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Introduction

Group rings are algebraic structures that have attracted the attention of many mathemati-
cians since they combine properties of both groups and rings and have applications in many
areas of Mathematics, Ther study often requires techniques from Representation Theory,
Group Theory, Ring Theory and Number Theory and, im some cases, the use of properties
of central simple algebras or loral methods., By the Maschke Theorem, if ¢ is a finite group
and £ 15 a field of characteristic not dividing the crder of the group &, then the group
algebra O is semisimple artinian. In this case, the structure of £ is quite easy, but the
explicit computation of the Wedderburn decomposition of the group algebra knowing the
group F and the field £ is not always an easy problem. Omn the other hand, the explicit
knowledge of the Wedderburn decomposition has applications to different problems.

The Wedderburn decomposition of a semisimple group algebra FC 1s the decomposition
of FC as a direct sum of simple algebras, that is, minimal two-sided ideals. Our main
maotivation for the study of the Wedderburn decomposition of group algebras is given by
its applications. The main applications that we are interested in are the study of the
groups of urits of group rings with coefficients of arithmetic type and of the Schur groups
of akelian mumber fields. Other applications of the YWedderburn decomposition that, even
if not extensively studied in this thesis we have had in mind during its preparation, are the
study of the automorphism group of group algebras, of the Isomorphism Problem for group
algebras and of the error correcting codes with ideal structure m a finite group algekra,

known as group codes,

We start by presenting with more details the first application, which is the computation
of units of group rings relying on the Wedderburn decomposition of group algebras. It is
well known that the integral group ring £ is a F-order in the raticnal group algebra (¢
and it has been shown that a good knowledge and understanding of ()& s an essential tool
for the study of L#[EC. For example, sorne results of E. Jespers and G. Leal and of J. Ritter
and 5.K. Sehgal [JL, RitS2] show that, under some hypotheses, the Bass cyelic units and the

1



2 INTRODUCTION

bicyelic units (see Section 1.3, for definitions) generate a subgroup of finite indew in L [(£2C.
These hypotheses are usually expressed in terms of the Wedderburn decomposition of the
rational group algebra Q. Their thecrems were later used by E. Jespers, G. Leal and C.
Poleino Milies |JLPo| to characterize the groups (F that are a semidirect product of a cycelic
normal subgroup and a subgroup of order 2 such that the Bass cyclic units and the bicyclic
units generate a subgroup of finite indew in L {ZC). This latter characterization alse had as
starting point the computation of the Wedderburn decomposition of G for these groups.

As a consequence of a result of B, Hartley and P.F. Fickel |HF|, if the finite group & is
neither abelian nor isomorphic to Qe x4, for Qe the quaternion group with 8 elements and
A an elementary abelian 2-group, then U[Z0) contains a nor-abelian free group. The finite
groups for which L#[EC has a non-abelian free subgronp of finite index were characterized
by E. Jespers |Jes|. Furthermore, the finite groups such that L4(Z£C7) has a subgroup of finite
index which iz a direct product of free groups were classified by E. Jespers, G, Leal and A.
del Rio in a series of articles |[JLdR, JL, LdR|. In order to obtain the classification, they
used the characterization of these groups m terms of the Wedderburn components of the
corresponding rational group algebra. Furthermore, for every such group ¢, M. Ruiz and
A. del Rio explicitly constructed a subgroup of L4[(F) that had the desired structure and
minimal index among the ones that are products of free groups [dRR|. Again, a fundamental
step In the used arguments s based on the knowledge of the Wedderburn decomposition of
the rational group algebra.

The use of the methods of Kleimian groups in the study of the groups of units was started
by M. Ruiz |[Rui|, A. Pita, A. del Rio and M. Ruiz |PARR| and led to the notion of algebra
of Kleinian type and of fmite group of Klemian type. The classification of the finite groups
of Kleinian type has been done by E. Jespers, A. Pita, A. del Rio and P. Zalesski, by using
again useful mformation on the Wedderburn components of the corresponding rational group
algebras |JPARRZ]. Ome of the first applications of the present thesis is a generalization
of these results, obtaining a classification of the group algebras of Klemian type of finite
groups over rumber fields |OdRS|. This is explained in detail in Chapter 4 of the present
thesis, dedicated to the applications of the Wedderburn decomposition to the study of the
group algebras of Klemian type.

Arnother important application is to the study of the automorphism group of a semisim-
ple group algebra. The automorphism group of a semisimple algebra can be computed by
using the automorphism groups of the simple components of its Wedderburn decomposition.
By the Skolem Noether Theorem, the automorphism group of every simple component 5
can be determined by using the automorphism group of the center of & and the group
of inner automorphisms of 5. These ideas were developed by 5. Coelho, E. Jespers, C.

FPaleing Milies, A, Herman, A. Olivier], A, del Rio and J.J. Simén in a series of articles
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|CJP, Her3, OdRS2|, where the autormorphism group of group algebras of finite groups with
rational coefficients is studied. The same type of considerations shows that the Isomerphism
Problem for semisimple group algebras can be reduced to the computation of the Wedder-
burn decomposition of such algebras and to the study of the ewistence of isomorphisms

between the simple components.

On the other hand, the knowledge of the Wedderburn decomposition of a group algebra
FCallows one to compute explicitly all two-sided ideals of & This has direct applications
to the study of error correcting codes, in the case when £ is a finite field, since the majority
of the most used codes m practice are ideals of group rings. For example, this is the case
of cyelic codes, which are exactly the ideals of the group algebras of cyelic groups |FH|. In
the last years, some authors have investigated families of group codes having in mind the

applications to Coding Theory [see for the example the survey [KS|).

The problem of computing the Wedderburn decomposition of a group algebra £ nat-
urally leads to the problem of computing the primitive central idempotents of FG. The
classical method used to do this starts by caleulating the primitive central idempotents e[ x]
of O associated to the irreducible characters of &, for which there s a well known formula,
and continues by summing up all the primitive central idempotents of the form e(sey) with
e Gal[F[x)/F) [see for example Propesition 1.24, Section 1.2). Arn alternative method to
compute the primitive central idempotents of &, for & a finite nilpotent group, that does
not use the character table of ¢ has been introduced by E. Jespers, G. Leal and A, Pagues
[JLPal. A. Olivieri, A. del Rin and J.J. Simén |OdRS1| pointed out that this method relies
ot the fact that nilpotent groups are monomial and, using a theorem of Shoda |Shol, they
gave an alternative presentation. In this way, the method that shows how to produce the
primitive central idempotents of PO, for & a finite monomial group, depends on certain
pairs of subgroups (A, ) of & and it was simplified in |[OdRS1|. These pairs [H, &) were
named Shodo poirs of & Furthermore, A. Olivieri, A. del Rio and J.J. Simdn noticed that
if & Shoda pair satisfies some additional conditions, then one can describe the simple com-
ponent associated to such a Shoda pair as a matrix algebra of a specific cyclotomic algebra,
that can ke easily computed using the arithmetics of A and K as subgroups of &, This new
method was the starting point to produce a GAP package, called wedderga, able to com-
pute the Wedderburn decomposition of QP for a family of finite groups & that includes all
abelian-by-supersolvable groups [see |OdR1|, where the main algorithm of the first version
of wedderga is explained). A similar approach to that presented in [OdRS1| is still walid
for £ afinite fleld, provided £ is semisimple [i.e. the characteristic of F is coprime with
the order of 1, and this was presented by &. Broche Cristo and A. del Rio in the stromgly

moncmial case [BdR|. A survey on central idempotents in group algebras is given by O,
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Broche Cristo and C. Poleing Milies |BP|.

The present thesis is dedicated to the study of an explicit and effective computation of
the Wedderbturn decomposition of grouyp algebras of finjte groups over fields of characteristic
zern. The method presented here relies mammly on an algorithmic proof of the Brauner Witt
Theorem. The Brauer Witt Theorem is closely related to the study of the Schur subgroup
of the Brauer group, study that was started by . Schur (1875 1041) in the beginning of
the last century Afterwards, in 1845 R. Brauer [1801 1977) proved that every irreducible
representation of a finite group & of exponent 1 can be realized in every fleld which con-
tains an n-th primitive root of unity, result that allowed firther developments |Bral|. In
the early 1950°s, K. Brauer |Bra2| and E. Witt [1811 1881) |Wit| shown independently that
questions on the Schur subgroup are reduced to a treatment of cyclotomic algebras. The
result has been called the Brauer Witt Theorem and it can be said that almost all detailed
results about Schur subgroups depend on it. During the 1960%s, the Schur subgroup had
been extensively studied by many mathematicians, who obtained results such as: a complete
description of the Schur subgroup for arbitrary local fields and for several cyclotomic ex-
temsions of the rational field ) |Jan2|, a simple forrula for the index of a p-adic cyclotomic
algebra and other remarkable preperties of Schur algebras [see |Yam| for an exhaustive and

technical account of various results related to this topic).

The thesis starts with a preliminary chapter, where we gather notation, methods and
results used throughout the thesis, and continues with two parts that contain the original
results: the first part 1s dedicated to the explicit computation of the Wedderburn decompo-
sition of groups algebras, and the second one deals with the applications of the presented
decomposition to the study of the groups of units of group rings and of the Schur subgroup
of an abelian number field, with a special emphasis on the role of the cyelic cyclotomic

algebras. Now we present a more detailed contents of each chapter.

Chapter 1 is dedicated to the preliminaries. There we establish the basic notation and
we recall concepts and well known results, which will be frequently used throughout the
subsegquent chapters. The reader who 1s familiar with the concepts of this chapter can only
coneentrate on the introduced notation. Our notation and terminology follow closely that
of |Mar|, |Rei] and |Pig. The chapter starts by gathering sorne basic properties of number
fields and orders, since these fields are the base fields I most of our results. Mext we recall
the basic properties of group algebras £ and representations of finite groups, as well as
some results on units of group rings, with special emphasis on thelr relationship with the
Wedderburn decomposition of group algebras. The crossed product algebras are presented

as an essential construction for the description of central simple algebras. This description
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is associated to the so-called Brauer group of a fleld. In order to understand the structure
of the Brauer group of a number field, sometimes it is convenlent to start by understanding
the Brauer group of local fields. This also presumes a better understanding of the local
Schur indices and the Hasse invariants of a central simple algebra seen as an element of the
Brauer group of its center. Gathering this Jocal mformation, we can now have a description
of the Brauer group over a number field. The central simple algebras that arise as simple
components of group algebras form a subgroup called the Schur subgroup. This is the part
of the Brauer group that is directly related to this work., YWe finish the preliminary chapter

by collecting some results on the Schur subgroup.

The first part of the thesis, called “Wedderburn decomposition”, contains two chapters
that present two aspects of the proposed method for the computation of the Wedderburn
components: one more theoretical and the other one more technical from the implementation

point of view.

Chapter 2 is dedicated to the presentation of cur approach on the Wedderburn decom-
position of group algebras. In the first section we recall the useful results obtamed by A.
Olivieri, A. del Rin and J.J. Simén |[OdRS1| on the computation of the primitive central
idempotents and the simple components of semisimple group algebras of some special finite
groups, namely the monomial and the strongly monomial groups. We will intensively use
these results and we will base the constructive approach of the Brauer ¥Witt Theorem on
these types of groups. The second secticm s mainly forused on the presentation of the
classical result due to R, Brauer and E. Witt, together with a proof of the theorem with a
computational emphasis. The main goal is to look for a constructive approach of the the-
orem, using the strongly monomial characters introduced in [OdRS1], in order to cbtain a
precise and constructive description of the cypclotomic algebras that appear in the thecrem.
An algorithmic proof of the Brauer Witt Theorem obtained by using these strong Shoda
pairs is given. These results are published in [O1t2].

Let & be a fmite group, » a complex irreducible character of & and & a field of charac-
teristic zero. The group algebra F& has a unigue simple compenent A such that x[A) # 0.
Following T. Yamada's book |Yam|, we denote this simple component by A(x, F). More-
over, every simple component of F& is of this form for an rreducible character yx of O
The center of A(x, F] is & = F[y], the fleld of character values of x over & and Ay, F)
represents an element of the Schur subgroup of the Brauer group of £, The Brauer Witt
Theorern states that Ay, £) is Brauer egquivalent to a cyclotomic algebra over £, that is,
a crossed product [E[()fE, 7], where { is a root of 1, and all the values of the 2-cocyele
T are roots of 1 in E[{). We present a constructive proof of the Brauer Witt Theorem in

four steps. The first step deals with the strongly monomial case, that is, the constructible
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description of the simple component associated to a strongly monomial character. Then we
present the part that grves the reduction of the problem to strongly monomial characters
and, furthermore, we show the existence of such strongly monomial characters. The last
step gives the desired description of the simple component A[x, F) as an algebra Braner
equivalent to a specific cyclotomic algebra by using the corestriction map.

The existent proofs of the Braner Witt Theorem [see e.g. |Yam|) rely on the existence,
for each prime integer p, of a p-elementary subgrcup of & that determines the p-part of a
given simple component up to Brauer equivalence, but do not offer an algorithmic method
to determine it. This subgroup arises from the use of the Witt Berman Theorerm. Schmid
extended the theorem by identifying precise types of p-gquasi-elementary groups, which are
the minimal groups one can reduee to by using this theorem |Sch|. The fact that the Brauer
Witt Theorem does not provide an algorithmic method to determine sections of & suitable
for cornputing the Schur ndex for arkitrary finite groups sugeested the idea of considering
some particular cases of groups for which a constructible method can be done. Some of
these approaches are the following. A. Herman considered the case of finite solvable groups
that are Clifford reduced over an algebraic number field with respect to a faithful irreducible
character |Her2|. For groups with these properties, a character theoretic condition is given
that makes the p-part of the division algebra of this simple component to be generated by
a predetermined p-guasi-elementary subgroup of the group, for any prime p. This gives a
constructive Brauer Witt Theorem for groups satisfying this condition. Furthermore, A.
Herrran [Herd| used the theory of Gralgebras with Schur indices, as developed by AL Turull
in a series of articles starting with |Tur|, to obtain constructive methods for the proof of the
Brauer Witt Theorem.

YWe are mterested m establishing the results for fields & as small as possible, for mstance
(2], for [every) irreducible character x of the finite group . The reasonis that if Lisafield
cemtaining &, then A(y, &) = L{x) @ppyy Alx, F) and, therefere, the cyclotomic structure
of A(x, F) up to Brauer equivalence determines the cyclotomic structure of Ay, L] as an
algebra Braver equivalent to the crossed product [L(x)1(C)/L (%), m). The last section of the
chapter gives a theoretical algorithm for the computation of the Wedderburn decomposition
of group algebras that uses the previcusly presented algorithmic approach of the Brauer
Witt Theorem.

The theoretical algorithm for the computation of the Wedderburn decomposition of a
cyclic algebra, introduced m Chapter 2, is not exactly the implemented cne. The main
reason is that there are more efficient alternatives for the search of the secticns that give
rise to the simple components. In Chapter 3 we explain some aspects of the implementation
of our algorithm in the wedderga package for the computer system GAP |BKOOAR|. The

presented workmg algorithm is more appropriate for our computational purposes than the
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previously presented thecretical algorithm. In our presentation we try to avoid some tech-
nical aspects of the development of the software and we focus more on the mathematical
aspects of the Implementation of the chosen strategy. Hence, the algorithm s still not the
real one, but it is closer to it and gives an idea about the steps to be followed in order to be
able to implement it. This version of wedderpa upgrades a previous form of the package.
In order to give an idea of its usefulness, we include varicus examples, the computations of
which have been made by using the wedderpa package. In some examples 1t 1s given a com-
plete description of the Wedderburn decomposition of the considered group algebra £ In
some other examples it is given a description of the simple component carresponding only to
an irreducible character ¥ of the group G. The new implementation is able to compute the
YWedderburn decomposition of a semisimple algebra FC for those fields & which allow GAF
to realize effective computations, that Is, essentially abelian number fields and finite fields.
For a better understanding of other aspects of the package we have included the complete
manual of wedderga in the Appendix at the end of the thesis. We would like to thank all the
authors of wedderga for their contribution to the construction of the package, and especially
to A. Konovalov who helped us to solhve many technical problems during the programming
and optimization process. The implementation of this new part of the wedderga package is

joint work with A. del Rio, and the theoretical backgreund is presented n |OdR2).

The second part of the thesis is dedicated to the applications of the explicit computation
of the Wedderburn decomposition of group algebras that we have proposed, mamly to group

algebras of Kleinian type, groups of units and Schur groups.

