY =i4(n k) n=i &,
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since L + L1 = B™ Analogously dim £' N Et =i k. Moreover,
(LnEY)n(Lnity=Lni' nkt=Lnit={0},

and thus we can apply Lemma 4.2.1 to the subspaces L N LY LNt e L7, to get the existence

of orthonormal bases

{gry, oo w) C B0l and  dweyy,.. wmlC 0Dt
such that the subspaces lin{ugy1, k1), ... lin{w;, v} are pairwise orthogonal. Notice that the
vectors v; can be chosen such that {wy; v = Oforall 7 =& 4 1,... ¢, otherwise we just have to

replace vy by v Since ug, vy € It foralli=4k+1,... i together with the previously selected
vectors, we obtain orthonormal bases {&, ... ,u;} and {vy,... v} of L and L' respectively, verifying
also that {u; vy} = 0forall j =1, ... Moreover, since u; + vy € in{u; v} forg=k41,...,:
and these 2-dimensional subspaces are pairwise orthogonal, we also get the required orthogonality

property for the vectors wy +wy, 7 =1,... 4 O

Now we state the bounds for the inner radii r; with respect to Minkowski addition.
Theorem 4.2.1 {[25]}. Let K, K' € K. Then

VIn(K + K2 oK)+ (KDY, i=1,....n 1,

F ) (4.4)
T (K 4+ K = (K 4 (A

All tmegquelities are best possible.

Proof. The lower bound for ry( K + K"} (inradius) is well-known [cf. {4.1)), and equality holds for
instance when £ = XK', So we prove (44) for:=1,...,n 1.

Without loss of generality we may assume that ; (K) =r(KNL; L) and (K = [ K'N LY LY
for L, L' € £7, i.e., that the greatest i-dimensional balls contained in K and K’ are r(KNL; L)B; ¢
and r(&'N L L B; pr, respectively. For the sake of brevity we writer =r(H{ N L; L) = r;(K) and
r' =r1(K'NLYE"Y = (K", Thus it suffices to show that inequality (4.4) holds for i-dimensional
balls, L.e., that

Ven(rB; + ' By ) 2141, (4.5)

since, taking into account that 1B; ¢ 4+ 1'B; - € K + K', we have
\@H[K + KF) = \@I-j[IB-j_L + IFBiLf:I =14+ _1'F = Ig(K:l + I-j[Ki).

So we have to prove (4.5). By Lemma 4.2 2 we can assure the existence of two subsets of pairwise

orthogonal vectors

fuy, .., w3} erelbd(rB; ) and  {wy, ..., v} € relbd(r'B; ),
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such that {u; 4+ vy, .., u; + v} are also pairwise orthogonal with {uw,; v > 0, 7 =1,...,7z. Let
L=lin{uy +vy, . u+1) € £7. Next we show that the i-dimensional ball
[1'2 + [IF)E] ]'IFZB.LL _ IB-;I,L + IFB.L;_}. [46)

Notice first that
2 2 2 2 fy 3
|y + wsly = [uglg + wslg + 2wy vy 2 17 4 (1),
Then, denoting by
E=83 My +u) el 1,13 A2t

the O-symmetric ellipsoid with semi-axes {u; + w;, 7 =1,..., ¢}, it trivially holds that

[+ hY'"%8,, c &

Thus, in order to show (4.68) it suffices to prove the inclusion £ C rB; ¢ + ' By, i.e., that
ZAJ'[”J'_F Uj;l EIBiL—I-IFB.;‘Lr for ZA? =1.
=1 =1

Clearly, Zj:] Asus & L, and moreover, since {wi,...,u;} are pairwise orthogonal vectors with

|| = 1, we have

i o i i
— B2 _ = T _ %
E Ay | = E Ayl =1 E A =1

=1 2 4=1 =1

Therefore, Z;:] Ajug € 18; . Analogously we get ijl Aju; € 1'By ¢ and thus

Z Ajlug + vy) = Z Agug 4 Z Ajuj E18Bip 4+ 1'B; 0.

=1

This shows (4.6) and we can conclude that

rilrBis +IHB-;_.L‘) . ([1_2 i [IFJE]IIEB.LL) _ [1_2 n [Ia)z]lfz > L[I_'_ 1'“:'.

V2

which gives the required inequality [4.5).

It remains to be shown that these inequalities are best possible. Welixi<€ {1,...,n 1} Let

=2 nif2 >n,and j =0 otherwise, and we consider the i-dimensional linear subspaces

L=1in{e]|'"|ejlej+]|"'|e'i}l LH=lin{ell"'|Ejle'£+]|"'|82£ j}' [4T)

We are going to show that equality in [4.4) is attained for the :-dimensional unit balls B;; and
B; ;+. Notice that if we prove the inequality

LB+ Bie) 2 V2 (4.8)
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then by (4.4) we can conclude that

V2 2 (B + Biys) ['5 LL)‘FI&[B&.UH=%[1+1}=\@.

which gives the required result. Observe first that since B; ; + B; ; is a b-symmetric convex body,

%I

for any L ¢ £3 we have

max r[[BiL + BNz 4+ E); T+ E) = r[[BLL + B; o) ﬂf.;f.).
=l

Therefore in order to show [4.8) it suffices to prove that
r((Bip+ By NLE) < V2 forall e T (4.9)