In Chapter 4 we establish some applications of the explicit computation of the Wedder-
burn decomposition of group algebras to the study of group algebras of Kleinian type KO
and to the units of A for £ an order m K. These algebras are finite dimensional semisimple
rational algebras A such that the group of units of an crder m A is commensurable with a
direct product of Kleinian groups. The finite groups of Kleinian type were introduced by WM.
Ruiz, A. Pita and A. del Rio in |Fui] and [PARE]| as & class of finite groups that make pos-
sible the use of geometrical methods n hyperbolic spaces m order to provide presentations
of groups commensurable with the group of units of £ The finite groups of Klenlan type
were classified by B. Jespers, 4. Pita, A, del Rio, M. Ruiz and P. Zalesski in [JPdRRZ| and
characterized in terms of the Wedderburn decomposition of the group algebra with rational
coefficients. It can be sald that all known results that provide a very explicit description on
the structure of L [ZC) are included in the result that characterizes the finite groups & of
Kleinian type as the ones with U[Z0) virtually a direct product of free-by-free groups. The
concept of finite group of Kleinian type comes from a property of the group algebra with

rational coefficients that makes sense when changing the field of rationals with an arbitrary
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rumber field. The algebras with this property are called group algebras of Kleinian type.
The crigm of the study included in this chapter comes from a guestion of A. Reid, asking
about groups of units of group rings B0, with & the ring of integers of a number field K,
in rase K& is of Kleinjan type. In this chapter we classify the Schur algebras of Kleinian
type, as a first step needed later on in order to characterize the group algebras of Kleinian
type. As an application of this classification, we were able to extend various results about
the units of & to the case of the group nnes A£G, with & an order in a number field. In
this way, we characterize when the group of units of £ is finite, virtually akelian, virtually
a direct product of free groups and virtually a direct product of free-ky-free groups. This
part is published in [OdR3|.

In Chapter 5 we study the Schur group of an abelian number flield K, that is, a subfield
of a finite cyclotomic extension of the rationals. The results of this chapter were produced
as instruments to ke applied in Chapter 6, where we need to know the maximum of the
local mdices of a Schur algebra over such flelds K. The approach is to consider separately
the Schur algebras of index a power of p, for every prime p. The cases of podd or gy K
were studied by G.1. Janusz in |Jand|, and the remaining case by J.W. Pendergrass |Penl|.
In our analysis of these results and their applications to the problem studied m Section 6.2,
we discovered that Pendergrass results are not correct, as a consegquence of errors in the
calculations of 2-cocycles. This led us to checking the proofs of Janusz and Pendergrass,
obtaining a new approach. In our approach we correct the errors in |[Penl| and we provide
a more coheeptual presentation of the results that the one in [Jand] and |Penl|. In order
to be able to do this, we embed the fleld K m a special cyclotomic field, bigger than
the one considered by Janusz and Pendergrass, avoiding in this way the artificial-looking
results presented by them. In fact, the results of this chapter were developed in view of
the applications m the next chapter. As a consegquence of the Benard Schacher Theorem,
STK) = EBp STH ), where p Tuns over the privnes p such that K contains a primitive p-
th root of unity (,, and S{K), s the p-primary component of S{A). Moreover, if 4 is
a Schur algebra and A; and A7 are two primes of K such that £, N = B N} = r&,
for r a raticnal prime number, then the local indices of 4 m A; and A7 are equal, and
it makes sense to denote this commen local index by m.[A). Henee, in order to compute
the maxirrum local index of Schur algebras with center &, it is encugh to caleulate 8, (r),
where pPel" = max{m, [4) : |4] &€ S[K),}, for every prime p with ¢, € K and r a rational
prime number. The case of = oo Is easy and it depends on K being inchuded m B or not.
Theorern 5.13 provides an explicit value for &, (), in the case of r odd. The case r = 2 can
be obtained by using results of Janusz [Janl|.

In Chapter 6 we introduce the notion of cyclic cyclotomic algebra and we study some of

its properties. A cyclic eyclotomic algebra is a cyclic aleebra [K[()/K, o £), with § and £
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roots of unity. Motice that a cyclic cyclotomic algebra is an algebra that has at the same
time a representation as cyclic algebra and as cyclotomic algebra. Moreover, every element
of the Schur subgroup is represented, on orne hand by a cyclotomic algebra [by the Braver
Witt Theorem) and, on the other hand by a cyclie algebra (by a classical result from Class
Field Theory). However, it is not true in general that every element of the Schur group is
represented by a cyclic cyclotomic algebra.

In the first section we study when two cyclic cyclotomic algebras over abelian number
fields are isomeorphic. The main motivation for this study is based on its applications
to the study of the automorphisms of a group algebra and the Isomorphism Problem for
group algebras. The reason is that the problem of describing the automerphism group of
a sermisimple group algebra FC reduces to two problems: first compute the Wedderbum
decomposition of & and second, decide which pairs of this decomposition are isomorphic.
Also the Isomorphism Problem between two group algebras can be obwvicusly reduced to
that of deciding if the simple components of the given algebras can be put in isomorphic
pairs. Mote that the isomorphism concept here is the ring isomorphism and not the algebra
isomorphism. Analgorithmic methed for the computation of the Wedderburn decomposi tion
of QO for & a metacyelic group has been obtained in |[OdRS82|. That method provides a
precise descriptiom of each simple component in terms of the numerical parameters that
determine the group, that is, m,n,7 and s which appear in a presentation of the form
O =fo,ba™ =1, = a®,bab~! = a”}. However, to decide if two simple components are
imornorphic is more difficult, and in |OdRS2| this problem has been sobred enly in the case
when 1 is a product of two primes. The case of 11 being prime has been studied before by 4.
Herran |Herd|. Two simple algebras are isornorphic as algebras if and only if they hawe the
same center, the same degree and the same local mvariants. In this case, the algebras are
isomorphic as rings, but the converse is not true. In the first section of Chapter 6 we show
that two cyelic cyelotomic algebras over an abelian number field are isomorphic if and cnly
if they have the same center, the same degree and the same list of local Schur indices at all
rational primes. We provide an example that shows that this result cannot be extended to
arbitrary cyclotomic algebras.

The classes of the Brauer group of a field K that contam cyclic cyclotomic algebras
generate a subgroup CC[H) of the Schur group S{K). In many cases this subgroup is
exactly the Schur group. For example, this is the case if K is a cyclotomic extension of
the rationals. MNevertheless, as we show in the second section of Chapter 6, n general
COTH) # S[K). In this section we study the gap between CC[H) and STH). More
precisely, we characterize when OO K] has finite index in the Schur group 57K in terms
of the relative position of K in the lattice of cyclotomic extensions of the rationals. We
consider a tewer of flelds  C K C ¢, where ( 15 a root of unity that we precisely define
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depending on K. That |S[&) : OC[K]] is finite or not, depends on the fact that every
alement of Cal[[() /1)) satisfles a property which is easy to check by computations on the
Galeis groups Gal [/ and Sal((0)/ ) [zee Theorem 6.8). We also provide relevant
sxamples covering the reascnakble cases. The results of the last two chapters are joint work
with A. del Rio and A. Herman and are contained in the papers |HOdRL|, |[HOAR2| and
|[HO4R3|.

The thesis meludes an Appendix that contains the manual of the wedderpa package. The
manual can be downloaded from the webpage http: //www . un. es/adelrio/wedderga. htn.
Together with the thesis, we provide a OD with the package wedderga.

We end the thesis with a few brief conclusions on the advances of this work and we also

give some perspectives for further mvestigations.



Resumen

Los anillos de grupo son estructuras algebralcas que han atraido la atencién de multitud de
matematicos pues combman propiedades tanto de grupos como de anillos ¥ tienen aplica-
ciones en varias dreas de las matemdticas. Su estudio requiere frecuentemente la utilizacicn
de técnicas de Tecria de Representacicres, Tecria de Grupos, Teoria de Anillos y Teoria
de Numeros ¥, en algunos casos, €] uso de propiedades de las dlpebras centrales simples ¥
metodes locales. Por el Tecrema de Maschke, s1 & es un grupo finito ¥ £ es un cuerpo
con caracteristica gue no divide al orden del grupo &, entonces €] dlgebra de grupo FC7 es
semisimple artiniana. En tal caso, la estructura de £ es bastante sencilla, pero el cdleulo
explicito de la descomposicitn de Wedderburn a partir del conocimients del grupo & ¥ del
cuerpo & no es un problema tal sencillo. Por otro lado, el conocimiento explicito de la

descomposicién de Wedderburn tiene aplicaciones a diversos problemas.

La descomposicidin de Wedderburn de un dlgebra de grupo semisimple £ es la expresidn
de £ como suma directa de dlgebras simples, es decir ideales hildterns minimales. MNuestra
principal motivacidn en el estudio de la descomposicidn de Wedderburn de un dlgabra de
grupo estd ligada a las aplicaciones. Las gue mds nos interesan son las relacionadas con
2] estudio de grupos de unidades de anillos de grupo con coeficientes de tipo aritmético ¥
2] estudic del grupo de Schur de un cuerpo de mimeros abeliano., Otras aplicaciones de
la descomposicidn de Wedderburn, que aungue no son tratadas en esta memoria tuvimos
en mente durante su realizacién, son el estudio del grupo de automorfismos de dlgebras de
grupo, del Problema del Isomorfismo para dlgebras de grupo vy de los cédigos correctores
de errores con estructura de ideal en un dlgebra de grupo finita, conocidos como eddigos de
ETUpo.

Empezamos con la presentacidm con mds detalles de la primera aplicacidn que es 2l
célculo de las unidades de anillos de grupo basada en la descomposicidn de Wedderburn
de dlgebras de grupo. Es bien conocido que el anillo de grupo con coeficientes enteros

£ &5 un orden en al algebra de grupo racional Q& ¥ ha sido demestrade gue una buena

11
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descripeidn ¥ comprensidn de (07 es 1ma herramienta esencial ¥ muy 1itil en el estudio de
U[ED). Por gjemplo, unos resultados de |JL, RitS2] muestran que, bajo algunas hipdtesis,
las unidades ciclicas de Bass ¥ las unidades biciclicas [wéase las definiciomes en la Seceidn
1.3) gemeran un subgrupo de fndice finito en M[EC). Estas hipétesis aparecen a menudo
expresadas en términos de la descomposicidn de Wedderburn del dlgebra de grupo racional
(). Los teoremas de J. Ritter ¥ 5. Sehgal ¥ de E. Jespers y G. Leal han sido luego utilizados
en |JLPo| para caracterizar los grupos & que sen un producto semidirecto de un subgrupo
normal ciclico conun subgrupo de orden 2 tal que Jas unidades ciclicas de Bass y las unidades
bicfelicas generan un subgrups de fndice finito en L (£, BEsta dltima caracterizacién tuvo
también como punto de partida €] cdleulo de la descomposicion de Wedderburn de QDG para
es5to5 grupos.

Como consecuencia de los resultades de B. Hartley y P.F. Pickel |HP|, si & &5 un grupo
finito que no es ni abeliano ni isomerfo a Qg x A, para Qg €] grupo de cuaterniones con 8
elementos ¥ 4 €5 un 2-grupo abeliano elemental, entornees U[E() contiene un grupo libre
no abeliano. Los grupos finitos para los que H[£G) tiene un subgrupo libre ne abelians de
indice finito han sido caracterizado en |Jes|. En una serile de artienlos |JLdR, JL, LdR| han
sido clasificados los grupos finitos para los que U[Z) tienen un subgrupo de indice finito
fue 25 un products directo de grupos libres. Para obtener dicha clasficacidn, ha side usada
la caracterizacién de estos grupos en términos de las components de YWedderburn del dlgebra
de grupo racional correspondiente. Luege, en |[dRR| ha sido explicitamente construide para
cada uno de dichos grupos & un subgrupe de 2[£2C7 que tiene la estructura deseada e mdies
minimal entre los gque son productos de grupos libres. De nuevo, un paso esencial dentro de
los argumentos usados esta basado en el conocomiento de la descomposicion de Wedderburn
del dlgebra de grupo racional.

El uso de los métodos de los grupos Kleinianos al estudio de los grupos de unidades
empezd en |PARR| ¥ condujo a la nocidn de dlgebra de tipo Kleiniano ¥ de grupo finito
de tipo Kleinianoc. La clasificacion de los grupos finitos de tipe Kleinjano se realizé en
|[JPARRZ| usando de nueve informacién itil de las componentes Wedderburn del dlgebra de
grupo racional correspondiente. Una de las primeras aplicaciones de nuestro trabajo s una
generalizacion de estos resultados, obieniéndose una clasificacidn de las dlgebras de grupo de
tipo Kleiniano de grupos finitos sobre cuerpos numéricos |OdR3|. Todo esto estd explicado
en el Capitulo 4 de |a tesis dedicado a las aplicaciones de la descomposicion de Wedderburn
en el estudio de las dlgebras de grupo de tipo Kleniano.

Otra aplicacidn importante estd en el estudin del grupo de los automorfismos de 1m
dlgebra de grupo semisimple. El grupo de automorfismos de un dlgebra semisimple A se
puede calcular usando el grupo de automorfismos de las componentes simples de su descom-

posicicn de Wedderbum. Por el Teorema de Skolem Noether, el grupo de automeorfismos
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de cada componente simple 5 se puede determinar usando el grupo de automorfismos del
centro de 5y el grupo de los automerfismos interncs de 5. Estas 1deas fueron desarrolladas
en [CJP, Herd, OdRS2| para dlgebras de grupo de grupos finitos con coeficientes racionales.
El mismao tipo de consideracidns muestra que el Problema del Isomaorfisme para dlgebras de
grupo semisimple se reduce al cdleulo de la descompaosicidn de Wedderburn de dicha dlgebra

v al estudio de la existencia o no de isomorfismos entre las componentes simples.

For otro lado, el conocimients de la descomposicién de Wedderburn de un dlgebra de
grupo &G permite el caloulo explicito de todos los ideales bildtercs de £¢F. Bsto tiene una
aplicacion directa en el estudio de los codigos correctores de errores en el caso en que £ sea
un cuerpo finito, ya que la mayoria de los cédigos méds utilizados en la practica son ideales de
anillos de grupo. Por ejemplo, éste es e] caso de los coédigos ciclicos, que son precisamente
los ideales de los anillos de grups de grupos efelices |PH|. En los iiltimes afios, algunos
autores han investizgado familias de codigos de grupo con la vista puesta en sus aplicaciones

en Teoria de Cddigos [véase el survey |[K5]).

El problema del cdleulo de la descomposicién de Wedderburn de un dlgebra de grupo
£ nos lleva al problema del cdleuln de los idempotentes centrales primitivos de £ Bl
métodn cldsicn usado para esto comienza caleulando los idempotentes centrales primitivos
g(x] de CF asociados a los caracteres jrreducibles de &) para lo gque hay una férmula
bien conocida, ¥ continta sumando todos los idempotentes centrales primitivos de la forma
g(gey)con e e Gal[F[x)/F) [véase por ejemplo Proposicidn 1.24, Seccidn 1.2). En |JLFa)
58 introdujo un método alternativo para el cdlculo de los idempotentes centrales primitivos
de (& para & un grupo fmito nilpotente que no hace uso de la tabla de caracteres del
grupo . En |[OdRS1| se demostrd que el método usado se basa en el hecho de gque los
grupos nilpotentes son monomiales ¥, usando un tecrema de Shoda, se dio una presentacién
alternativa. De este modo, el método para producir los idempotentes centrales primitivos
de O, para  un grupo finito monomial, depends de ciertos pares de subgrupos (A, K]
de (' ¥ fue simplificado en |OdRS51|. Diches pares [H, K fueron llamados pares de Shoda
de &, A. Olivieri, &. del Rio vy J.J. Simén observaron que si un par de Shoda satisface
algunas condiciones adicionales, se puede descrikir la componente simple determinada por
gl par de Shoda como dlgebra de matrices de un dlgebra ciclotdmica hien precisa que se
puede calcular ficilmente utilizando la aritmética de H ¥ K como subgrupos de & Este
metodo fue el punto de partida para produchr un paguete del sistemna mformatico GAP,
llamadn wedderga, rapaz de caleular la descomposicidn de Wedderburn de 77 para una
familia de grupos finitos @ gque inchiye todos los gque son abellano-por-superesolubles [véase
|OdR1| donde estd explicads el algoritrne principal de la primera versidn de wedderga). Un

método similar al presentado en |OdRS1| es todavia valido s F es un cuerpo finito ¥y F& es
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semisimple (i.e. la caracteristica de & no divide el orden del grupo &) ¥ fue presentado en
|BdR| en &l caso fuertemnente monemial. Un survey sobre idempotentes centrales en dlgebras

de grupo se presenta en |BF).

La presente tesis estd dedicada al cdleulo explicito ¥ efectivi de la descomposicidn de
YWedderburn de dlgebras de grupo de grupos fmitos sobre cuerpos de caracteristica cero. El
metodo presentado se basa principalmente en una demdostracion algoritmica del Tecrema de
Brauer Witt. Bl Teorema de Brauer Witt estd relarionado con el estudio del subgrupo de
Schur del grupo de Brauver, estudio que comenzd Issal Schur [1875 1941) al prineipio del
siglo pasado. Luego, en 1945, Richard Brauver (1801 1877) demostrd gque toda representacidn
irreducible de un grupo fmito & de exponente 1 se puede realizar en cualguier cuerpo
que contenga una raiz primitiva de la unidad de orden n, resultado gue permitié nuevos
desarrollos |Bral]. Al primeipio de los 1850, Richard Brauer en [Bra2| y BErnst Witt [1511
1801) en |Wit|, independientements, descubrieron que cuestiones sobre el subgrupo de Schur
5o pueden reducir al estudio de dlgebras ciclotémicas. Bl resultado fue llamado e Teocrema
de Brauer Witt y se puede decir que casi todos los resultados sobre subgrupos de Schur
dependen de &l Durante los 1860, el subgrupo de Schur fue intensivaments estudiado
por muchos matematicos gque obtuvieron resultados comor una descripeidn completa del
subgrupo de Schur para cuerpos locales arbitrarios ¥ para algunas extensiones ciclotdmicas
de los racionales |Jan2|, una formula simple para el indice de un dlgebra ciclotdémica padica
¥ otras propiedades remarcables de las dlgebras de Schur [véase |Yam| para una coleccifn

exhaustiva de varios resultardos relacionados con este tema).

La presente tesis comienza con un capitulo de preliminares donde se recopila tanto la
notacidn, como métodos y resultados que son utilizados a lo largo de la memoria, ¥ dos
partes fue contienen los resultados ariginales: la primera estd dedicada al cdleuls explicito
de la descomposicién de Wedderburn de dlgebras de grupo y la segunda a las aplicaciones
al estudic de grupos de unidades de anillos de grupo ¥ al estudic del grupo de Schur de un
cuerpo de raimeros abeliancs, con especial énfasis en el papel representado por las dleebras

ciclicas ciclotdmicas. Presentemos con més detalles el contenido de cada uno de los capitulos.

El Capitulo 1 estd dedicado a los preliminares. En €] se establece la notacidn bdsica
¥ e repasan conceptos ¥ resultados bien conocidos gue serdn usados frecuentemente en
los proximos capitulos. El lector familiarizado con estos conceptos podria concentrase
{inicaments en la notacidn. La notacidn ¥ la terminologia usada siguen de cerca la de
|[BMar|, |Rei] and |Piel. El capftule comienza recopilands algunas propiedades bésicas sobre
Cuerpos numéricos ¥ Ordenes, teniendo en cuenta gue estos cuerpos son los cuerpos base en

la mayoria de los resultados presentados. Repasamos las propiedades bdsicas de las algebras
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de grupo £ ¥ las representaciones de grupos finitos ¥ recordamos algunos resultados so-
bre unidades de anillos de grupo con un énfasis en su relacién con la descomposicion de
YWedderburn de dlgebras de grupo. Los productos cruzados se presentan como construccicn
ssencial para la descripridn de las dlgebras centrales simples. Esta descripeidn estd asorciada
al llamado grupo de Brauer de un cuerpo. Fara comprender la estructura del grupo de
Brauer de un cuerpo numerico es conveniente empezar comprendiendo el grupo de Brauer
de los cuerpos locales. Esto también implica una mejor comprension de los indices Jocales ¥
de los invariantes de Hasse de dlgebras centrales simples, vistas como elementos del grupo
de Brauer de sus centros. Juntando esta informaridn local, obtenemos una descripeidn del
grupo de Brauer de un cuerpo numérico. Las dlgebras centrales simples que aparecen como
componentes simples de dlgebras de grupo forman un subgrupe llamando el subgrupe de
Schur. Esta es la parte del grupo de Brauer que estd directamente relacionada con esta
memoria. Acabamos el capitulo de preliminares recopilando algunos resultados sobre el

subgrupo de Schur.

La primera parte de la memoria, titulada “Descomposicidn de Wedderburn", contiene
dos capitulos gque presentan dos aspectos del método propuesto para el cdleulo de las com-
ponentes de Wedderburn: uno més tedrico ¥ otro mds téenico desds el punto de vista de la
implementacidn.

El Capitule 2 estd dedicado a la presentacién de nuestra aproximacion a la descom-
posicidn de Wedderburn de dlgebras de grupo. En la primera seceidn se presentan los resul-
tados titiles obtenidos por A. Olivieri, A. del Rio ¥ J.J. Simén en |OdRS1| para el cdleulo
de los idempotentes centrales primitives y las componentes simples de dlgebras de grupo
sermisimple de grupos finitos especiales que son monomiales y fuertemente monomiales, Usa-
rermos intensivarmente estos resultades ¥ basaremos el método constructivo del Tecrema de
Brauer Witt en este tipo de grupos. La segunda seccidn se centra principalmente en la
presentacion del resultado clasico de K. Brauer ¥ E. Witt, junto con una demostracion del
tecrema con un énfasis computacional. El objetivo principal es buscar una presentacién del
tecrema usando caracteres fuertemente monomiales para obtener una descripcidn precisa
y constructiva de las dlgebras ciclotdmicas del tecrema. Una demostracidn algoritmica del
Tecrema de Brauer Witt obtenida usando pares fuertes de Shoda estd presentada. Estos
resultados aparecieron publicades en |O1t2).

Sea ¢ un grupo fimite, ¥ un cardeter irreducible de & ¥ & un cuerpo de caracteristica 0.
El dlgebra de grupo FC tiene una finica componente simple 4 tal que » (A) # 0. Siguiendo
&l libro de Yamada |Yam|, denotamos esta components simple con Ay, F). Ademds, cada
componente simple de £ es de esta forma para algtn caracter irreducible ¥ de G El centro

de Ay, F)es & = F(x), el cuerpo de los valores del cardcter  sobre ¥ Ay, F) representa
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un elemento del subgrupo de Schur del grupo de Brauer de £. Bl Teorema de Brauer Witt
asegura que Ay, ) es equivalente Brauver a un dlgebra ciclotdmica sobre £, €5 decir un pro-
ducte cruzado [E(()/ £, 1) donde ¢ es una rajz de la unidad y todes los valores del 2-coclclo
T gon rafees de la unidad en E[¢). Presentarnos una demostracidn constructiva del Teorema
de Brauer Witt en cuatro pasos. El primer paso trata el caso fuertemente monomial, es
decir la descripeién constructible de la componente simple asociada a un cardcter fuerte-
mente monomial. Luego se presenta la parte gue da la reduccidén del problema a caracteres
fuertemente monomiales y después la existencia de tales caracteres fuertemente monomiales.
El 1ltimo paso proporciona la descripeidn deseada de la components simple Ay, £) como
dlgebra eguivalente Brauer a un algebra ciclotémica concreta usando la corestriccidn.

Las demostraciones existentes del Teorema de Brauer Witt [véase por ejemplo [Yam|)
estdan basadas en la existencia, para cada primo p, de un subgrupo pelemental de & que
determina la p-parte de una components simple dada hasta equivalencia de Brauer, pero no
ofrece un método algoritmico para determinarlo. Este subgrupo surge del uso del Teorema
de Witt Berman. Schrnid extendis en |Sch| el Teorema de Brauer Witt identificando tipos
precisos de grupos p-casi-elementales que son los grupos minimales a que uno puede reducir
gl problema usando este teorema. Bl que el Teorema de Brauer Witt no ofrezea un método
algoritmico para determinar secciones de (F aderuadas para el cdleulo del indice de Sehur
para grupos finitos arbitrarios sugirid la idea de considerar cascs particulares de grupos
para los gue se puede dar un método constructible. Alguncs de estos planteamientos son
los siguientes. En [Her2|, A. Herman considerd el caso de los grupos finitos resolubles
que son reducidos Clifford sobre un cuerpo numérico algebraico con respecto a un cardcter
irreducikble fiel. Para grupos con esta propiedad, se da una condicién tedrica gque hace gue
la p-parte del dlgebra de divisién de la componente simple sea generada de un subgrupo de
(' p-casi-elemental predeterminade, para cada primo p. Esto proporciona un Teorema de
Brauer Witt constructivo para grupos satisfaciendo esta condicién. Luego, en |Her§|, A.
Herman usa la teoria de las (-dlgebras con indices de Schur que fue desarrcllada en una
serie de articulos de A, Turull empezando con |Tur|, para obtener métodos comstructivos
para la demostracién del Tecrema de Brauer Witt.

Muestra atenciom se centra en establecer Jos resultados para cuerpos & los mds pequenos
posibles, como ()(x) para cada cardcter irreducible y del grupe & La razdn es que s
L es una extension del cuerpo F, entonees Alx, L) = Lix) ®ppy A, F) ¥, como conse-
cuencia, la estructura ciclotdmica de A4(x, F) hasta equivalencia de Brauer determina la
estructura ciclotémica de Ay, L) como dlgebra Brauer eguivalente al products cruzado
(L{x)[C) S E(x), ). Ladltima seccién del capitulo proporcicna un algoritmo tedrico para el
célculo de la descomposicién de Wedderburn de dlgebras de grupo usando la aproximacidn

algoritmica del Tecrema de Brauer Witt presentada.
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El algoritmo tedrico para el calculo de la descomposicidn de Wedderburn de un dlgebra
ciclica, introducide en el Capitulo 2, no es exactaments el que ha sido implementado. La
razon fundamental es gue existen alternativas mds eficientes en la bisgueda de Jas secciones
fque dan lugar a las componentes simples. En el Capitulo 3 se explican alguncs aspectos de
la implementacidn en el paguete wedderpa para el sisterna nformdtice CAP |BRKOOCAR].
El algoritmo funcional presentado es més apropiado para nuestros objetivos que el algo-
ritmo tedrico previamente presentade. En nuestra presentacion evitaremos algunos aspectos
téenicos del desarrollo del software ¥ nos centraremos en los aspectos matematicos gque so-
portan la estrategia de implementacidn elegida. Por tanto, el algoritmo explicado tamporco
a5 exactamente el real, pero estd mds cerca de &l ¥ proporciona un idea sobre los pasos
8 seguit para consegwir implementarlo. Esta version de wedderpa completa una version
previa del paguete. Incluimos una serie de ejemples gque dan una idea de la utilidad del
paguete, Los cdleulos de estos ejemplos se hicleron usando e] paguete. Algunos sjemplos
proporoiohan una descripeidn completa de la descomposicidn de Wedderburn del dlgebra
de grupo FC considerada. En otros cascs se da la descripeion de la componente simple
correspondiente a un cardcter irreducible del grupo &, La nueva implementacién consigue
calcular la descomposicidn de Wedderburn de un dlgebra de grupo semisimple £ para
aruellos cuerpos & con los que GAP 5 capaz de realizar cdleulos de forma efectiva, que son
esencialmente cuerpos de nimeros abelianos ¥ cuerpos fmitos. Para una mejor comprensién
de algunos aspectos del paguete, hemes meluido en el Apendice al final de la tesis &) manual
de wedderpa, Mos gustaria agradecer a todos los autores de wedderga por su contribucién
en &l desarrollo del paruete ¥ especialmente a A. Konovalovy por su ayuda en solucionar
problemas téenicos durante los procesos de programaciin ¥ conexion de los algoritmos. La
implementacién de esta parte nueva del paguete se realizo junto con 4. del Rio y las bases

tedricas se presentaromn en [OdR2).

La segunda parte de la memoria estd dedicada a las aplicaciones del cdleulo explicito
de la descomposicidn de Wedderburn de dlgebras de grupo que proponemaos, principalmente

para algebras de grupo de tipo Klemiano, grupos de unidades ¥ grupos de Schur.

En el Capitulo 4 se establecen aplicaciones del cdleulo explicito de la descomposicién
de Wedderburn de dlgebras de grupo al estudio de las dlgebras de grupo de tipo Kleinjano
K& v alas unidades de ¢ para & un orden en K. Estas dlgebras son dlgebras semisim-
ples racicnales finito dimensionales A tales gque &) grupo de unidades de un orden en A es
conmensirable con un producto directo de grupos Kleinjanos. Los grupos finitos de tipo
Kleiniana fueron introducides por M. Ruiz, A. Pita y A. del Rio en |Rui] ¥ [PARR| como una
clase de grupos finitos para los cuales se pueden utilizar métodos geométricos en espacios

hiperbélicos para dar presentaciones de grupos conmensurabkles con el grupo de unidades
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de £, Los grupos finitos de tipo Kleiniano fueron clasificados por B, Jespers, A. Fita, A.
del Rio, M. Huiz ¥ P. Zalesski en [JPARRZ| ¥ caracterizados en términes de la descomn-
posicidn de Wedderburn del dlgebra de grupo con coeficientes racionales. Se puede decir
que todeos los resultados conocidos que proporeionan una descripeidn muy explicita sobre
la estructura de L [EC) estdn inchiidos en el resultado que caracteriza los grupos finitos &
de tipo Kleiniano como aguellos para los que [EC) es virtualmente un producto directo
de grupos libres-por-libre. Bl concepto de grupo finito de tipo Kleiniano proviene de una
propiedad del dlgebra de grupo con coeficientes racionales que tiene sentido también cuando
se gustituye el cuerpo de los racionales por cualgquier cuerpo de nimeros. Las dlgebras que
cumplen esta propiedad se Jlaman dlgebras de tipo Kleiniano. El origen del estudic que se
incluye en este capitule proviene de una pregunta formulada por Alan Reld en la que se
cuestionaba qué se podria afirmar de los grupos de unidades de los anillos de grupo RC,
rara A el anillo de enteros de un cuerpo de mimeros K, en el caso en que K< es de tipo
Eleiniano. En este capitulo se clasifican las dlgebras de Schur de tipo Klemiano, como un
primer paso para caracterizar las dlgebras de grupo de tipo Klemiano., A partir de esta
clasificacién se conslguen extender varios resultados sobre grupos de unidades de £ al caso
en que &l anillo de enteros e5 sustituide por un orden & en un cuerpo de niimeros. Asf se
caracteriza cudndo el grupo de unidades de /B¢ es finito, ¥irtualmente abeliane, virtual-
mente un producto directo de grupos libres & virtualmente un producto directo de grupos
libre-por-libre. Esta parte aparecid publicada en |OdR3).

En el Capitulo & estudiamos el grupo de Schur de un cuerpo de nimercs abeliano, es
decir un subcuerpo de una extension ciclotdmica finita de 0. Los resultados de este capitulo
nacieron como mstrumentos para ser aplicados en el capitulo 6 en el que necesitaremos
conocer el maximo de Jos indices locales de las dlgebras de Schur para tales cuerpos K. El
tratamlento de ese problema se realiza considerando por separado las dlgebras de Schur de
indice una potencia de p, para cada primo p. Bl caso en que p es impar & (g € K habia
sido tratado por G.J. Jarusz en [Jand| ¥ el caso residual por JW. Pendergrass |Penl|. En
Tuestro andlisis de estos resultados ¥ sus aplicaciones al problema estudiado en la Seccidn 6.2,
hemaos descubierto que los resultados de Pendergrass son meorrectos como consecuencia de
errores €n los cdleulos de 2-cociclos. Eso nos obligd a repasar las demostraciones de Janusz
y Pendergrass obteniendo un tratamisnto nuevo. En nuestro tratamiento corregimos los
arrores de |[Penl| ¥ ofrecemos una aproximacién més conceptual que la presentada en |[Jan3]
¥ |Penl|. Para ello incluimos €l cuerpo K en un cuerpo ciclotémico especial, mayer que
gl eomsideradn por Janusz ¥ Pendergrass, que evita algunos cdloulos artificiales presentados
por ellos. Como consecuencia del Teorema de Benard Schacher, 5[/ = EB‘;;. 51K, donde
p recorre los primos p para los que K contiene (,, una raiz p-€sima primitiva de la unidad y

S5TH ), es la componente pprimaria de 5(K). Adernds, si A es un dlgebra de Schur ¥ 2 ¥
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A5 som dos primos de K tales &£, N0 = By N0 = r&, para un primo racional v, entonees log
indices Jocales de 4 en ) y A7 son lguales ¥ tiene sentide denctar este indice local comin
come e [A). Por tanto, para caleular &l maximo de los indices Jocales de las dlgebras de
Sehur com centre K basta caleular G,(r), donde p?el" = max{m, [4) : |4] € S[K),}, para
cada prime p con (, € K ¥ es un prime racional. Bl caso en gque » = co es ficll y depende
de que K esté incluide en K o no. El Teorema 5.13 proporciona un valor explicito de 8, (r],
para | caso en gue r es impar. Bl caso » = 2 se puede obtener utilizando resultados de
Jarmsz |Janl].