Hdim((B; .+ B )NL) <iforL e L7 thenr((B;,+ B;, )NL;L) =0 Sowetake L € £7 with
dim((B; . + B; ) N L} =i Notice that if we find = € relbd ((B; , 4+ B; ) N L) with [z], = V2,
then we immediately get (4.9). In order to find such anx, let L” =linf{ejyy,...  en). Hi=2i n
(i.e, if 22 > n) then

dim(Z N L™ = dim £ 4+ dim £ dim(f 4+ £ =i4+n 7 dim(L+ L")
>it+n 7 n=t j=i1 Z2i4+n=n 1ix=1,

and moreover, L + L' =R", ie, dim(B; ¢ + B; ;) = n. On the other hand, if 7 = 0 then L = R",
and so £ M £" = L. Therefore, in both cases, dim[[Bg_L + B ANEnN L”:I > 1, which ensures the
existence of a houndary point © € relbd(B; o + Bi,yjﬁiﬁ L. Since any = € relbd(B; 1+ B )N L”

iz expressed in the form

i 27
Z Aper + Z BEEE, with Z Ak—l Z ,uk—l

k=741 k=141 k=7+1 k=141
we trivially get
217
EEL S T
k=141 k=it
This shows (4.9) and concludes the proof. U

We already know that there exists also an upper bound for ry (£ + ') in terms of the sum of
the diameters, namely,

I][K-‘-KF:"’:_:I][K:I-FI][KE)

(cf. [4.1})). So, the natural question arises whether there exists an upper bound for the remaining

inner radii. Next proposition answers this question.

Proposition 4.2.1 {[25]}. Let K '€ K. Foralli =2, .. n, there exists no constant c > 0
such that cry(K + K < r;(K) 4 [ K.
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FProgf, For any ¢ €1{2,... ,n} lixed, we defline the convex hodies
K =] e,84] and K“:Z[ ek, 2. (4.10)
k=2

Since K and K’ are, respectively, a 1-dimensional and an (¢ 1)-dimensional convex body, then
(K = (K') =0 However, K + K' = Zi:][ ey 2] and clearly r;(K + K') = 1. Hence we
can conclude that there exists no constant ¢ > [ such that cr( & + K') € r;(K) 4 ri(K") for any
t=2,..., . O

The bounds obtained in Theorems 4.1.1 and 4.2.1 can be improved when sums of special convex
hodies are considered. Moreover, reverse inequalities to (4.2) and [4.4) exist for these special sums

{cf. Propositions 4.1.1 and 4.2.1). We deal with this questions in the next section.

4.3 Minkowski addition of special convex bodies

Observe that equality in [4.2) and [4.4) is attained in both cases for convex bodies with empty
interior. Also the non-existence of the reverse inequalities is due to this particular type of bodies
(see Propositions 4.1.1 and 4.2.1), Thus the question arises whether those inequalities can be
improved if convex bodies with non-empty interior are considered. So we ask, in particular, for the

special case when one of the bodies involved is the Euclidean ball,

Proposition 4.3.1 {[25]}. Let K € K™ andr = 0. Then foralli=1,... n,
BiK+rB)=Ri(K)+r and (K 4+rBy) >rn(E)+r

All inequalities are best possible and fori =2, n 1 they can be sirict.

Proaf. The identity for B; is a straightforward computation:
E;[K E. )= min BE[[K E )LL) = min R{K|L E |Ly=B;[ K .
i # + 7By min (& +7rBn)|L) foin (K|L+ 7B, |L) =R (K)+r

Now we show the lower bound for r;(K 4 rB,). First we notice that for any L € £7 and z € ™,
we have
Knz+L)y+rB; e C(KE4+rBa)n(z+ L)

Indeed, f e c KNz + L)+ 7B thene=x+{+ru, wherelce L, o4+ € K and v € B;;, and
thus z =z +i+rue (K+rB )Nz + L)
Let £; € £7 and = € L be such that ry[£) = I[K Mz + Li)ix + L.;). Then using the above
property we get
i +rBn) = I[[K +rB)N (x4 Lz + L-_;) = r[h’ Niz+ Li) +rBiciT+ Lij
=r(KN{z+Lioc+L;)+r=n(K)+r
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Equality holds, for instance, if X = B,. Finally we show that, unlike the R; case, there exist
convex bodies with r;(K +rB,) > [H) 4+ 7.

We consider the non-regular triangular antiprism F. = conv{+w, £vz, tuvz} in R® with vertices
1 T 1 T ( 2 )T
vy = _|1|E 1 g = I 1|E 1 Uz = _IDIE 1
’ (ﬁ ) i (ﬂ ) A V3

for € > 0 (see Figure 3.2). In the proof of Theorem 3.3.1 it was shown that rg[ F.) = /3/2 for
= /5/12. Bo, if we show that

re(FPedrBal =14 vr? 2 forrze (4.11)

then we will get that

3
e[ P+ 7B 214 v/rd Ez}§—l—r=rg[ﬁ;)—l—r

for e < \/m and r > [2 + v@) [EE Vva ?/4) 2 g, as reguired,
Ohbserve that in order to prove (4.11) it suffices to show that
r[[PE + rBz) N lin{er, ez }; linfe; ,ez}) =14 \,,/TTEE
Denoting by +7; = £wy|lin{e; ez}, it is a straightforward computation to check that
(Fv; + rBy) Nlinfey ez} = £5; + V2 €2Bgjinge, ea)-
Since (+w; + rBz)Nlin{e;, ez} C [Fz + rBz)Nlin{e; ez}, then
(F. + rB:) Nlinfe;, ez} O conv {iﬁj + VT EByjnierey T =1, 2,3}
= [PE|lin{e1 .ez}) 4+ EEB&“,.,{E“EE}.