En el Capitulo 6 introducimos la nocidn de dlgebra ciclica ciclotdmica y estudiamos
algunos aspectos de sus propiedades. Un dlgebra ciclica ciclotémica s un dlgebra ciclica
(K[{)/K, o &), con ¥ £ ralees de la unidad. Obsérvese que un dlgebra ciclica ciclotdmica
25 un ilgebra gue tiene a la vez una representacidn como dlgebra ciclica ¥ como dlgebra
ciclotémica, Ademds, todo elemento del subgrupo de Schur estéd representade, por un lado,
por un dlgebra cicldtomica [por e Teorema de Brauer Witt) y, por otro, por un dlgebra
ciclica [por un resultado cldsico de Tecria de Cuerpos de Clase). Sin embargo, no es cierto
en general que todo elemento del grupo de Schur esté representado por un dlgebra ciclica
ciclatémica.

En la primera seccidn estudiamos cudndo dos dlgebras ciclicas ciclotdmicas sobre cuerpos
de mimeros abelianos son isomorfas. La motivacién principal de este estudic estd basada en
sus aplicaciones al estudio del grupo de automorfismos de un dlgebra de grupo v al Proklema
del Isomorfismo para dlgebras de grupo. Larazén es que &) problema de deserikir el grupo de
automorfismos de un dlgebra de grupo semisimple £ se reduce a dos problemas: primero
calcular la descomposicion de Wedderbwrn de £ y, segundo, decidir que parejas de esta
descomposicién son isomorfas. También el Problema del [somorfismo entre dos algebras
de grupo se reduce obviamente a decidir si las componentes simples de dichas dlgebras
pueden parearse en parejas isomorfas. Ohsérvese que el concepto de isomorfisme agui es el
de isomorfismo de anillos, ¥ no de isomorfismo de dlgebras. Un método algoritmico para
calcular la descomposicion de Wedderburn de Q5 para & un grupo metaciclico fue obtenido
en [OdR52|. Dicho método proporciona una descripeién precisa de cada componente simple
en términos de Jos pardmetros numericos gue determman el grupo, es decir m, %, ¥ 5 que
aparecen en una presentacidn de la forma & = (g, ba™ = 1,67 = o bab™! = o). Sin
armbargo, decidir si dos componentes simples son Isomorfas es més difieil y en |OdRS2| sdla
52 consigue dicho objetivo para el caso en que n es el producto de dos primes. El caso en
fue 1 es primo habfa sido estudiade antericrments por A. Herman |Her3|. Dos dlgebras
simples som isomorfas como dlgebras si ¥ sélo 51 tienen e mismo centro, el mismo grado ¥
los mismos invariantes locales. En tal caso las dlgebras son isomorfas como anillos, pero el

reciproco de esto no es clerto. En la primera seccién del Capitulo 6 se demuestra que dos
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dlgebras ciclicas ciclotdmicas sobre un cuerpo de mimeros abeliano son isomorfas siy sdlo si
tienen el mismo centro, el mismo grado ¥ la misma lista de los indices locales para todos los
primos racicnales. Se proporciona un ejemplo que muestra gque este resultado no se puede
extender a dlgebras ciclotdmicas arbitrarias.

Las clases del grupo de Brauer de un cuerpo K gue contienen dlgebras ciclicas o
clotdmicas generan un subgrupe CC(H) del subgrupo de Schur S57K). En multitnd de
casos este subgrupo es exactamente 2] subgrupo de Schur. Por ejemplo, eso es asi 51 K es
una extensitn ciclotémica de los racionales. Sm embargo, como mostramos en la segunda
seccidn del Capitulo 6, OO K) # 5[K), en general. Enesta seccidn estudiamos |a distancia
entre CO(K) v 5[K). Més precisamente, caracterizamos cuando el indice entre estos dos
subgrupos del grupo de Brauer es finito, en términes de la posicién relativa de K en el
reticulo de las extensiones ciclotémicas de los racionales. Mds explicitamente, se considera
una torre de cuerpos ) C© K C P(C), donde § es una raiz de la unidad que se especifica
de forma precisa en funcidn de . El que |S{K) : OC[K)] sea finito o no depende de
que cada elermento de Gaf[Q[() /(D) cumple una propiedad gque es ficil de comprobar me-
diants cdleulos en los grupos de Galais Gal[Q(C) /) ¥ Gal((P(g)/ K [véase Teorema 6.8).
Mostremos varios ejemplos cque cubren todos los casos razonables. Los resultardos de los
capitules 5 ¥ 6 fuercn realizados junto con A. del Rio ¥ A. Herman y se presentan en los
artienlos |HOdRL|, |HOdR2| v |HO4RS|.

La memoria inclhuye un Apéndice que contiene el manual de wedderga. Dicho manual se
puede bajar junto con &l paguete en la pdgina ktop: //www . un. es/adelrio/wedderga . htn,
Junto con la tesis viene incluide un ©D con &) paguete mformatico wedderga.

Cerramos la memoria con una breve resefia de conclusiones sobre los avances de este

trabajo en la que ofrecemos algunas perspectivas para desarrollos futures.



Notation

Throughout ¢ is a group, A an associative ring with identity, & a fleld, £ < £ a field
extension, 4 a central simple K-algebra, p a prime number and » a character of &, ¥e set
the following notation.

Aut[d) automorphism group of &

Ceng [H] = centralizer of a subgroup H of &

Ne(H) = normalizer of a subgroup & of &

x¥ = glx), where ge Aut[F) and r £

¥ = conjugate g lrgof red by g e &

HY = lg'zg reH}, where H < Cand g

g = order of the element g = &

Y = commmtator x yT  ry of the elements x,p e &

Cn = complex n-th root of unity

NaH = semidirect product of the group N by H

Char[d) = sget of complex characters of &

Irr (€ = sget of rreducible complex characters of &

¥ = restriction of the character y of & to some subgroup A of

N = character induced to & by the character ¥ of some subgroup of &
L[] or R* = group of units of A

O = ting of algebraic integers of a number fleld K

|L: K| = degree of the extension L < K

Gal[ L/ K] = QGalols group of the field extension L < K

el = group ring of ¢ with coefficients in &

R0 = crossed product of & with coefficients m A, action @« and twisting =
K = group algebra of & with coefficients in K

[LfH,T) crossed product algebra LS Gal[L/ K, where L/K is finite Galols,

@ i the natural action and = is a 2-cocycle
cyclotomic algebra over K

L, a) = cyelie algebra over K, with Gal[L/K) = (5}, a g K*
(?h = quaternion algebras K|i,ji° = a,j? =6, ji = —4j], with ¢, 6 € K*
H[ K = ruaternion algebra '[_].r;’_] )
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NOTATION

field of character values over K of x [le. K(x(g) :aed))
primitive central idempotent of TG determined by » [fe. x(e(x)) #0)
primitive central idempotent of Q& determined by

Brauer group of K

relative Brauer group of K with respect to L

eguivalence class in the Braver group contamning the algebra A
sirnple component of KO corresponding to w

Schur subgroup of the Braver group Br( K]

subgroup of S[H) generated by cyclic eyelotomic algebras over &
n-th cohomology group of & with coefficients in M

restriction map

corestriction or transfer map

inflation map

degree of A

exponent of A4

Schur index of A

Schur index of ¥ ower K

p-local mdex corresponding to x

Hasse irovariant of 4

p-adic Mtegers

ramification index of L/K at the prime P

residue degree of LK at the prime P

norm of the extension L/ K

gets of natural numbers, integers, rational numbers, real numbers
and complex numbers respectively



Chapter 1

Preliminaries

In this chapter we gather the needed backpround. We establish the notation and we intro-
duce the basic concepts to be used throughout this work., We also recall some well known
results that will be needed in the subsequent chapters. In maost cases we will not provide a
proof, but we will give classical references where it can be found. The reader who is familiar
with the concepts of this chapter can only concentrate on the introduced notation.

1.1 Number fields and orders

In this section we present classical information on number field and crders. These fields are
the base flelds in most of our results. The results in this section are mainly from |Mar|.

Definition 1.1. A falgebradc) number fleld K s a finite extension of the field ) of rational
T bers,

Ewvery such field has the form (J[a) for some algebraic number o £ €. A complex number
is called an alpebratc inéeger i it 1s a root of some monic polynomial with coefficlents in
Z. The set of algebraic integers in T 15 a ring, which we will denote by the symbol 4. In
particular &M K is a subrmg of K for any number fleld K, that we refer as the number ring
corresponding to K or the ring of integers of K.

Let K be a number field of degree 5 over ). There are exactly n embeddings [i.e. field
horamorphisme) of £ in C. These are easily described by writing £ = [a) for some o
and observing that o can be sent to any one of its n conjugates over (), l.e. the roots of the
minimal polynomial over [). Each conjugate 5 determines a unique embedding of K in C
by fla) — f(F) for every f € Q|X], and every embedding rmust arise in this way since o
must be sent to one of its conjugates.

We refer to the field homomorphisms £ — B as real emebeddings of K. A pair of compler
embeddings of K is, by definition, a pair of conjugate field homomorphisms £ — C whose
images are not embedded in B

Let n be a positive mteger. Throughout the thesis, (, will dencte a complex primitive
root of unity of order . The fleld Q[{,) is called the n-th cyclofemic field L. Kronecker

23
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(1821 18B1) observed that certain abelian extensions [l.e. normal with abelian Galols group)
of imaginary quadratic number fields are generated by the adjunction of special values of
automorphic functions arising from elliptic curves. Kronecker wondered whether all abelian
extensions of A could be obtained in this manner [Kronecker's Jugendtraum]. This leads to
the fquestion of *finding” all abelian extensions of number fields that s nowadays the study
object of Class Field Theory., Kronecker conjectured and Weber proved:

Theorem 1.2 (Kronecker Weber). Buvery abelion exfension of () 45 confained in a cy-
clotomic extension of 1)

Mumkber rings are not always unigue factorization domains, that is, elements may not
factor uniguely into irreducibles. However, we will see that the nonzero ideals in a number
ring always factor uniquely mto prime ideals. This can be regarded as a generalization of
unigue factorization in £, where the ideals are just the principal ideals (1] and the prime
ideals are the ideals [p), where p is a prime integer. Number rings have three special prop-
erties and that any integral domain with these properties also has the unique factorization
property for ideals. Accordmgly, we have the followimg definition.

Definition 1.3. A Dedebind dormadn 15 an mtegral domain & such that the following con-
ditions hold:

(1) Ewery ideal is finitely generated;
(2) Ewvery nonzero prime ideal Is a maximal ideal;

(3) fis integrally closed in its fleld of fractions X, that is, if o/ @ € K is a root of & monic
polynomial over &, then off € 7, i.e. 3 divides o in A.

Ewvery ideal in a Dedekind domain is uniquely representable as a product of prime ideals
and every number ring is a Dedekind domain, hence the ideals m a number ring factor
uniguely into prime ideals.

There are example of primes m & which are not irreducible in a larger number ring.
Fer example 5 = [2 +4)(2 — %) in Zli|. And although 2 and 3 are irreducible in &|/=3],
the corresponding principal ideals [2) and [3) are not prime ideals: [2) = (2,1 + /—58)?
and [3] = [3,1 + +=5)(3, 1 — /=5). This phenomenen is called splitting. Slightly abusing
notation, we say that 3 splits into the product of two primes in Z|/=3| [or in J|/=3], the
ting being understood to be & N Q| =5 = Z|/—5].

We consider the problem of determining how a given prime splits in a given number field.
More gemerally, if P is any prime ideal in any ting of integers & = 41 K, for £ a muomber
field, and if £ is a number field containing £, we consider the prime decomposition of the
ideal generated by P in the ring of iIntegers & = 4N L, which is £5. The term “prime” will
ke used to mean “non-zero prime ideal”.

Theorem 1.4, Let F be o prime of @ ond @) o prime of 5. Then @ PS5 4if and only o
Q> FS fondonlyif JNA=Fifand onfy f QN K = F.

Yher one of the previous equivalent conditions holds, we say that @) Kes above [or cver)
F or that F fies under [or diwddes) ). It can be proved that every prime ¢ of 5 lies above
a unigue prime £ of & and every prime P of & lies under at least one prime ) of 5.
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The primes lying above a given prime £ are the ones which ocour in the prime decom-
position of PS5, The exponents with which they ocour are called the ramification indices.
Thus, if Q° is the exact power of ) dividing F5, then e is the ramification tnder of O over
P, denoted by e[} P) or by e[ Lf K, P).

Exaraple 1.5. Let & = F and 5 = Eff|. The principal ideal {1 — <€) in 5 lies over 2 [we
really mean 2Z when we are writing 2] and is a prime ideal. Then 25 = [l - 1)?, hence
e([1 —1) 2) = 2. On the other hand e[} p) = | whenever p is an odd prime and the prime
) lies over .

Mare generally, if B = £ and § = E|(n|, where m = p7 for some prime p € E, then
the principal ideal (1 — n) 5 is & prime ideal lying over p and e[[1 — () ) = w[m) =
p"~!p — 1), where p denotes the Euler function. On the other hand, e[Q) ¢) = | whenewer
g is a prime different from p and ¢ lies over g.

There is another important number associated with a pair of primes £ and ), Q) lying
above £ in an extension K = L of number fields. The factor rings G P and 5/ are fialds
since P and ) are maximal ideals. There is an obvicus way in which £/ F can be viewed
as a subfield of 5/ the inclusion of & m & induces a ring homomaorphism £ — 5/ with
kernel RN} = P, so we obtain an embedding £/ F — 5/). These are called the residue
closs flelds associated with P and ) and are denoted by "= g/ F and 5= S0, We know
that they are finite fields, hence 5 is an extension of finite degree [ over F. Then fisrcalled
the dnertio degree of @ over P and is denoted by f[Q F) or f(L/K, P

Exaraple 1.6. Let again @ = £ and 5 = F|¢| and consider the prime 2 in £ lying under
the prime [1 —4) in &ff|. 5/25 has order 4, and (1 — 4) properly contains 25, therefore
S/[1 —14) st be a proper diviser of 4, and the only possibility is 2. So &/F and 5/¢) are
both fields of arder 2 in this case, hence f = 1. On the other hand, 35 is a prime in 5 and
535 =850 f[353)=2.

Theorem 1.7. Letn be the degree |L: K|, for K, L, B, 5 as before and let 4, ..., ), be the

primes of 5 fying over o prime P of K. Denste by ey, ..., e, and [, ..., fr the corresponding
ramification fndices and fertiol degrees. Then ELJ e;fi = 1.

Corollary 1.8, With the above notation, if |L: K| = 2, that i3, L 45 o guadratic erfension
of K, there are only three possibifities for the numbers e; and f;:

(1 er=ea=1, fi=fo=1, P=01Qa, with Q) # o ond we say that P aplits;
(2) e=1, f=2 P =1} and we say thot P {3 inert;
(3l e=2, f=1, P=3? ond we say that P ramifies.

The discriminant O of a quadratic extension [J[/d), with d a square-free positive integer
is O =d, if d = 1] mod 4), and D = 4d otherwise. The three options of Corollary 1.8 that
give the type of decomposition of a prime number p are determimed by the discriminant.

Theorem 1.9. Letp be a prime number and lef L be o quadratc exftension of the rationales
uréh diserimnant O, Then

(1) p romifies in L dif and only of p divides D;
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(2) ffpisodd and coprime with D, thenp splits in LAf and endy4f D ds o squore modulo p;
(3) ffp =2 and D is odd, then 2 splits in L 1f ond only if D 45 o squore moduls B,

If & is a normal extension of £ and P is a prime of @ = AN K, the Galois group
Gal[Lf K] perrrutes transitively the primes lying cwver £, that is, if § is such a prime and
¢ € Gal[L/K), then ¢[¢)] is a prime ideal in #(5) = 5, lying over 5[FP) = F, and if
and @' are two primes of 5 lying over the same prime P of A, then ¢[@) = @' for some
e Gal[L/ K. Moreover, e[ Pl =e()' Pl and f[Q P) = f(Q' P). Hence, in the normal
case, a prime P of & splits nto [QhQe--- )% in 5, where the ¢J; are the distinet primes,
all having the sarne inertial degree f over P. Moreover, ref = |L @ K| by Theorem 1.7

Definition 1.10. Let K, L, K and 5 be as before. We say that the prime F is unromified
in LK ife(L/K, P1 =1 and 5/ is a separable extension of £/ P for all the distinct primes
o} of 5 lying above F. A prime P of A is ramdfied in 5 [or in L) if and only if e} Pl > 1
for sorme prime o) of 5 lying above £, [In other words, PS5 is not square-free.) The prime
F is fotally romified in 5 or in L if and only if PS5 = 0%, where i = |L: K.

Lemma 1.11. ff A 5 o Dedefind domatn with gquobient flefd K, P 45 o prime of £ and F
does not divide i, then P is unramidfied dn the exfension K[Ga) of K.

Definition 1.12. Let K, L, A and 5 be as before and fix a prime £ of A. A finite
extension LK of number fields is called: unramvified ot P if gfﬁ is a separable extension
and e[ L/ K, P) = 1; completely [or fofolly) romiffed of P f{L/K, P) =1 or equivalently
5=R tarmely ramified af P if E;’ﬁ is a separable extension and p te(L /K, P) where p > 0
is the characteristic of the finite field & wifdly ramified af F if § = B and the degres of the
extension LK 1s a power of p, which is the characteristic of .