Notice that the projected body H = F:|lin{e; ez} is the regular hexagon in the plane linf{e; ez}
with vertices +%;, 7 =1, 2, 3, which has 2-dimensional inradius I[H; lin{e ,ez}) = 1. Thus,

r([PE +rBzinN lin{ehez};lin{e],ez}) = I(H 4+ 3/ EEBE_“n{El_Ez};lin{e],ez})

=I[H;lin{e],82})+ VrE o et =14 rd 22

which shows [4.11) and finishes the proof. A

We observe that in this particular case it is possible to bound by above the inner radii of the

sum which, in general, is not feasible (see Proposition 4 .2.1).

Remark 4.3.1 {[25]). There erist upper bounds for (K +rBn) i terms of [ K) andr. Nemely,
using (3.2) and Proposition 4.53.1, it iz streightforward to get

Ig[ff-l— TB-,-L:I < R, -;+]I:K + TBH:I =R, -5+1[K:l+ o [i+ 1:11'5[}{) +r,

although this hound i3 far from being optimal
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Remark 4.3.2 ([25]). Let K K' € X", If K' has non-empty interior, i.e., if 1[K') > 0, then we
Rave 1;(K + K') = (K + 1(K")B,,) = ;(K) + 1(K'). Thus, in order to tmprove the constant V2
n (4.4), the inradius of the body has to be involved.

Remark 4.3.3 {[25]}. The family of triengular entiprisms F. considered in the proaf of Proposi-

tiom £.5.1 shows that the functional; 1 X" — Rep, i=2,..., 1 1, is not continuous: using the

previous notetion end teking € = 1/k, we have limy_o FPrje = H, bul

V3
11 F = — < 1=r15(H)}.
kin;lufz( 1,".&:' 5 re(f)
However, as shown it Section 1.2, 1; 1 {K € K" 1 dim K =n}] — By is ¢ contmmuous map.

We are also interested in the hehavior of the successive radil regarding the special case of
the Minkowski sum K K. In [33, Lemma 2.1, Remark 2.1] it was shown that for the central
symmetral K” = (K K)/2 it holds R;( &%) < R;[K) and r; (KY) > r;(K)foralli =1,...,n. The
next proposition completes this particular case, by showing that the bounds in (4.2) and (4.4} can

he improved and that there are non-trivial reverse inequalities {of. Propositions 4.1.1 and 4.2.1}.

Proposition 4.3.2 {[25]}. fet K € K™, Then forelli=1,... R,

a) V2 itlﬁi[}()gm[}{ ) < 3R4(K),

(4.12)
B} MK <n(K K) <20 + 1K),

All inequalities except for the upper bound i () are best possible.

Progf. The right hand side in [4.12.a) and the left hand side in (4.12.h) are known [see [33,
Lemma 2.1, Remark 2.1]}). In order to prove the left inequality in [4.12.a) let L; € £ be such that
R;(K K)=R((K K)|L;) for any fixed i€ {1,...,n}. It is clear that K"|L; = (K |£;)". Then,
gince central symmetry preserves the diameter (see eg. [3, p. 79]) and using the well-known Jung

inequality (see Theorem 1.3.2) in dimension z, we get
Ri(K K)=R((K K)|L;)=2R[K"|L;) =2R[(K|L;)") = D[(K]|L;)")

27 4+ 1)

= D(K[L;) = (K]Ls) 2 4 ———Ra(K).

22 —I— 1} R

i
Equality in the Jung inequality holds for the i-dimensional regular simplex 5; as well as for every
convex kody of diameter D containing the regular simplex of edge-length D, Hence, in our case,
equality holds for any convex body & such that F;(A) = R(& |L;) and such that &|L; is an extremal
set in Jung's inequality, For instance, equality holds for K = S; 4+ MC,, ;, where €, ; C [aff S;)*
represents the (R i)-dimensional unit cube and A > 0 is sufficiently large.

The right hand side in {4.12.b} i a direct consequence of [3.2) and the already mentioned
property of the central symmetrization, B[ K™Y < By &)

(K K)=25(K") 2R, 5 (K") < 2R, oK) < 2(i+ Un(K). O
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Corollary 4.3.1. £fet K ¢ X7, Then foralii=1,... 1,

Q) TR < Ri(£°) < R(K),

B) B < (KM < (74 Ding( KD,

All inequalities except for the upper bound in (B) are best possible.

4.4 Successive radii and the Firey addition

In this section we generalize Theorems 4.1.1 and 4.2.1 when the Firey addition, i.e., p-sums, of

convex bodies is considered [see Definition 1.1.7).

First we observe that for any 1 < p < g it holds |- |; £ | ' |p and it is a direct consequence of

Hilder's inequality for ¢/p (see eg. [30, p. 15]) that | |, < n!fv ]"'rr"| g forz =[xy, ... Ta)T € B,

n i n (g wfleed s 1y
lz]p = (lef) = (Z 1) (Z x:r) = nlf ]’{°|:ﬂ|.;,.
=1 =1 i=1

Clearly, they are equivalent to the inclusions
BY C BT C pllv ligp
On the other hand, it is known (see eg. [27]) that [ e, 81] 45 +p[ en,en] = Ba forg = 1such
that 1/p+ 1/g = 1. Therefore we get, in particular, that
alfe 12 far 1< D=2,

[ enet]l4o +ol| enen] © { 5 for p> 2. (4.13)