We now introduce the notion of f-order in a finite dimensional K -algebra, for £ a
Dedekind domain with quotient field &

Definition 1.13. An A-onder in the finite dimensional K-algebra A is a subring A of 4
which is a finitely generated A-module and containg a K-hasis of 4, 1. KA = 4. A
mardmal f-order m A is an f-crder which is not properly contained in any other f-order
in A.

Example 1.14. Let us give some examples of orders. Let K be a number field and A its
ring of integers.

(1) R is the unigue maximal f-order of K.
(2) M,[f) is a maximal R-order in the algebra M, (K.

(3) If & iz a finite group, let B be its group ring over & and K its group algebra over
i [for the definitions see the next section). Then RC is an A-order in Kd.

We say that two suberoups of a given group are commensurable if their intersection has
finite index in both of thern. The following lemma from |Seh| offers a useful property in the
study of units in group rings, as we will see in a fortheoming section dedicated to ther.

Lemma 1.15. ff A ond A" are fuie orders in o findfe dimensiono K-olgebra, then the
groups of wndts of A ond A" ore commensuroble, Therefore, if 5 43 any order in o group
algebra K| then the unif groups of 5 and AC are commensurable,
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1.2 Group algebras and representations

Mow we mtroduce group algebras, or more general group rings, as main algebraic structures
in this work.

Definition 1.16. Let A be a ring and & a group. The group ring A0 of & with coefficients
in A is defined as the free @-morule having & as basis, with the product defined by

g1 -Tege = [Firad{giga ),

for my,mo € & and g1, 90 € & and extended by linearity. Therefore, &G is the rimg whose
alements are all formal sums ZEEG rqg, with each coefficient r; € R and all but finitely many
of the coefficients equal zero. Addition is defined component-wise and the multiplication is
given by

Sorag | U ws] = (Z mqu) 3

ity s el hZuv=g

If £ =F15a field, then ¢ is called a group alpebra.

Ome can think of & and & as heing contained in 8 through the applications & — rl 4
and g— lg, for € A, g € & and 1z the identity of &, The elemant 11y is the identity of
A and 1t is denoted by 1.

The function w : £G — A given by decrgg — dec rg 15 & ring homomorphism
called the augmentation of AC. [is kernel

Ar(G)=1{Y rpge RG: Y ry=0}

ges gED

is called the ougmentation idea of R, More generally, for & a normal subgroup of &, there
exists a natural homomaorphism we @ 80 — R[C/N] given by deﬁ-‘ Tall — EHEGW‘EQ‘N.
The kernel of wpy 15 given by

A[G V) ={Y mueeRE:D> rgp=0fralged}=> RGn-1= 3 [n-1)RG
s e e nEmN
In particular, Az [ = Az, O,
If H 15 a finite subgroup of &, we denote H = M c . Notice that H is an

idempotent of QG Moreowver, # is contained in the center of ()& precisely when f s
normal in &&. In this case, it can be showed that Ag(&, H) = {o € Q& ol = 0}, hence

QIC/H) = (QA)H.
YWe are mainly interested in a special type of group algebras, namely semisimple group

algebras £, The semisimple group algebras are characterized by the following classical
theorem, which can be given even maore generally, for group rings.

Theorem 1.17 (Maschke). The group ring AC is semisimple f and only if A 15 semisim-
ple, (7 15 fintte and the order of & 45 o unit in A,
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The theoretical description of the structure of semisimple group algebras is given by the
followmg classical theorem.

Theorem 1.18 (Wedderburn Artin}. Bvery semistmgle artinian ring 45 o divect sum of
madrir rings ouer dursion MRgs.

The decomposition of the algebra in this way is usually called Wedderburn decompoesition
and the simple components are called Wedderburn components. A more structural descrip-
tion of the Wedderburn components of a semisimple group algebra in terms of cyclotomic
algebras up to Brauer equivalence in the corresponding Brauer group is the object of the
second chapter of the thesis.

The simple components in the Wedderburn decomposition of a group algebra FC are
parameterized by the irreducible characters of the group &, We present some basic informa-
tion about representations and characters of a finite group & and of a corresponding group
algebra FC.

Definition 1.18. If ' is a finite group and £ is a fleld, then an F-representation of Cis a
group homemorphism g: & — GL{V], where ¥ is a finite dimensional F-vector space called
the representation space of g, The degree deg(p) of the representation g is the dimension
dime[V¥]) of V. A matrie F-representation of I s a group homomerphism g: ¢ — GL,[F)
for some positive nteger n. The integer m 1s the degree of the representation and is de-
noted by deg(p). Using lirnear algebra, one can establish an obvicus parallelism between
F-representations and matrix F-representations. We use vectorial or matricial representa-
tioms as suitable for each situation.

If @is & finite group and £ is a fleld, denote by rep [0 the category of F-representations
of &, Similarly, one can define the category of matrix F-representations of &, which is
equivalent to the category rep (7). Note that every F-representation p: & — GL[V)
of a finite group extends wmiquely by F-linearity to an algebra representation 7 : £ —
Endg(1], and so the category rep (@) of group representations of & is equivalent to the
category rep[ O of representations of the group algebra A [ie. of left FG-modules which
are finite dimensional over F).

Definition 1.20. The f-character of the group & afforded by the matrix S-representation
g1 — GL,(F) is the map x : & — F given by x (] = tr{p(g)), where tr denotes the trace
map from GL,(F) to F.

An F-representation of & s drreducible if the associated module is simple, that s, it is
non-zero and the only submodules of it are the trivial cnes. An F-irreducible character is a
character afforded by an rreducikle representation.

If # =1, the field of complex numbers, we name the C-characters simply characters.
Henea, in what follows, the word “character” means C-character unless otherwise stated.
Denete by Irr(&) the set of all irreducible characters of & If x is any character of &
afforded by a representation corresponding to a CC-module M, we can decompose M into
a direct sum of rreducible modules. [t follows that every character x of & can be uniguely
expressed in the form y = Ex;elrrfﬁ'}ﬁi}{i' where 71; are non-negative integers. Those x;'s
with 1; » 0 are called the irreducible constituents of ¥ and the n;'s are the multipicities of
¥; a8 constituents of .
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If % is a character of &, then x (1] = deg(p), where p s a representation of & which
affords x. We call % (1) the degree of ». A character of degree 1 is called fnear choracter.
Let £ be a subfield of the complex fleld C and » be a character. We write F(x) to denote
the minirmal extension of & that contains the character vahes x([g) for g € & and we call
it the field of character values of ¥ over F. A field ) C F C C is a splitting fleld for & if
every irreducible character of & is afforded by some F-representation of &

Theorem 1.21 (Brauer). Let (7 hove exponentn ond let F = QJ[(,). Then F 45 o splitting
fleld for &

If H is a subgroup of &, F is a field and p is an F-representation of A with associated
module =M, then the induced represendotion of p to O, denoted by 961 is defined as
the associated F-representation to the FC-module FO @p g M, denoted MC. If 4 is the
character afforded by g, we define the dnduced character of 4 to &, denoted ky %, as the
afforded character by p=. A straightforward caleulation shows that

) =3 wla®), [1.1]

reT

where T 15 a left transversal of & n & and -t_.'l?[h] = {w[hj ! ?f het
o, ifhe H.

Let ¥ be a complex irreducible character of the group & and £ a field of characteristic
zern. The Wedderbumm component of the group algebra £ corresponding to y is the unigue
simple ideal F of £ such that » [f) # 0. Following |Yam|, we denote this simple cormponent
by Afx, F). The center of the simple algebra Ay, £) is F = F[x], the field of character
values of » over £ and Ay, F) represents an element of the Schur subgroup of the Brauer
group of F as we will see in a subsequent section of this chapter. If L is a field extension
of F then Ay, L) = L{x) &g Ay, F) and, therefore, the structure of Ay, F) 0p to Brauer
equivalence determines the structure of Ay, L). Henee, we try to consider £ as small as
possible, for instance ).

The number of facters n the Wedderburn decomposition coincides with the number of
irreducikble F-characters of & and, egquivalently, with the number of Isomorphism classes of
simple FC-maodules. In particular, the number of fartors in the Wedderburn decomposition
of O is equal to the cardinality of Irr[C) and to the number of conjugacy classes of I The
nurnber of irreducible rational characters is given by the following theorem [e.g. see |CR|).

Theorem 1.22 (Artin}. The number of trreducible rational characters of o fintte group O
for equivalently the number of simple components fn the Wedderburn decomposttion of 0]
cotnctdes with the number of congugocy classes of cyclic subgroups of the group G

Recall that an element e of a ring is a primitive central idempotent if e? = e #£ 0, e is
central and it cannot be expressed as a sum of central orthogonal idempotents. If 3 s an
irreducible complex character of the group &, then by the primitive central idempotent of
CC associated to y we mean the unigue primitive central idempotent e of CC such that
x(el # 0, and we denote it by ey). Similarly, for F & fleld of characteristic zero, the
primitive central idempotent of F& associated to x, denoted ep(x), s the unigue primitive
central idempotent of FG such that x(ee(x)) # 0
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The following propositicn is a classical result of character theory for the computation of
the primitive central idempotent e(x).

Proposition 1.23. Let & be o findte group ond x € Irr[(). Then e(y), the primitive centrol
tdempotent of OC associofed fo v, 15 giuen by the formulo

e(x) = %]ZMQ“]Q- (1.2]

qEs

By the orthogonality relations for characters one has that x(e(x)) = x (1] and 4 (e(x)] =
0 for any irreducible complex character 4 of the group & different from .

For the computation of the primitive central idempotents of A, with & a field of
characteristic zero, the classical method is to calculate the primitive central idempotents
g[x] of CC associated to the irreducible characters of & and then sum up all the primitive
central idempotents of the form e(r o %) with ¢ 2 Gal[F(x)/F) and x £ Irr[(f) [see 2.
|Yarn|).

Froposition 1.24. for I a findfe group and % on frreductble compler character of O, ep(x]
15 given by the formula

gr(x) = > g[x") (1.3)

reCal(Fixi/F)

where 7 {5 the character of O gluen by %7 (o) = ¢(x[g)), for g e &,

The description of the simple components in the Wedderbarn decomposition of a group
algebra (Y takes a nice form in the case of strongly monomial groups. These types of groups
are also main mgredients in the proof of the Brauer Witt Theorem that we present m the
second chapter. The strongly monomial groups are particular cases of monomial groups
and are maore general than the abelian-by-supersohvable groups. Some of the following
definitions can be given for arbitrary groups but we are only interested in the finite case so,
urless otherwise stated, throughout & is & [finite] group.

We start by presenting some classical information about monomial characters.

Definition 1.25. A character y of & is called monomial if there exist a subgroup H =<
and a linear character i of H such that ¥ = #%. The group & is called monomial or
M-group if all its rreducible characters are monomial.

In some sense the monomial characters are the obvious characters of a group. MNotice
that if % : ¢ — C* 15 a linear character and &£ = Kery, then '/ K is isomorphic to a finite
subgroup of C* and hence O/ K s cyelic. Moreover, if | K| = n and g € 7 is such that
the image of g m (/K is a generator of &f K, then every element of ¢ has a unique form
as gk fori=0,...,5— 1 and k € K, and x[g*k) = %, where x[g) = ¢ is an n-th primitive
root of 1. Conversely, if & 15 a normal subgroup of & such that & K is cyelic, say of order
i, and if & = (g, K}, then for every n-th primitive root of 1, say ¢, there is a unique linear
character x of & such that x(g) = and &£ = Kery.

A criterion for the rreducibility of monomial characters is given in the following theorem
of Shoda |Shal.
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Theorem 1.26 (Shoda). Lef i be o fnear character of o subproup H of & Then the
induced character % s frreducible if and only if for every g € Oy H there ewists h e HN HS
such that P(ghg™') £ w[A).

A natural method to construct rreducible characters of a given finite group & is to
take the cyclic sectlons of &, that is, the palrs of subgroups [H, K) of & such that & is
nerral in A and A7K is cyclic, then fer each cyelic section (M, K) comstruct all the linear
characters x of A with kernel /, and finally take the induced [meonomial] character. Some
of these monomial characters are irreducible [later on we call these sections Shodo podrs
by connection with Theorem 1.26 due to Shoda). Taking all these rreducible monomial
characters we have a bunch of irreducible characters of &, For many groups these irreducibkle
maonomial characters amount to all the irreducible characters, for example this is the case
for any abelian-by-supersolvable group. In other words, any abelian-by-supersolvable group
is monomial. Unfortunately, not every group is monomial. The smallest example of a non
monomial group is a group of order 24 given in the next example from [Hup|.

Example 1.27. The special linear group over the finite field Fy
SLQ[Fg] = {,.dl = GLQ[JF:]] : dEt[.nq] = 1} o Qg ) 031

where (Jg = (x, %) 15 the quaternion group, O = (a) and #* = ¢ and 3* = =y, is the only
non monomial group of order 24, More generally, if & is a finite group containing a normal
subgroup or an jsomorphic image isomorphic to SLa(Fg), then & is not monomial.

The following two results of Taketa and Dade [e.g. see |CR|) show that the class of
monomial groups is closely related to the class of solvable groups.

Theorem 1.28 (Taketa). BEwvery menctmiol group i soluable,

Theorem 1.29 (Dade). Fuery selvable group {5 dsomorphic fo o subgroup of o monomiol
grou,

As a consequence of Dade's Theorem and Example 1.27, the class of monomial groups
is not closed under subgroups. On the other hand, it is easy to see that the class of
monomial groups is closed under epimorphic images and finite direct products. Dade's
Theorem is seen by Huppert as an evidence that there is no “hope to obtain structural
restrictions for monomial groups, beyond the solvability”. It is also mentioned in |[Hup| that
a group thecoretical characterization is unknown. However, A. Parks has recently given such
a group thecretical characterization, maybe not very satisfactory, m terms of some pairs
of subgroups which are exactly the Shoda pairs |Park|. An important class of examples of
monomial groups s that of abelian-by-supersolvable groups.

Definition 1.30. A group 7 issaid to be superscluable if it has a series of normal subgroups
with cyclic factors. An abelion-by-supersofuable group is a group & having an abelian normal
subgroup /N such that &fN s supersohvable

A group 15 called mefabefion if it has an abelian normal subgroup & such that GV
is abelian, or equivalently, if (¥ is abelian. 7 is said to be a metacyelic group if it contains
g cyclic normal subgroup & = (a) such that &N = (b)) is cyclic. In this case, (¢ has a
presentation with generators and relations as follows:

=i, ba™ = lib_]ab:a",b”:a*},
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where 1,1, 1, 5 are integers that satisfy the conditions ged(rm) =1, mr? - 1, msfr - 1).

Definition 1.31. Let & be a field of characteristic 0. The group &' s F-elementary with
respect to o primep if & = &« P, where ' 13 a cyclic, normal subgroup of & whose order is
relatively prime to p and P is a p-groups and if & = (¢}, ( is & primitive ' -th root of unity
and ¢* is conjugated to of in & then there exists ¢ € Gal(F([{)/F) such that o[(*) = 7.
The group ¢ 15 F-eglementary if it is F-elementary with respect to some prime .

The Witt-Berman theorem is a generalization of Brauer's theorem on mduced characters
to the case where the underlying field & is an arbitrary subfield of the complex field C.

Theorem 1.32 {Witt, Bermann). for F o subfield of C, every F-charocter of & ds o
F-fnear combination Ziaiﬁfj with oy © & and the 6 5 are F-characters of F-elementary
subgroups of

1.3 Units

Fer a ring A with unity 1, we denote by L[ R) or A° the unif group of A, 1.2, the group
of invertible elements in £ The knowledge of the unit group of an integral group ring
Z of a group & is a useful tool i the investigation of the group ring £& and has been
intensively studied. However, it seams that a complete description of the unit group in
terms of generators and relations still seems to be a difficult task, even for special classes of
ETOUPSE.

The study of units of group rings relies i many situations on the Wedderburn decom-
position of the corresponding group algebra. We follow this approach in our research of the
applications of the explicit Wedderbum decompaosition that we provide.

A natural appreach to study L[EC) is to consider £ as an order in the rational group
algebra (&, This idea comes from the commutative case where the ring of algebraic integers
O ma number field K is an order for which the unit group is completely described in the
followmg famous theorem.