We start by proving the lower bound for the outer radii R;(K 4+, K') of the p-sum of two convex
bodies in terms of the corresponding radii,
Theorem 4.4.1 {[24]}. Let K K' € KT andp = 1. Then
=L
25 Ry[K 45 K') 2 Ry(K) + Ry(K"  foralip2 1,
dp—2 ' '
277 Bi(K 4, K2 Ry(K)+ By(KY  forl=p=2,i=2... 7 (4.14)
Ri(K +p K') > max{Rs(K) R (K} forp=2,i=2,... 7.
All tmegquelities are best possible.
Froaf. By [1.2) we have gle 1w Ri(K+, K" 2= Ri(K + K" foralli=1,...,n, and then applying
Theorem 4.1.1 we get
ae WPR(K 4, K'YV > Ry(K + K = Ry [K)+ Ry (K",

oe VPR K 4+, K'Y 2 Ri(K + K) 2 i[m:[ff) +Ry(K")),

V2
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for i = 2,. .., =, which gives the two first inegualities in [4.14). Notice also that it always holds
KK CK +. K', which leads to

R; (K +, K') = max{R; (£}, R;(K")}.
Since for any real numbers a, b > 0 it holds that if p > 2 then max{a, b} = 1/207 =2/(Z(4 4 B,
the third inequality in (4.14) is obtained.
So it remains to be shown that the three inequalities are best possible. For the first one, let
K =K' Then K 4+, K = 2"/PK and thus
2P PR (K 4, K)=2P DPVPR(K) = Ry(K) + Ry[K).

Next we fix 1 € {2,.. ., n} and consider the convex bodies

K=[ e ,=2]+ Z[ epek], K =] egeg]+ Z[ e k]
k=141 k=it 1

Le., the Osymmetric (n 4 1)-cubes with edges parallel to the coordinate axes and length 2, of
the subspaces L; = {e;,2541,... 80}, 7= 1,2, Here for i = n we are just taking £ = [ ey, e] and
K'=| ez, eg] (see (4.3)). In the proof of Theorem 4.1.1 it was shown that Ri( &) = R;(K') = 1.
First, let 1 < p < 2, and we compute B;(K +, K'). Let L € £7. On the one hand, since
dim(£, NL) = [n i+ 1)4+i n =1, there exist points z € KN L and ' € K' N L with
||z, |z'|z = 1, and because of the central symmetry, we may assume that (x,z'} = 0. Then
— 9t% ()

(Il + 1=1)" " 2172
ale 1w = oip 1)fp !

(z4 =)
ale 13w

-
and thus, since (z 4 z')/20P WP ¢ (K 4, K"V L (see (1.3)), we get
R([K 4, KL) 2 R([K +, K0 L) = 202 #)i) (4.15)

for all L € £7. On the other hand, since the orthogonal projection of the p-sum of two convex bodies
onto any lower dimensional linear subspace is the p-sum of the projections (see [19, pp. 21-22]},

and using (4.13), we get
I:K_l_'pKf)llin{E]l"'lEi} =K|Hl‘l{€]|...|€i} +pKH|1in{€]|'--|e'§}

= K|linfe;} 4, &'|linf{ez} = &5, 1] 4o ez 2z
C ol iy

{le,ez}l
which gives H([K +p K)|lin{ey, ... &))< 2(2 2)/(20) Then, together with (4.15) we get the
equality R[[K 4o K)|lindey, ... e}) = 2l2 #{(%) and moreover,
. " — i ! — (2 »if(2p) _
m(}(ﬁ,f{)_EE%R[(KJWKNL)_E = o B Lt )

1

= 2G By Rl + Ra(K)).
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Let p = 2. First notice that R;(K 4+, K" = B;(K) B;(K') = 1. With an analogous argument as
hefore, but using (4.13) when p > 2, we get that HI:[K+pK')| lin{ey, ... &} =R (Bz-lin{emz}) =1
Both inequalities give Ry (&K 4, £') =1 = B[ &), Ry [(K). (|

The above theorem becomes Theorem 4.1.1 when p = 1. We also notice that in Theorem 4.4.1,
the last two inequalities are valid for all p > 1. We point out that the distinction depending on the

range of p is needed for the sharpness,

Regarding a reverse inequality, in the case of the circumradius we easily get, using [1.3) and
(4.1}, that
Ra( +, K') < Ro(K + K') < Ra[K) + Ry (K7),

and the inequality is tight, as shown when we take K' = {0}. However, there is no chance to get a

reverse inequality for all outer radii, as next proposition shows,
Proposition 4.4.1 {[24]}. Let K XK' € X7 and p> 1. Forallii=1,...,n 1, there erists no
constant ¢ > 0 such that cRy( & 4, £ < Ri(K) 4+ Ry (K.

Froaf Let i< {1,...,n 1} be fixed. We take the convex bodies

K =] en 541,80 s41] and KE=Z[ 2k &
k=1

On the one hand, we ohsarve that
K|lin{en i,8n 43,60} = K'|linfen 441,... &n) = {0],

and hence both B;( &) = R;(K') =0, ie, B;(#) + R;(K") = 0. On the other hand,

,. 1 ,. 1 mod+1
RE R 2ip I}Iw(K_l—K): gip 1)fp Zl [ ez iedl
J':

ie., the psum K 4, XK' contains an (n  z 4 1)-dimensional convex body, which implies that
dim((K 4+, K}|L) = 1 forall L € £T. Then, R;(K 4+, K") > 0. Hence we conclude that there exists
no constant ¢ 2> 0 such that cR; (K +, K < By(K)+ Ry(K) foranyi=1...,n 1 O

Remark 4.4.1 {[24]}. The meguality R(K 4+, K') < R(K)+ R(K"), p = 1, can be strengthened

in the particular case when the cireumcenter of bath K K' € KT lHes in the origin. In this case,
' _ m ' o e o tvp 1D
RUK 4y K w) = (A 2 + 2K w)") 7 < (R(KP + RIK'F)

for all w £ 8™ !, which implies, in particular, that the circumradius of the p-sum of K, K' is not

greater than the p-sum of the circumradii,
R+, K') < [R{K)” +R(K)7)7.

if K = K' aguality holds.
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In the case of the successive inner radii ;[ K 4, K') we get the [ollowing theorem.

Theorem 4.4.2 {[24]}. Let K X' € KF and p = 1. Then

E%IH[K-F?;KF)EI“[K)-FIH[Ki) foralip>1,
22%11;[}«: 4, KNV > (K +n(KY  forl<p<2,i=1,....n 1, (4.16)
(K4, K= max{r.;[ff),r.;[ff’)} forp=2,i=1,...,n 1.
All mmegualities are best possible.
Froof. By (1.3) we have 200 WP (K 4 K" > (K 4+ K'Y for i =1,...,n, and applying Theo-
rem 4.2.1 we get
2l P (K 4y K 2 1K 4 KN 2 0y (K) 4 1 (K,

(0 1o ! T ' L T; il &'
2 (K4 K 2K+ K') > V@(a[ff:wr (K],

i=1...,n 1, which gives the two first inequalities in (4.16). Again, since K, XK' C K 4, K,
(K 45 K') 2 max{n(K),u(K') ]
which leads to the third inequality in [4.18).
S0, we have to show that these inequalities are ticht. For the first one, with £ = K’ we get
o NP L (K 4 Ky =20 WPalPr (BY = L (K) + o [K).

Next wefix: € {1,...,» 1}, and consider the following convex bodies: for 7 =2¢ nif 2: > n, and
7 = D otherwise, we take the i-dimensional unit balls & = B;; and X' = H;,;: of the i-dimensional
linear subspaces

L= lil'.l.{E]I e B By |E'i}| Li = ].il'.l.*{E], e B B B _"[}1
here, for 7 = 0, we are taking the subspaces L = lin{e;,...,2;} and L' = lin{esyy, ..., em}. Clearly
LBy =nl(Bie) =1

Notice that since B; ;| By, are b-symmetric, then B; ; 4+, B; ;- iz also (ksymmetric, and then

I.sl:B.l.;“r_, +n Bi,L’} = E-,l;:}:l—[[Bi'L +n B'i,.f_,’;' nL; .E:I

Let 1= p < 2. We are going to show that
r((Bie +p Bia)N L L) < 26 7 ER) (4.17)
for all L € £7, which will imply that
1 1
2 2
2@ PiEe) - o oy Lt = m[m(&,a) + 15[ Bs.e1))
< ri(Big +p Bige) < 20 PHER)
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le, G(Biy 5 Bip) = 17203 2 (= I:I.;-[B.LL} + 1;{Bi )], as required. Let L =lin{e;y, ... 20},
If 2{ < nthen L = B™ and thus, for all L € £7, 1t holds dim(LNL") = dim I = i > 1; analogously,
if 2 > n, then

dim(LNL") =dimL +dimL" dim(L+ L") =:i4n 7 dim(L+ L")
>it+n 3 n=n x>l
Therefore, since dim(B; , +, B; ;) = n, then, for all Ee £7, we can always find a boundary point
z€relbd( By +p B )NENLY, 240D
Moreover, notice that, in particular, 2 € lin{e; 4, ..., 8% ,}, and so it can be expressed in the form
z==z4+7 €linfe;pr, ... e} + linfesry, . em s} =(LNLY 4 (LN LY,
we observe that =, ' lie in orthogonal subspaces. Writing & = 2/ |2|5, we have

1
|Z|2 = (z, 'Lt) < h I:B-E,L +p B.i‘Lr, T_L) = (h [B'i.L|u)'p + A [:B.J"Lr, u)p) .'rii'l

and since

h[Bi‘L,ujzmax{y,u}zimax{y,z}zi<z x>=h({ a z}u)

YEL; ¢ |Z|2 veES; ¢ |2|2 EI EI E

h[Bi,L‘lu) =h (|: L,lx—,i| ,E) I
AP

Iw

and analogously

we obtain that

s (o ([ o)) o ( Frse )

T = T = /o 1) pf(p 1)
=h il la s |:_Fl_a:|'u = h{BE, qpou] <RIBS ‘
(| o[ ] ) - loni ) enome)
< (2 »ifizolg (lein{::“}) — ol2 »ifizm
by (4.13). This implies r( (B +p B ) N L; L) < 202 P/ER | showing (4.17) and concluding the
proofof the case 1 < p < 2,

MNow let p > 2. Notice that r; [B._.;‘L +,, Bi,L“) > 1; [B-;,.L).Ti[giyj = 1. So, it suffices to show
that I[[B-g‘,r_, 4y B; )N L f.:l <1foral ¢ £7. With an analogous argument as before, but using
(4.13) when p = 2, we get that there exists z € relbd (B¢ +5 B; o) 0 L N L such that

lzl; =R (Bzﬁf{;}:r}) < R (Bajingza)) = 1.

It shows that r[[BLL 4, BN £ f.) < 1 and concludes the proof. |
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The above result becomes Theorem 4.2.1 when p = 1. We notice that in Theorem 4.4.2, the
last two inequalities are valid for all p > 1. We point out that the distinction depending on the

range of p is needed for the sharpness.

We deal again with the possible existence of a reverse inequality. In the case of the diameter

we easily get, using [1.3) and (4.1}, that
K 4p KN <K+ KN <0 (K)+ (KD,

and the inequality is tight, as shown when we take &' = {0}. However, there is no chance to get a

reverse inequality for all inner radii, az next proposition shows,

Proposition 4.4.2 ([2d4]}. Let K K' € KT andp > 1. Foralii=2,... n, there erists no constant
c > O such that cri( K 4+, K < (K + (K.