Theorem 1.33 (Dirichlet Unit Theorem). Lef K be a number field of degree | : Q] =
1 + 2ra, where K has oy real and ro pairs of compler embeddings. Then

U(Ox) = F x C,

where B ds a free abelion group of rank v + 10 — 1, and O 45 a finde cyclic grouy momely
the group of roofs of unity in K ),

A basis of a free abelian group & satisfying the conditions of Theorem 1.33 is called
a set of fundomental units of K. In general, there is an algorithm for the construction of
g fundamental set of units presented in |Bo5|. Mereover, in the special case of the n-th
eyclotormic fleld K = (Q[(a), where (, denotes a primitive nth root of unity, the eyelotomic
umits [1 — 31/l — (), where ¢ i5 a natural number greater than one and relatively prime
to 12, generate a subgroup of finite index in My ], Note that in this case we have that
O'w = E|{a|. The Dirichlet Unit Theorem was generalized to mtegral group rings of finite
abelian groups by Higman [see for example |Seh, Theorem 2.9).
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Theorem 1.34 (Hipman). Let & be a finite abelian group. Then
HED) =20 % F,

where & 45 o findtely generated free abelion group of rank %[ O+ 1 — 2+ 1), where 7ig
denctes the number of elements of order 2 and ¢ the number of cyclic subgroups of

In particular, it follows that this unit group U4[2) is finitely generated |BH|. In fact,
the unit group of any F-order [ in a finite dimensional (J-algebra is finitely presented. This
follows from the fact that IH[C) s a so-called arithmetic group. For a rigorous definition of
this notion we refer the reader to |Hum|. However, specific generators of a subgroup of finite
index are not known and only for few examples one has managed to describe them, see for
exarnple |[JL|. Unformmately, there does not exist a general structure theorem covering the
group ring case of arbitrary finite groups.

Theorern 1.35 (Hartley-FPickel). ff the group O i3 nedther obelion nor Somorphic io
e = OF for some non-negafive infeger n, then U[(EL) contoins o free subproup of rank 2.

We present now some examples of units of &, The elements of £ of the form g with
g € (& are clearly units, having the inverses £57', These units are called frivial There are
not too many general methods to construct non-trivial units. ¥We mention two mportant
types of units. First, we introduce some notation. Given an element g € &, denote by 7 the
surn in &0 of the elements of the cyelic group (g}, that is, if n is the crder of g, then

] .
=3 g.

i

1

1
o

The bicyclic units were introduced by Ritter and Sehgal. They can be constructed as
follows.

Definition 1.36. Let g,k € 7 and let 1 be the order of g. Notice that [1-glg =g7(l-g) = 0.
Then

tgn =1+l —glall +g+8 + -+ 471 =1+ [1 - g)h7,

Yprn =L+ (L g +g° +--+g" " h(l —g) = L+ BRI - g),
have inverses, which are respectively

ugy =1 (1 - g)4g,
w;L =1-3h[l - g).

The units ug p and vg s are called bicyelic wnits,

Notice that uge = 1 if and only if vgn = 1 if and only if & nermalizes (g). Hence,
all the bicyclic units are 1 1f and only if all the subgroups of & are normal, that is, & is
Hamiltonian. In particular, the bicyelic units of L[ 27 are trivial for & an abelian group.



34 CHAPTER !. FPRELIMINARIES

Definition 1.37. The Boss cyclic umnits are defined as

1 —+4™

b=blgimul=[l+g+---+57 1"+ — 3

where g € & has order m, 1 < ¢ < m is coprime with m and ™ =1 mod n.

In order to see that b is a unit, it is enough to check for & a cyclic group, since b € Eig).
Projecting & on the simple components of the Wedderburn decomposition of 07, cne can
notice that each such projection 1s a cyclotomic unit, hence 6 is a unit. Bass proved that
if & is an abelian group, then the Bass cyclic units generate a subgroup of finite ndex
in L[ECF) |Bas|. In many cases, it was proved that the group By generated by the Bass
cyclic units and the bicyelic units [of one type) has finite index in 2[EC) [zee for example
|Rit52, RitS3]). In |RitS1] it was proved that if 7 is a nilpotent group such that QG does not
hawve in his Wedderburn decomposition certain types of algebras, then B has finite index in
L[EC). Furthermore, Jespers and Leal in |JL| have extended these results to bigrer classes
of groups. Howewer, it is not true in general that By has finite index in U [Z2C).

The following results are examples of a family of similar theorems which prove that
the Wedderburn decomposition of the group algebra Q& encodes useful information on the
group of units of £, This was the mam motivation in the first place for our mterest m
explicit computation of the Wedderburn components of rational group algebras.

Theorem 1.38. |Jes| U[EC i3 virtually free non-abelian f and enly if the Wedderburn
corpenents of (PO are edther (), Q['—d) or Ma[0Q), for d o squore-free nom-negative tnteger.
Moresuer, there are snly four groups O with this propersy.

Theorem 1.38. |JLdR, JdR, LdR| &[4 s wirtually o direct product of free groups of
and enly if every Wedderburn component of QO €5 either o field or isomorphic to M2 (0],

[%er] or H{K) with K either (], Q[ﬁ] or Q[ﬁj

Theorem 1.40. |JPARRZ| L [EC is wirfually o divect product of free-by-free groups f and
only if every Wedderburn component of Q0 15 either o fleld, o fotally definite guafernion

alpebra or Mo (K, where K dis either 0, i), Q[ =2) or Q[ =3).

1.4 Crossed products

In this section we present crossed products as an essential construction for the description
of central simple algebras.

Definition 1.41. Let £ be a unitary ring and & a group. A crossed product of 7 with
coefficients in & Is an associative ring & (¢ with a decomposition

R+G = (PR,
gE

such that every A 1s a subgroup of the additive group of £« G with A = [y, Ay Bn = g
for all g, h 2 & and every A, contains an invertible element 7.
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Note that, for every g € (7, we have R, = A7 = §H, 0 every element in @+ has a

unigue eXpression as ngrg with r; € A, for every g € (0. The crossed product @+ is a
mEz

right (and a left] free H-module, G = {7 : g € &} [a set theoretical copy of & is an A-basis

of A+’ and we say that & 1s a homogeneous basis of A+ Associated to a homogeneous

basis & one has two maps

o — Aut[A)] and TG x 0 = UH[A)

called aefion and fwisting (or focfor sef, foctor systerm or 2-cocyele) of B + (O given by

P2 5 g and r(o k) =gh Bh, s heC.ref

The action and the twisting are interrelated by conditions precisely equivalent to &+
being associative, that is, for every x,y,z € G

Tz, z]r[;r\y]'}f‘?} =1(r,yz)T(v, £) (1.4)
a(yla(z) = alvnly, ). (1.5)

where n(y, z) 15 the inner automorphism of & induced by the unit vy, z). Equation [1.4)
above asserts that 7 is a Z-coeyele for the action of & on L[ &) [as we shall see In the next
section) and we call it the cocycle condifion. MNote that, by definition, a crossed product is
metrely an associative ring which happens to have a particular structure relative to & and
¢ and which we denote by &3 O

Conversely, if o - & — Aut[&) and 7 : & = & — LA are two maps satisfying the
previous relations [1.4) and [1.5), then one can construet a crossed product having @ and
T a5 the artion and the twisting of a homogeneous basis. More precisely, one chooses a set
of spmbels G = {7 : g € '} and defines £+ & as a right free -module with basis & and
the multiplication given by rg = 72'@" and 5h = ghr(g, A),g h € C,r € A and extendaed
by linearity.

The H-basis {g: g e &} of a crossed product A+ ¢ is not unigque. For example, if ap is
g unit of & for each g € ¢ then {§ = az7: g € '} is another A-basis. Changing {F:9 € I}
by {7 =ag@: 9 ¢ &} is called a dioponal chonge of basis |[Pas2?|. A disgonal change of basis
induces a change on the action and on the twisting, but not of the algebra. The new action
differs from the old action by an inner automorphism.

Certain special cases of crossed products have their own names. For example, a group
ring is a crossed produet with trivial action [e(z) = 15 for all € ) and trivial twisting
(r[z,p) =1 for all z,y € G). If the action is trivial, then R+ & = R'C is a fwisted group
ring. Finally, if the twisting is trivial, then £+ is a skew group ring.

Let Inn[H) be the group of inner autormerphisms of & The property [1.5) shows that
@ G — Aut[f) Is not a group homernerphism urless the twisting takes walues in the center
of A, but the composition & of o with the projection o : Aut[f) — Out{f) s a group
homomaorphism, where Out[ X)) = Aut[ &) /Inn[ &) denotes the group of outer automaorphisms
of A. ¥e say that the action « is cufer if & 1s injective, Le. if the identity of & is the unigque
alement g € @ such that afg) is inner in &. Motice that if A Is comrmutative, then the action
is outer if and only if it is folthfull The following theorem can be found in |Mon| for shew
group rings and in |Rei| for crossed products over fields. In both cases, the proof applies for
arbitrary crossed products.
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Thearem 1.42. Lef ( be o findte group, 5 o simple ring ond o an oufer action. Then 5«
is o simple ring.

For some special cases of crossed products we use the following classical notation |[Rei].
If LfF is a finite Galois extension with Galols group & = Gal[L/F), e is the natural action
of & on L and 715 & 2-cocyele on &F x (&, then the crossed product L+2 G is denoted by
(LS F, 7] and we call it clossical crossed product or eressed product alpebro. If in the previous
notation the extension is F[)/F, where { is a root of | and all the values of the 2-cocycle
T are roots of 1 in F[{), then we use the notation [F()/F, 7] and we call it cyelotomic
alpebra [see Section 1.9 for more information). A diagonal change of basis in [L/F,7) does
not affect the action because £ is commutative, hence it induces a new representation of
(LfF,m) as (LfF, "), where 7' is a new factor set which differs from © in a 2-coboundary
[vee Section 1.5 for the definition of a 2-coboundary).

Historically, crossed products arose in the study of division rings. Let F be a field and
let £ be a division algebra finite dimensional over its center £. If L is a maximal subfield
of O, then dimg[£2) = [dimg £12. Suppose that £/F is normal, although this is not always
true. If g € Gal[L/F) = &, then the Skolem MNoether Theorem implies that there exists
e D with g = o' for all { € L. Furthermore, Bh and gh agree in their action on L,
50 T[g,h) 7 = h_]g_]g_h g Up(L) = L. Onee we show that the elements § for g € & are
linearly independent over L, then we conelude by computing dimensions that D = [L/ K, 7).

Mare generally, let A be afinite dimersional central simple F-algebra. Thus 4 = A, [ D)
for seme n and division ring D with Z[D) = F. Roughly speaking, two such algebras are
equivalent if they have the same D and the division algebra can be given as [£/8, 7). This
is the base of the cohomalogical description of the Brauer group and will be explained more
precisely in the next section.

Remark 1.43. The thecry of factor systems [the origmal name for crossed products) was
developed by E. Noether i her Gottingen lecture 1929730, Noether herself never published
her theory. Deuring took notes of that lecture, and these were distributed among interested
people. Brauer as well as Hasse had obtained a copy of those notes. The Deuring notes are
now neluded in Noether's Collected Papers. The first publication of Noether's theory of
crossed products was given, with Noether's permission, m a Hasse's paper where a whole
chapter is devoted to it. The theory was also included in the book “Algebren” by Deuring.

The German terminology for crossed product is “werschrianktes Produkt”. The English
term “crossed product” had been used by Hasse in his American paper |Hasl]. When
Moether read this she wrote to Hasse: “Are the ‘crossed products’ your English invention?
This word is good.” We do not know whether Hasse himself mvented this terminoclogy, or
perhaps it was H.T. Engstrom, the American mathematician who helped Hasse to translate
his manuscript from German into English. In any case, m English the terminology “crossed
product” has been in use since then |Rog.

The first examples of division algebras that were found afiter the guaternions belong to
the class of cyclic division algebras. This class still plays a major role in the theory of central
simple algebras. The construction of cyclic algebras has been given by L.E. Dickson in 1306,
therefore they were also called “algebras of Dickson type”.

Definition 1.44. A eyefic alpebra over K is a classical crossed product algebra L/, 1),
where L is a cyclic extension (e a finite Galois extension with Gal[L/K) cyelic).
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IfA=[L/K, 1) isacyclic algebra, ¢ is a generator of = Cal[L/K),n=|L: K| = ¢
and {F :0=<i<m—1}is an L-basis of A then ¢! = a;F* with o; € L*., Thus [Fi:0<
i 11— 1} is another L-basis obtained via a diagenal change of basis from the original one.
Furthermere o = % = ]_[;:[: (e, ¢) is a unit of L and the 2-cocycle 7, associated to the
basis {F*: 04 <n — 1} only depends on a. Namely

o 1, i ]
(et e?) = i_+j_<ﬁ .
a, i+ 3 =n, 04,7 <n—1.

Conversely, for a given generator ¢ of (F and an element o € L*, the map =, : &7 —
L* given as above is a 2-cocyele and the cyelic algebra (LK, 1) s usually denoted by
[LfK, 5, a)

Example 1.45. Quaterniom algebras are cyclic algebras of degree 2 and take the form

(E‘Tb) = Kli,ji? =a,7? =b,ji = —ij], for a,b € K*. We abbreviate H = {_]ﬁ_]} and

H(K) = (=57H)-

Ifd = ("T&) and o is a real embedding of A then 4 is said to romify at 0 if B@, 0 A =

H[R®), or ecuivalently, if ¢(a), 5[b) < 0. A tofally definife guaterndon olgebra is a gquaternion
algebra A over a totally real field which is ramified at every real embedding of its center.

1.5 Brauer groups

In this section we recall the definition of the Brauser grouyp as principal tool for the study of
central simple algebras and the relation with the cohomology groups.

The explicit calculation of the Brauer group of a field is usually a formidable task. The
theorems in this section are fundamental tools for research in the thecry of central simple
algebras. The only avallable way to construct the Brauer groups of arbitrary fields is by
using these technigues of cohomology of groups and Galois cochomology. Moreover, Galois
cohomology provides the bridge between central simple algebras and class field theory that
leads to the fundamental theorems on the Brauer groups of local flelds and number fields.
The results of this section are classical and can be found in many books, such as |Pie|, |Rei]
or |[FD.

Throughout we assume that & 15 a field and, unless otherwise specified, all algebras are
finite dirnensiomal K-algebras. The cenfer of a K-algebra 4 is the subalgebra Z[A4) ={a g
A ro=ar¥r e A} of A, Note that K C Z(A4). If K = Z[A), we say that A is a centrol
algebra. Ye call A cenéral simple if A is central, simple and finite dimensional.

If Aisacentral simple K-algebra, then dimg(A4) is a square and we define the degree of
A, denoted deg[A), to be the sguare root of the dimension of 4 as a vector space over £,
that is, deg(4) = [dims 4172

Definition 1.46. Let 4 and B be central simple K-algebras. We mtroduce an eguivalence
relaticn on the class of central simple K-algebras. YWe say that 4 and B are Brauer eguiv-
alent, or simply equivalent and write 4 ~ B, if there is a division algebra £ and positive
integers 12 and m such that 4 = AL (D) and B = A, (D) as f-algebras,
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This is also egquivalent to any of the following conditions:
(1) There exist i, 1 such that Ad, [A) = AL, [ B).

(2) If &F is the unique simple A-module and & is the unigue simple B-module, then
Enda[4f) = Endg V).

Al the isomorphisms here are #-algebra homomorphisms. The egquivalence class of a central
simple A-algebra A is denoted by | A

An important reason for introducing this egquivalence relation s the following., We wish
to define an algebraic structure on the set of division algebras, which are central cver .
The tensor product over K of two finite dimensional division algebras with center K iz K-
central simple, but NOT necessarily a division algebra. In other words, the set of division
algebras is not closed under @4, For example, H @y H = A, [R). Now, the tensor product
of two central simple algebras is again a central simple algebra, that is, the set of central
simple algebras is closed under tensor product. This allows one to put a group structure
on the Brauer egquivalence classes of central simple algebras. The group structure imposes
constraints which can be exploited to give information about the central simple K-algebras.

Definition 1.47. The Braver group of a fleld &, denoted Br{ ), is the set of eguivalence
classes of central simple K -algebras under the Brauer equivalence, with the tensor product
acting as the group operation and the egquivalence class of K acting as the identity element.
The irverse of 4] is [ A%, where AP is the opposite algebra of 4.

Remark 1.48. The term “Brauer group” honers RHichard Brauer [1201 1977), who made
the first systematic study of this fundamental mvariant and first defined this group in
1228, The importance of the Brauer groups in the theory of rings and fields is now firmly
established.

Brauer had developed the theory of division algebras and matrix algebras in a series
of sevearal papers m the foregomg years, starting from his 1927 Hobilffationsschrifé at the
Unrversity of Konigsberg., His main mterest was in the theory of group representations,
followmg the ideas of his academic teacher [ Schur. It was E. Noether who gradually
had convinced him that the representation theory of groups could and should be profitably
discussed within the framework of the abstract theory of algebras [or Aypercompler systems
in her terminology] instead of matrix groups and semigroups as Schur had started it |Rog).

Mow we present some basic examples of Brauer groups of different fields.

Example 1.49. If i = K is algebraically closed, then Br{#) = 0. This follows from the
fact that there are no non-trivial K-central simple division algsbras over K. The proof of
this affirmation is the following. Assurne O is a K central division algebra and let € DY £,
Sinee ditng [0 < oo, d 15 algebraic over K. Let P £ K|X| be a2 non-zero polynomial of
minimal degree with P[d) = 0. If the independent coefficient of £ is 0 then d is a zero
divisor, contradicting that 0 is a division algebra. Thus o € K, because K is algebraically
closed. O

Exaraple 1.50. If £ is a finite field, then Br[#) = 0. This is because if O s K-central
simple over K, then £ is finite dimensional over a fimite field and hence a finite algekbra.
Mow, a theorem of Wedderburn states that there are no noncommutative finite division
algebras, so Br[A) =0. O
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Example 1.51. It is known that the only E-central division algebras are B and H. So,
Br[E] = ;. The generator of Br(E) iz |H| and Heg H ~ Ay [RE), le H|H =1 =K. O

The Brauer group is the object map of a functor.

Proposition 1.532. [f ¢ : K — L i5 o field hAomomoerphism, then & induces o group ho-
momorphism . 0 Br(K) — Br(L) defined by du[|4]] = |4 ® L. The correspondences
K — Br[H) ond & — . define o functor from the cofegory of flelds fo the cofegory of
abefion groups,

The notation ,L in the previous proposition has the meaning that , L s the K-algebra
with scalar multiplication defined by sa = @(s)a for s K and a e L.

Let A be a central simple K-algebra and £ be a field extension of K. Then we denote
by AY the Lralgebra 4 @ L obtained from A by extension of scalars from £ to L. One says
that L is a splitting field of A [or that L splits A) if A% ~ L [that is, if 4% = AM,(L) as
[-alpebras for some n) or equivalently if | 4] belongs to the kernel of ¢., where ¢ : K — L
is the inchision homomorphismm. If K is alveady a splitting field of A [i.e. A ~ K) then one
says that A is a spli alpebra.

The relofive Brower group of £ with respect to L, denoted by Br[L/K), is the kernel
of the homomorphism ¢, = Br(f] — Br[L) given by é.(|4]] = |A @ xL|. The subgroup
Br[L/ ) is the set of Brauer equivalence classes of central simple algebras ever K which are
split by L. Ewery element of Br(L/ K] has the form | 4], where A is a central simple algebra
that contains L as a maximal subfield. The algebra 4 with this property is unigque up to
isomorphism. The relative Brauer group is useful for studying the Brauer group, for one
can reduce guestions about Br{ &) to questions about Br[Lf K) for certain L, and Br( L/ K]
is often easier to work with.

Mow we introduce cohomology as another point of view from which to study the Brauer
group. We present the notion in a slightly more general setting than will be actually used
here. The cohomology groups of a group were first defined by Hopf in the early 1240°s by
means of algebrale topology, and were used to study the relationship between the homology
and hometopy groups of spares. The definition of A7, M) was algebraicized by Rilenberg
MacLane and independently by Eckmann in the course of the development of homological
algebra. It was they who realized that many classical constructions, such as egquivalence
classes of factor sets, could be described as cohomology groups in dimensions 0, 1, 2 and 3.

If & 15 a group, then a G-module is simply an abelian group together with an action
of & on M by group antomorphisms. We consider the action of & on the right. Classically,
a EC-module is called a Gtmodule, so that the category of right Cimodules is simply the
category of right FG-modules,

Definition 1.53. For any group & and any abelian group M on which & acts, define
CP[C, M) = M and for n = | define C7[C, M) = {f f: C" = M}. Notice that O™, M)
is an abelian group under pointwise addition of functions and it 1s called the n-th cochain
group Let 80 : O[T, M) — CV (G, M) be defined by %[ f)[gp) = f-gp—f for f € CP[C, M.
For m = 1, define 67 : C*[G, M) — C™ G, M) by 6™ (f)goe - gn) = flg1,.e . ga) +
T (1P (g i mim g1 80 8a) H (1 FB0a ey 821 ) - e, for e C7G, M.
The map &7 is called the n-th coboundary moap.
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In particular, for =1 this map is defined by &' [ f1{g0. 510 = flor) - Floem ) + Flae) -0

and for 12 = 2 one has & (f){ge. 91,92) = Flon.92) - F(geg.g2) + Floo gg2) — flon o) - ga-
Each & iz a group homomerphism and 477! o 8" = 0. Therefore, {C™, 8"} forms a

cochotn compler of the form
Dot S g Eemb

Let Z% = Ker[d") and B® = Im[d""'), so that B® C Z" because of the property
" o ¢ = 0. The elements of Z7 are called n-cocycles and the elements of 57 are

the n-coboundartes. The n-th cochomology proup of ¢ with coefficients m A is defined as
HA O, M) =27/ B,

An alternative construction of the cohomology groups 7, AF) using cornplexes and
projective resolutions from homological algebra, is the following. Take a projective resclution

Pa=[--— B8 P20

of the trivial (-module &, 1.e. an infinite exact sequence with every B projective. Consider
the sequence Home [Py, M) defined by

HDmQ[F‘[:., M) — HDmQ[F‘],M] — HDmQ[F‘g,M] — .-

where the maps Home [ £, M) — Home [(F4, M) are given by f — fep;,. The fact that
P, 15 a complex of (-modules implies that Home[ Py, M) s & complex of abelian groups.
We index it by defining Home [ £, M) to be the term in degree 4. We may now put

HYC, M) = HY [Home [ B, M)

for ¢ = 0. The defined groups do not depend on the cholce of the projective resolution F,.

The abowve construction is a special case of that of Ext-groups in homological algebra:
for two Fmodules M and &, these are defined by Ext™ (M, &) = H*[Homg(Fy, V)] with
a projective resolution £, of M. In owr case we get

H™MC, M) = Extls(Z, M)

where & is to be regarded as trivial G-module.

The cohomological dimension of a group & is 1 if 1 is the maximal non-negative integer
for which A™[C, M) # 0, for some EG-module M and H*[G, M) is the cohomology of O
with coefficients m M. BEguivalently, & has the cohomological dimension n if the trivial
Z-module £ has a projective resolution of length 1. See for example |Bro|. The wrual
cohomological ditnension of a group is % if it has a torsion- free subgroup of finite inde: that
has the cohomological dimension .

Yye are interested in the special case when & = Gal[L/K) and M = L* for a Galois
extension LK. The groups H?[F, L*) are called the Jalods cohomology proups of the
extension LK with coefficients tn L*, In particular, we need H?([Gal[ L/ K, L*), the second
Calois cohomology group of the extension L K with coefficients in L.

The cocycle condition [1.4) can be interpreted as cohomology relation for a suitable
abelian group, which is L*. The second coboundary homomorphism takes the following
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form & (mi(x,y, 2) = Tly, o)y, )7 [, pe) [Tz, )27 for & mapping T2 Ok O —
£*. Therefore, the cocycle condition on a mapping T : & = & — L* is identical with
the assumption that © € Z[(, L*). Thus, every 2-cocycle r € Z?[(, L*] gives rise to a
crossed product algebra [LFF, 7). A diagenal change of basis in [L/K, 1) produces a new
representation of (LK, 7) as (LK, 1) with v = 7 mod B2[C, L*). Conversely, if 77" &
Z[G, L*) are congruent module B[, L*) then [L/K, 1) and [L/K,r") are isomorphic as
K-algebras. This induces a map H?[(, L*) — Br[L/K). The next thearem provides a
cohomalogical interpretation of the relative Brauer group.

Theorerm 1.54. For a Galois extension LfK with & = Gal(L/K), H2[T, L*) is isomorphic
to the relative Brauer group Br(L/K) and the dsomorphism s piven by |1| — |[LJK, 1],
where T 15 o 2-cocyele from Z2(C, L*) and |1| denofes the class of T in H? (G, L*).

To prove that the above correspondence is a group homomorphism, one uses the following
proposition.

FProposition 1.55 (The Product Theorer). Lef LK be o Goleds exfension with (=
Gal[L/K). ffr,ma g ZE[G, L), then [LiK, m) @ (LFK,ma] ~ (LK, myma).

As a consequence of Theorem 1.55, we can now state the following properties of cyclic
algebras. First, let us set NMopo (L) = [Wopwzr s 2 € LY}, where Npy w0 L — K denotes
the norm of the extension LK.

Proposition 1.56. Let O = Gal[L/K) = (&) be cyclic of order n, ond let o, b e K*. Then
(i) (LK, oa) =2 (LK, 0%, a®) for cach s € & such that [s,m) =1,
(1) (LK, o 1) 2= MK,

(i) (LK, o,a) 2 [LIK, 0, b) if ond ondy if b = [NV, xcla for some 0 € L*. fn porficulor,
(LK, o,a) ~ K if and only if a € Ny, [L5).

(iv) [Lf K, oa) @x (LK, o,b) ~ [L{ K, o, ab),

The followmg corollary gives an important result, helping to compute the Schur mmdex
of cyelic algebras.

Corollary 1.57. Let A = [LfK,5,a). Then exp|d| @5 the least posifive infeger t such that
C[t = NL.{K[L*]

Proof. We have |4 = |[L/ K, 5, c")| in Br[K). Thus, by Propesition 1.56, [4]* = 1 if and
only if a* belongs to N lL).

Theorem 1.5 provides a cohomological description of the relative Brauer groups. The
cohomological description of Br( &) is new a consequence of the following proposition.

Proposition 1.58. For a field K, Br(K) = |JBr[L/K), where L ronpes ower ofl finite
Colvis exfensions of K. M other words, for every central simple K-algebra there 45 o fintte
Colvis extension of K which splits A,
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Surrrnarizing, the Brauer group Br(K) is the union owver all Galeis extensions L/ K of
the relative Brauer groups Br(L/K) and the relative Brauer groups can be identified with
cohomology groups. In order to relate the full Brauer group to cohomological data, an
interpretation is needed for the inclusion mappings Br(Lf K] — Br[EfK) that arise when
K C LC FE with /K and £/ K Galols extensions. Those inchisions correspond to the
inflation homomorphismas.

Let LK and EfK be finite Galois extensions with L C E. Denote = Gal[E/K)
and H = Gal[f/K). The restriction mapping ¢ — & » is a surjective homomorphism of &
to H that induces an adjoint homomorphism CR[H, L) — O[T, E*) by f — f*, where
(e, ..00) = flo1 paee oo o). A simple calculation shows that this map commutes
with the coboundary, ie. [67f) = §*[f*). Thus, the adjoint map carries Z7(H, L") to
Zrd EY) and BR(H, L*) to B, E*). Consegquently, it induces a group homormorphism
of H2[H, L*) to A&, £ that it is called the inflafion mopping and s denoted by Inf or,
if necessary, Infy, gy . Bxplicitly, Inf|f] = |F*] for f e Z7[H, L”).

In particular, given the 2-cocycle © @ H »x H — L, we define the 2-cocyele Inflr) -
Ux & — L C B by Inf(r){g,gm) = Tlg) gafa gl for g1,50 © &, that is, the mitial
2-cocyele from H to L* miflates to a 2-cocycle from & to £*. Furthermore, if we consider
the crossed product algebras (L8, m) and £/ K, Inf[r)), then

(LFH, )~ B K, Inf[T))
as A -algebras. This is equivalent to the following proposition.

Proposition 1.59. fef K C L C E be field exfensions. [fi: Br(LfK) — Br[E/K) 45 the
inclusion homomorphism, then the following dingrom covrerm fes

H(H, L) 2 B (C, B

l l

Br{L K) ——= Br(B/),

where the vertcal arrows are the (somorphisms of Theorem [.54.
The action of the inflation on cyelic algebras is given by the following result.

Theorem 1.60. Lef K £ L £ B, where & = Gal[E/K) = (r) 45 cyclic of finite order ¢
Let H=Cal[EfL), § = Gf/H = Cal(L{ K) = (F), where § s the image of ¢ in G, Then
for anga e K,

(LfK,5,a) ~ [EfK, o,al5H),

The next result establishes an somorphism between the Brauer group of a field K and
the second Galois cohomology group of K which is obtained as a direct limit of the groups
H2[Gal[L/K), L*). Theorem 1.61 can be stated as follows: Ewvery element of the group
Br[#) is determined by a 2-cocyele in a finite Galois extension Lf K.

Theorem 1.61. The isomorphism Br(LfK) = H*[Gal[L/K), L*) lifts o an isomorphism
befween Br[K) and the direct I-if.r;ra-a'fIi_]’)m'j‘:![GELJ[.{;,-“!«C]1 L) = HY[Gal[ K /K, K2, where K,
15 the maximal separable extension of K.
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If £ is a subfield of L, then the inchision mapping ¢ £ — £ induces a homomaorphism
L : Br[f) — Br[L). When these Brauer groups are represented as uniems of relative Braver
groups corresponding to cohomology groups, the description of 1o can be given in terms of
certain homomaorphisms that are standard tools in cohomology theory, We now define these
hormomaorphisms and we relate them to the mappings of the Brauer groups.

Definition 1.62. Let A be a subgroup of the finite group & If AF 15 a right E0-module,
then M can also be viewed as a ZH-module and the trivial left action of & and H on M
yields a ZO-bimodule and a & H-bimedule. Let f & O, M) be an n-cochain, considered
a5 a mapping from O to M. The restriction f g 15 then an element of O7[H, M), The
coboundary homomorphism clearly satisfies 67°(f g~) = (07F) -, 50 that f — f 5~ maps
I M) to Z0(H, M) and B [T, M) to B [H, M]. Therefore, f— f g- induces a group
homomorphism
Resm_p: HH[G1M] — HH[H,M]

which is called the restriction map . Explicitly, Resa_ g |f] = |f g+) for all f e 27, M.

The applications of the restriction mapping that we are interested in occur when n = 2,
O = Gal[E/K) and H = Gal[E/L), where { C L T E are field extensions and £/ K
is Galois. Moreover, M will generally be £* with the usual ZC-bimodule structure. By
Hilbert's so-called ‘Theorem 80°, HY[CO, &%) = [EF"]G = K* and H' [, E*] = 1. Similarly,
HE[H,E*) = [E*)" = L* and the restriction Resg_pgy : HYC, B*) — HE[H, E*) is the
inclusion map of K* into £*.

Proposition 1.63. Let K C L C & be fields with &/K a Galols extension. If o : K — L
is the inclusion mapping, then o, [Br(E/K)) € Br(&/ L) and the diagram

Resc

H2[, E*) =23 g2, B*)

gl lg

Br(E/K) — = Br(E/L)

Lo Br[E/H)

is commutative, where the vertical isomorphisms are those of Theorem 1.54.

The family of restriction homomeorphisms induces a restriction homomorphism of the
Galeis cohormology groups Hes : A7 [Gal[ AL/ ), K2 — A7 [Gal[H L), KL K = L
is the inclusion mapping, then .. : Br[K] — Br(L] is the limit of L. gyrg ey for & running
through the finite Galols extensions of K contaming L. Then, when L/ K isa finite separable
extension, the diagram

HAGal[ K./ K), K 2 B2 (Cal( K L), K5

i Jim

Br(K) Br(]

15 cornrnutative.
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We denote by Resg ., or simply by Res the reséricfon homomorphism induced by
extension of scalars Resge_ o, : Br(f] — Br[L) and defined by Resy_ o [|4]] = |4 @& L],
for |A] € Br(&). In particular, if x is an irreducible character of the finite group & with
K (%) = K, then Res{|4[x, K]) = |A[x, L)|, where Ay, £ denotes the simple component
of the group algebra K associated to the character x. The action of the restriction on
cyclic algebras is summarized in the following result.

Theorem 1.64. Let O = Gal[L/K) = (5} be cyclic of order n, and leta € K*, Left B
be any feld contoining K, and fef EL be the composite of B and L in some lorge field
containimy both B and L. We may write H = (v®) = Gal[L/LN E) = Gal[EL/ E), where
k5 the feast positive integer such that o° fires L1 E. Then

E®u [LiK,0,a) ~ [EL{E, 0%, a).

Mow we define the corestriction map which is a weak mverse to restriction. The defmition
starts im dimension 0 and 1s extended to n by dimension shiféing, which is the technigue to
sxtend a result or construction from dimension 0 to dimension .

Definition 1.65. Let A be a subgroup of index m in the finite group &, T =[xy, ... 2m}
a right transversal of H in & and M a right ZG-module. For we M7, define

hads
Cory e =1- E T

k=]

The definition does not depend on the cheice of coset representatives and Corg .z 15 a group
homemeorphism from M5 = HE[H, M) to M© = HY[C, M) = Homg[Z, M), the group of
invariants, that is, the largest submodule of AF on which & acts trivially.