Progf. Let : € {2,... n] be fixed, and we take the convex bodies

K =] e,2y] and K':Z[ 2k, 8],
k=2

which satisfy r;[K) = r;[ £') = [, because they have dimensions dim £ = 1 and dim K’ =:¢ 1.

However,

(K4, K22 @ ek Ky =2 @ Dieg (Z[ Ek'e"‘J) =20,
k=1
which shows that there exists no constant ¢ > D such that cr (K 4+, K) < 5(&) + (&) for any
i=2.. .n O

4.41 The p-difference body of a convex set

The p-difference body of a convex body K € X} isdefined as the psum £ K=K 4, K)

(see Figure 1.4), which is also a D-symmetric convex body: in fact,

RK K, uwP=h(K, uwP+a K wf=h KuP+hKu’ =h(K ,K=uP

Obviously, when p = 1, the p-difference body coincides with the usual difference body.

In [4], a sharp Rogers-Shephard inequality for the p-difference body of a planar convex body
was obtained, i.e., the best (upper) bound for the volume of the set £ 5 K in terms of the volume
of the original body K. Hers we are interested in obtaining upper and lower bounds for the in-
and outer radii of the p-difference body £ K in terms of the ones of X In Proposition 4.3.2 we
have already studied the behavior of the radil regarding the usual difference body.

Next result extends (4.12) to the p-difference body, showing moreover that the bounds in (4.14)
and [4.16) can be improved and that, in this particular case, there are non-trivial reverse inequalities
(cf. Propositions 4.4.1 and 4.4.2}.
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Proposition 4.4.3 ([24]). Let K € X, Then foralli=1,... nondalip= 1,

if p< 2, alfe 1/2 fit]

ifpz2 max{zifw UE@J} Ri(K) s R5(K £ = 2R(K), (4.18)
21.-"?:'1'.5[}{) < (K LK) < 2(i4 DK, (4.19)

The upper bound and the lower bound when 1 < p < 2 in [4.18) are best possible. Lower bound in
(4.19) i3 best possible.

Proaf By [1.3) we have, forall i=1,. .. nr, that

1

oo WK K)SRJ(K K)SRi(K K,

and analogously for the inner radii ;. Then applying (4.12) we directly get (4.18) and [4.13), We
note that if p > 2, then max{E]ﬁ’ UEN (i4+ 1)/ 1} =1 for all > 2 and most of the values of p.

So we deal with the sharpness of the inequalities, starting with the left hand side in {4.13). In

this case, just notice that if A is a -symmetric convex body then X = K and hence
LK pH)=n(H4,K)= E]IFI-S':K)'

Next we study the right hand side in (4.18), We fix : € {1, ... ,n} and consider the convex body

K=[el+ > [ el
j:'i-l-]
far which it clearly holds
1

F;(K) = R(&|linler, ... e}) =R[[0e1]) = =i

hers, if 7 = n we are taking K = [0, 2;]. Now, on the one hand, we notice that
(£ o K)llin{ey, ... &} = [0, &) +5 [ &1,0]

and that, by (1.2},

[ e1,e1] = conv([D,e1]U| e1,0]) C[0,e1] +5[ 21,01 C [Dyer]+ [ 21,0] =[ e1,e1],

le, (K, K)|lin{ey,... &) =[0a]4+,[ e, 0= =1,21].
On the other hand we observe that conv (K U{ A)) = Cy ;41 isthe (n i+ 1)-dimensional
cube of edge-length 2 contained inlin{ey, e;, ..., €n ) and thus, by (1.2}, we get that for all L € £7
R((K ,K)IL) > R{conv (K U( K))IE) = R(Cn a1l )
=R(C, spillinfes, ... &}) =R(] e, &]) =R(IK ,K)|lin{ey,... e]).
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Therefore,

R(K ,K)=R((K ,K)llinfer,. .,e)) = 1= 2R;(%).
Finally we consider the equality case for the left hand side in (4.18) when 1 < p < 2, If i = n, let
5. be the n-simplex, embedded in B™! and lying in the hyperplane

n+t1
T = [I],...,In+1}T€Rﬂ+] : ij =0},
i=1
given by
n 1 )
Snzconv{pk:pkkzn—ﬂ, Pei = T forg#k k=1,...,n+ 1}.
Since S, , 8, iz a -symmetric n-dimensional convex body, then

m+1
Bn(Sn pSn) =max s A(Sn pSmu):fuly=1and > u;=0
=1
Let # € B™*! with |u|, = 1 and Z?:lj u; = 0. We recall that the value of the support function of a
convex hody at any vector is attained in an extreme point (cf. e.g. [30, Theorem 5 8]}, so, in order

to compute k[ Sy, u) it suffices to consider the vertices of 5. Since

n 1
ik wh = 277 n+1Z“f -
TEk
then
h[.gn,u)zmax{(pk,u}:k:l,...,n—l—l}: maxiuy, ..., Unyq).
Without loss of generality we assume uy =« -+ » tny1, and notice that ) = 0, 2np0 1 < 0. Thus
B(Sn o Snu)? =h(Sn w) + k[ Snuw)® =k[5, u)® +A(5, u)= u? F+ [ tng1)™

Then, some elementary calculations show that the maximum of the function

flagotmpg) =]+ uny)? 1€p<2,
CZ

under the three conditions |u|, = 1, Z?:]] u; =0 and u; >
(1;’\/5, 0,...,0 lfﬁ)T; far the sake of clearness, we will sketch these computations afterwards,

Therefore,

Uny, 18 attained in the point

1, 1y
_ B RN L
R (S wsn)_(zm,ﬁzm) —glfe 12,

Since Bn(Sn) = ' n/(n+ 1}, then we get the required equality:

Bn(Sn 5 Sn) =2'f7 172 _glfp 172 ian[Sﬂ)I
n
If i < n, we take the i-dimensional simplex 5; and consider the convex body K = 5; + Man iy
where €, ; C [aff 5;)* represents the (n  i)-dimensional unit cube and M > 0 is sufficiently large
such that B;(K &) =R[S5; ,5;) and R;( &) = R[5;). The above argument gives the result. [J
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Remark 4.4.2, We check that the mazimum of the function vl + [ uny1)?, 1= p = 2, subjects to
wy 4oty =0, ”12+"'+”E+1 =1andu > = u,yy, 15 atiomed when vy = w4 = lf\f@

and u; =0 for § =2,... n. For the sake of brevity we skeich here the case n = 2.

Simee us =  w;  uwz, we have to marimize the funciion
f[U]IU3)=H,T—|-|: US}'pl 1‘513‘{_:2.

sulfects to u]2+ u%—l— (21 + ug)z =1landu = (uw1+uz) > uz, notice that uy > 0 and uz < 0. Using
the Lagrange multipliers method and teking into account that both 2uy + uz # 0 and vy + 2uz £ 0

(otherwise we would get vy = g = ux = 0 g5 the only solution, which iz not possible), we obtain
w4 Zuy( wa)® = wa)® Zusnf g (4.20)

if we assume uy > ug, since both uy, uz # 0, then we would get from (4.20) that uf 2 ([ ua)? 2,
g contradiction becouse 1 < p< 2. The ease vy < usx 15 analogous. Therefore, (4.20) holds if and
only if uy = us, and henceug = vy wz=Dandu; =1/vV2 = us.

4.5 Bounds for other families of successive radii

In this last section, we get upper and lower bounds for the other families of successive radii
defined in Chapter 1. First, we study the ocuter radii.

Proposition 4.5.1 ([23]). Let K K' € K. Then
Ry(K + K') = Ry (K) + Ry (&),
VIR (K + KV 2 Ri(K) 4+ Ri(K"), i=2, ... ,7n
All inequalities are best possible. Moreover, Rn(K + K') = Ra(K) + Ra(K"), and there erists mo
constant ¢ > 0 such that Cﬁg(ﬁ- + &= ﬁq[K) + l’:':.,:[K’) foralli=1.... n 1.
Froaf. The lower bound for ﬁ][K + K" is well known (see (4.1)). Equality holds, for instance,
when # = K’

Now let € {2,... n} and £ € £ be such that

R;(K + K') =In;i)fR[[K +EYN (x4 L)),

After suitable translations of K and K', we may suppose without loss of generality that

RIKNL)= ma}lcR(K Niz+L)) and R{K'NEL)= max R(K'N(z+ L))
E= E =

The trivial relation (K ML)+ (K'N L) C (K 4+ K'Y L and the circumradius monotonicity imply

Ri(K + K" ziaLicR[[K—l- KhN(z+ L) >R((K+KYNL) >R((KNL)+ (K'n L)),
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Ev Theorem 4.1.1 we have
VER((KNL)+ (K'NE)) = RIKNL)+ R(K NLY,
and hence

VIRi(K 4+ KV > VER((KNE) 4+ (K'N L)) > RIKNE)+ RIK'N L)
= maxR(KN(z+ L))+ rgaﬁH[K' N(zx+ L)) = Ri(K) + Ri (K",

et
It remains to be shown that these inequalities are best possible. We fix i € {2,... n] and
consider the convex bodies
m m
K=[ e,a1]+ Z [ ex,ex] and K =] ez eg]+ Z [ e ex]
k=141 k=141
Here when i = n we are just taking & = [ e;,21] and &' = [ egz,e3]. It can be proved in the same

way as in Theorem 4.1.1 that ﬁq[K) = ﬁ,;[}(') =1 and ﬁ,a[K + K'Y = /2, obtaining that
VIR; (K 4+ KN =2=1+41=R;(K)+ Ri(K").

We prove now the reverse inequalities, The upper bound of ﬁn[K + K'Y is well known (see (4.1)).
Equality holds when £ = A" Let i = {1,...,n 1} be fixed and we take

K=[ B a1 En q:+1] and KF=Z[ Ek.Ek]-
k=1

Since Ri(#) = Ry(&") = 0 (see Proposition 4.1.1), then ﬁ.;[f{':l = ﬁ,;[K’) = 0, and therefore
B;(K)+R;(K') =0. However, K+ K'= S U_" ey e]isan(n  i+1)-dimensional convex body,
which implies that the dimension dim((K+K")NL) = 1forall L € £7, and thus Bi(K+K" = 0. So,
there exists no constant ¢ > O such that cR;(K + K') < Ry (K)+R; (K foranyi=1,...,n 1. O

Proposition 4.5.2 ([23]). Let K K' € K. Then,

if i=1, <
V2L (W) + () < (K 4 K < (k) + Tk, (421)
ifi=2...m E—E-“Jr—ﬂf’;

The upper hound is best possible. The lower bounds are best possible tn the casest =1, n.

Froof. We start proving the upper bound. For 2 € {1,... n} fixed, let L € LT be such that
R K+ K)=R[(K+ K|L).
Since (K 4+ KL = K|L 4+ K'|L, by (4.1) we have

(K + K)=R([K +K")|L) =R(K|L+ K'|L) < R(K|L) + R(K'|L) < B[ K) + (K"},
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Equality holds, for instance, if & = K°.

Since Ry = ry, the lower bound for R, (K + K*) follows from Theorem 4.21. For i € {2,...,n}
fixed, the lower bound for E[K + K} is an easy consequence of Theorems 1.2.3 and 4.1.1, and the

fact that outer radii form an increasing sequence:

nfi+ 1) = , — , \ 1 , 1 . F
—Ri({A+HK ) 2R+ K )=RA+E ) > — |RIA)HR(K)) =2 — R [&) 4+ B [&K)) .
S ) 2 Rl KK = RUCHE) 2 — (RUOHRIKY) 2 —= (Rul) + ()
The sharpness in the lower bound when i = 1, n follows from Theorem 4.1.1. O

We observe that the left inequality in [4.21) behaves asymptotically as (4.2) when Z {and hence n)

o finAD 1
i—oa §f n(i4+ 1) 2

In the next propositions we show the possible bounds for the remaining families of inner radii,

goes to infinity, because

Proposition 4.5.3 ([23]). Let K, K' ¢ K. Then
VITIK 4+ KN =T (K)+ T (KD,
LK+ KN > LK) 4T(EY for i=2,....n 1,
Tl 4+ KN 2 Ta(K) 4+ Ta (K.

The first and the third inegualities are best possible. Moreover, T1[K 4+ K') < T1[(K) + T1(K") and
there erists mo constant c > 0 such thet cri(H + K < LK)+ G(E") fori=2,... \n.

Proof. Theorem 4.2.1 implies the diameter inequality, namely, V25, (K + K" = T,[K) + T, (K",
whereas T, (& + K") > T, (K) + T, [K') is well known (see (4.1)).

Let i€ {2, ...,n 1} be fixed. Since X, K' C X 4+ K’ (up to translations), then
max{T; (&), T (K} < T H + K,
and hence T;[K) 4+ T;[K") < 27;(K 4 K", although this inequality is not tight. The sharpness in
the cases i = 1, n follows from Theorem 4.2.1.

Regarding the reverse inequalities, it holds Ty (K + &) < T)[K) + T [&") (see (41)). Now let
ic {2,...,n} be fixed and we define

K=[ e, and XK' =Z[ &5, 24
=2
Let £ € £7. On the one hand, since dim &, dim &' < i 1, then dim K |L dimK|L' <7 1 and
therefore T;(K) = T;(K') = 0. On the other hand, ¥ + K' = Zj=][ £y, e5] is the :-dimensional
cube with edge-length 2, and it clearly holds T;{ K 4+ X') = 1. Thus there exists no constant ¢ = 0
such that cT; (K + K ) < T (HA)+ (K ) forany i=2,... 7. -
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Proposition 4.5.4 ([23]). Let K, K' € K. Then
LKA KDY EL(HFH(EY, =1, (4.22)
The tneguaiities are best possible. Moreover, for allii = 1,..., n, there erisis no constant c > 0

such that cT; (K + K) < T (K) +1;(K".

Proaf. Forfixed: € {1,...,n},let L € £7 and = € L' be such that
GIK+K)=r(([K+ K n(z+Lhiz+L).
After suitable translations of £ and X' we may suppose without loss of generality that

rfKnNi; L) = ma_slcr(ffﬂ (w+Lhiy+L) and r(K'NLEL)= maicr(}f'ﬂ (v+Lhy+ L)
yeLl L=

The trivial relation
(KNL)+[KNL)C(K+KE)NE,

together with the monotonicity of the inradius and (4.1), imply that
K+ KEYnLL) zr(Kn L )+ (K n L L),

Therefore

GIK+K)=1([K+KYN(z+Lha+ L) =r((K+ K)NLL) =r(KNL L)+ 1K' NEL L)

= n(K) 4T K.
Equality holds, for instance, when & = K’
In order to prove the last assertion, we consider the convex bodies
K=] &,5] and K'= i[ 21 55].
F=2

Let L € £7 be such that e, € L, and we take z € L+, Then dim (K N (z 4+ L)) < i and therefore

max (K N(z+ L)iz+ L) =0,
bt

which implies T;(K) = 0. Let L' € £7 be such that e; € L' and we fix a point z € (£). Then
dim(K' Nz + L)) < i and thus MAX gyl f(K'N(z4 LYz + L") =0. Hence 53(K") = 0. But
on the other hand K + X' = ), which implies T;( & 4+ ") = 1. We conclude that there exists no
constant ¢ 7> 0 such that ¢ {# + &) < T (A ) 4+ 5 K. (|

Proposition 4.5.5 ([23]). Let £ K' € K™, Then
LK+ KV 2HE 4K, i=1,...,n

All megqualities are best possible. Moreover, foralli=1,... n, there exisis no constant c > 0 such
that cT;(H + K < T (K) +T; (K.
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FProof. Let i € {1,...,n} and L € £ be such that
K+ Ky =1([K+ KL L),
By the monotonicity of the inradius and [4.1) we get
K+ KV =r((K+ KL L) =0(K|L+ K'|LE) = r(K|Li LY 4 o(K'|L; L) = T (K ) + T (K.

Equality holds, for instance, when K = &',

Now we show that there exist no reverse inequalities. Let i< {1 ... n} be fixed, and we take
K= e,8) and X' =Z[ 25, Eq).
==z
Let L € £ besuch that L Cey ifi<n 1. Then K|L = {0} and hence T;(K) = 0. In the case
i=nit holds T, (&) = 0. We take now
L= lin{ellen 2 |E'n}

ifi> 2or L =lin{e;} if = 1. We observe that in both cases X'|L iz an (¢ 1)-dimensional
convex body, Therefore T;(K") = 0. But X + K' = €, for which T;(C,) = 1. Thus there exists no
constant ¢ 7> 0 such that cTi(# + &) < T(K) 4+ (A ) forevery i=1,... n. (|
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