Fix an exart seruence 0 — M — N — P — 0 of right Z(-modules such that
HAC, N) =0 for all r = 1. By induction on n we get a segquence of homornorphisms
Corg_e: H*[H, M) — H*[{, M) such that the following diagram comrutes:

H I H N)—— H" ! [H, P) ——= H"[H, M) ——1D

CﬁrH—El CQYH_El CNH_EJ,

H NG N —— O, P —— HP G M) ——D

The defined homomorphisms are called corestricqion mappings. Usually we dencte the
corestriction simply by Cor.

The following result from |HS| establishes the relation between the restriction and the
corestriction.

Theorermn 1.66. [f H is o subgroup of tnder m 1n the fintte group O and M s o right 20-
module, then Coty_goResp_ g H2[G, M) — H*[G, M) fn = 0) is just the multiplication
by 1.

For a fleld extension L of K, denote by Corp_ s or simply by Cor the coresétriction
homomaorphism from the Braver group Br(L) to Br(#). Then the previous theorem can be
restated as follows.
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Theorem 1.67. [f L &5 o finife Galods exfension of K with |L: K| =n, then

Corp g o Respe (14 = (|4

The degres mapping 1s clearly not invariant under the Brauer equivalence. Because of
this fact, and for ather reasons, it is useful to define a different numerical function on central
simple algebras. This is given by the Schur mdex of a central simple algebra.

Definition 1.88. Let 4 be a central simple K-algebra, so that 4 2= Ad,[D) for some
unigue division K-algebra 0. We define the Schur inder of A, denoted ind[A4), to be the
degree of 0, that is, the square root of the dimension of D as a vector space over K.

If % is anirreducible complex character of a finite group (F and K is a field of characteristic
zero, then the Schur dnder of x with respect fo K, denoted wrg (%), s the Schur ndex of
the simple component of the group algebra KO corresponding to the character ¥, dencted
Alx, K.

The Schur index was introduced by Issai Schur (1873 1841) in 1806, As a student of
Frobemius, he worked on group representations [the subject with which he is maost closely
associated), but also in combinatorics and even theoretical physics. He is perhaps best
known today for his result on the existence of the Schur decomposition. He had a number
of students, among them H. Brauer.

Brauer proved that the Brauer group is torsion, that is, every element of Br(K) has
finite order. The exponent of a central simple K-algebra A, denoted exp(A), is the order
of |4] m the Brauer group Br{K). That is, exp(A) is the smallest number m such that
AB= 22 A [K) for some r, where A%~ denotes the tensor product of s coples of 4. In
other words, the exponent of 4 1s the least ¢ € ™ such that the tensor product of m copies
of A 15 a matrix algebra over K. This terminclogy had been chosen by Brauer because, he
said, m the context of the theory of algebras the word “order” is used for ancther concept
|Fiog].

The exponent Is similar to the index m many ways and for important classes of algebras
these imvariants are equal. In the following proposition we collect some of Brauer's results
about the connection between the exponent and the index of a central simple algebra.

Proposition 1.69 (Brauer). Let A be o central simple K-alpebra. Then:
(1) ind[A) dévides deg(A) and md[A) = deg[A) if and enly if A 45 o division algebra,
(2) exp[A) divides nd[A) and every prime divisor of md[A) also divides exp[A).
(3) ff & i3 o number field, then exp(A) = ind[A).

There 15 an alternative way of defining the Schur index of an irreducible complex char-
acter with respect to a fleld K which is related to the following question:

For which fields K = C is the character ¥ € Irr(() afforded by a i-representation?

If £ = s not one of these fields, we wish to measure the extent to which » fails to ke
afforded over K. This suggests the following definition from [Isal.
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Definition 1.70. Let K = L, where L is any splitting field for the finite group . Choose
an irreducible L-representation p which affords ¥ and an irreducible K-representation o
such that g is a constituent of w®. Then the multiplicity of p as a constituent of w® is the
Schur dinder of % over K and is denoted by mie [x].

Apparently, me (%) as given in Definition 1.70 could depend on the splitting fleld L.
However, an easy exercise shows that the definition of e (3] in Definition 1.68 and Defi-
nitien 1.70 are ecquivalent, and so g (x) is independent of L.

If K is afield with positive characteristic then me (x) = 1 for every irreducible character
x of a finite group. This is because if L s the prime field of & then Ay, L) Is finite and
therefore split as central simple algebra over its center. Hence the characteristic zero case
is the one that presents mterest for the computation of the Schur indices of irreducible
characters of fimite groups. Many important results about Schur indices appear to depend
on deep facts about division algebras and number theory. MNevertheless, much can be done
by rreans of character theory, as presented in |Isa| or |[CR|, where it is also proved that every
positive nteger can oceur as Schur index, despite of the fact that most of the elementary
results are directed to showing that the Schur indices are small.

1.6 Local fields

In order to understand the Brauer group of a number fleld, it is corvenient to start by
studying the Brauer groups of some special flelds called Jocal fields. The results presented
in this section are mainly from |Rei] and |Pie|.

Throughout & 15 an integral domain with quotient fleld K, £ # K. We describe some
properties of the ring A and of A-modules with respect to localization at prime ideals of A.

YWe start with some basic facts about localization at prime ideals. Starting with a prime
ideal P of A, we may form the multiplicative set § = &£ — P, and then define the ring of
gquotients fe := 5! A, called the localization of B at . Since every element of & — £ is
invertible m fg, it is easily verified that A has a unigue maximal ideal, namely 7 - fAp.
We should rernark that the ring homororphism i : @ — Rp, i(2) = x/1, r € A, enables
us to view Ap [and all Re-modules) as A-modules [kerd s precisely the set of S-torsion
alements of ). Thus, P - fF is the same as i(P) - Ap. Since B is an integral domain, the
mapping i : f — R is an embedding. Inparticular, when P = {0} then B p is precisely the
gquotient fleld of the domain &, Let now M be any A-module. We define Mp = R @ M,
an fpe-module called the forafizafon of M at P.

We often refer to problems concerning A-modules and f-homomorphisms as globaf
problems, whereas those involving B p-modules are called focal problems. A fundamen-
tal technigque in commutative algebra, algebraic number theory and algebraic geometry is
the method of solving global questioms by first settling the local case, and then applying
this information to the global case.

Let us now introduce some concepts from valuation theory. Let Ky denote the set of
non-negative real numbers.

Definition 1.71. A waliofon of K s a mapping v : K — By such that for a,be &
(i) wla) =0 if and only if a = 0;
(i) wlab) = wlalp(b);
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(3ii) wle +6) < ala) +w[b).

If the valuation also satisfles the stronger condition

[iv] wlo + 8) < max(p[al, (b)), we call v ren-archimedean. It is easily werified that
every non-archimedean valuation satisfies

(v] wla+ 8] = max(p(a), p(b]) whenever pla] # o (b).

The triviol valuation is defined by w(0) = 0 and p(a) =1 for a € K, a # 0. By defanlt
all valuations are considered to be non-trivial.

The wvakee group of a valuation y is the rmltiplicative group {wla) : e Ko # 0} If
this value group 1s an infinite cyclic group, @ 1s a discrefe waluafion, and it is necessarly
nem-archimedean. Two valuations ¢ and 4 are equivalent if for ¢ € K, wla) £ 1 if and enly
if @[a)] = 1. Each valuation ¢ on K gives rise to o fopelogy on K, by taking as basis for the
neighborhoods of a point o € K the sets {xr € K :yplx — a) < ¢}, where ¢ ranges over all
positive real numbers. Equivalent valuations give the same topology on K.

Given any nem-archimedean valuation g on &, let = o e K :pfa) £ 1}, Then A is
a subring of & and is called the valuation ring of p. Theset P = {a € K :pla) < 1} is the
unigue maximal ideal of 5. If v is a discrete valuation, then F is a principal ideal, namaly
F = A, where 7 is any element of & such that p(w) < 1 and @) generates the value
group of . In this case, A 15 a discrete waluafion ring, by which we shall mean a principal
ideal domain having a unigque maximal ideal £ such that P £ 0.

Exaraple 1.72 (Exarnple of discrete valuation ring). Let p be a prime number, and
let &,y be the subset of the field ) of rationals comsisting of the fractions ¢ /s, where s is
not divisible by p. This is a discrete valuation ring with residue field the field F, with p
elemnents. O

One way of obtaining archimedean woluations is the followmg., The ordinary absolute
value on the complex field C is an archimedean wvaluation, whose restriction to any
subfield of C is an archimedsan valuation on that subfield. Now let # be a field which can
be embedded in C, and let ¢ : £ — C be an embedding. Define ¢ : K — FEy by setting
wla) = pfa), ¢ € K. Then p is an archimedean valuation on K. In particular, if & is
a number field with r; embeddings m E and rp pairs of complex embeddings in C then
one can obtain in this way v, + ry archimedean valuaticns. The Ostrowski Theorem states
that every archimedean valuation of i [a number field] s equivalent to exactly one of these
11 + 17 valuations.

MNow we give the connection between prime ideals of Dedekind domains and the non-
archimedean valuations. From the standpoint of ideal theory, Dedekind domains are the
simplest type of domains beyond primcipal ideal domams, and share many of their arith-
metical properties. They arise naturally, as follows. Let & be a principal ideal domain with
quotient field &, let £ be a finite extension of K, and let 5 be the integral closure of A
in . Then 5 is a Dedekind domain with gquotient field L. For a rigorous definition see
Definition 1.3.

Definition 1.73. Let A be a Dedekind domain, and let P be a nonzero prime ideal of A,
ot equivalently, a maximal ideal of &. For each nonzero a € A, we may factor the principal
ideal Ao mto a product of powers of prime ideals. Let ve (o] denote the sxponent to which
F oceurs in this facterization. If F does not occur, set we[a) = 0. Also, put ve(0) = o0,
YWe call ve the exponentiad vafuoton associated with P
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Now fix some k€ By, & > 1, and define we(a) = «~¥78 o € K,a # 0, and pp[0) = 0.
Then pg is a discrete non-archimedean valuation on K, whose value group is the cyclic
group generated by k. [If instead of & we used another real number k' with & > 1, the
valuation p's thus obtained would be eguivalent to the above-defined valuation pg). The
properties of pe are consequences of the following properties of v,

(i) vela)] = co if and enly if o« = 0.
(i) velab) = ve(a) +ve (bl
(i) vela+ b) = mm[vela),ve (b)), with equality whenever ve(a) # ve (b).

Let Rp be the localizofionof A at P, defined as before by A = {z/s:r e R, 5 A- FP}.
This ring is in fact the valuation ring of the F-adic valuation ¢ on A and its unigue maximal
ideal is precisely P-He. Thus A Is a discrete valuation ring and is automatically a principal
ideal domain. We may choose a prime element T of the ring g, that is, an element 7 € Ag
such that s = P - Ap. Indeed, 7 may be chosen to lie in &, The fractional Ae-ideals of
K oare 7" fp :n e &}, It follows that localization does not affect residue class flelds, that
in, /P =2 Ae/(F- Ap). This isomaorphism is not only an f-isomorphism, but is in fact a
field isomorphism. Maore generally, there are ring isomoerphisms £/ F? = Af[F" - Ag), for
1= 1.

A preme of K s an eguivalence class of valuations of K. We exclude the “trivial”
valuation @ defined by w[0) =0, wla) =1 for a € K, a # 0. If K Is a rumber field, there
are the archimedean or infinite primes, arising from embeddings of K into the complex field
C and the non-archimedean or findte primes of K, arising from discrete P-adic valuations
of K, with P ranging over the distinet maximal ideals in the ring of algebraic integers of
K. BEwvery other valuation is equivalent to one of these valuations, so the concept of prime
in K is equivalent to the concept of equivalence class of valuations, In many references the
primes i K are also called places.

The completion of a valuation field is a field which usually has better properties than
the ariginal one. Let K be a field with a valuation w, topologized as befare. Let K denate
the completion of K relative to this topology, Then K 15 a field whose elements are equiva-
lence classes of Cauchy sequences of elements of K, two sequences being equivalent if their
difference is a sequence converging to zero. The field K is embedded in A and the valuation
w extends to a valuation @ on K. The field K is complete relative to the topology induced
by @, that is, every Cauchy sequence from K has a limit in K.

If  is an archimedean valuation, then so is @, and Kﬁ]ﬁ a complete field with respect
to an archimedean valuation. The only possibilities for # are B, the real field or C, the
complex field, and in each rase @ is equivalent to the usual absolute value.

If y is non-archimedean, so is . The two valuations have the same value group, and
the same residus class field [up to isomorphism). Inparticular, let & be a Dedekind domain
with guotient field /£, where K # A, and let F be a maximal ideal of £. The completion of
K with respect to the P-adic valuation g on K will be denoted by Ke [or just & or even
¥, if there is no danger of confusion). Call K- a £ adic field, and its elements £-adic
numbers,

The discrete valuation wp extends to a discrete valuation gpe an R’p. e have already
remarked that the valuation ring of we is the localization . Let £ be the valuation ring
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of @e. BEvery element of ﬁp can be represented by a Canchy sequence from R [or from A,
for that matter). If @ is a prime element of B, then « is also a prime element of Bs. Let
& denote a full set of residue class representatives in & of the residue class field R= 5P,
with 0g &, Fach r ¢ ﬁp is uniguely expressible as r = Xp + &7 + Xl ..., X8,
and each y € Kp ' 10} is uniquely of the form y = 7* -z, with & = Fe(y) € Z and r as
above, with Xp £ 0. If y =0, take £ = —na.

Example 1.74 (Complete valuation fields). [1] The completion of [} with respect to
i, is denoted by 03, and is called the fleld of p-adic numbers. Certainly, the completion of )
with respect to the absolute valie is B, Embeddings of £ in 00, for all prime p and in B is
a tool to solve various problems over [). An example is the Minkowski Hasse Theorem: an
equation } " o, X; X, = 0 for a;; € () has a nontrivial solution in () if and only if it admits
& nontrivial solution in 3, for all prime p (including infinity). The ring of integers of (0, Is
denoted by £, and is called the ring of p-adic infegers. The residue field of £, is the finite
field F,, consisting of p elements.

(21 The corpletion of K[X) with respect to vy s the formal power series fleld K[X))
of all formal series Z_z X with oy & K and e, = 0 for almost all negative 5. The ring

of integers with respect to vy i K||X]|, that is, the set of all formal series Zg‘m a, A
e, = K. Its residue flield may be identified with K. O

Definition 1.75. A complete discrete vafuaton ring & s a principal ideal domain with
unigue maximal ideal £ =7/ # 0 such that & is complete relative ta the F-adic valuation.
If K is the quotient field of A and & = K/ F is 1ts residue class field, we call K a loecal field.

The following theorem is a useful result that we will use later.

Thearem 1.76. Lef W be an unramdfied exfension of K of degree [, and et v be the P-adic
valuation on K. Gwen any element o & K, the egualion Npye(r) = o, with xr € W ds
aolvable for x if and only if f divides v[o).

Let K be a field which is complete with respect to a valuation w, and let K be an
algebraic closure of H. Then we may extend p to a valuation p on K as follows, Every
a e K lies insome field L with K < L < K, |L: K| finite [for example, L= K{a) will do).
Set gla) = {qs:l[NHKa]}”[L: ], Then the value @[] is independent on the choice of L and
every finite extension of K contamed in i s complete with respect to the valuation .

If wis archimedean, there are only two possibilities: one with K = C =K and w = ¢
and the other one with £ = E, £ = C and @ extends yp, where p and @ are the usual
absolute values on B or C.

If v 15 non-archimedean, so 15 . However, ¢ need not be a discrete valuation, even if
is discrete. If @ is a discrete valuation on £, denote by oy its valuation ring and by pe the
maximal ideal of op. Let Oy = og [P be the residue class field and let pre = g - 0, 50
Ty 15 a prime element of oy, Let vy be the exponentiol valuation on K, defined by setting

wee (o}

afR=p, ' fora e K and o # 0, and v [0) = +oo. Any finite extension L of the complete
field K can be embedded in K and the restriction of @ to L gives a discrete valuation
which extends . [t can be shown that, for each o € L, v (a) = (LK) 7! e [V g ()],
In this case, the ramdfication dnder e = e[ L/ K) and the resddue closs degree f = f(L/K)
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are given by the formulas vy (me) = e and @y, : 8| = f. Moreover, the extension L of &
is unramified if e[L/H) =1 and &, is a separable extension of G, and it is completely [or
tofally) rawvified if &, = Bp, that is f{L/K) = L.

Theorarm 1.77. Lef L be a finife ertension of K and assume the complete fleld K fhos finite
residue cfoss fleld Oy with ¢ elements. Then, for each positve tnéeger [, there 45 o umigue
unrartified extensdon W oof K with |W 2 K| = f, nomely W = K[(), for ( o primitive
(¢f — 1)tk root of unify cver K. Furthermore, op = ox|l], O = EK[E]J where Eis a
priveibiue [g-f — 1)k root of uniiy.

Corollary 1.T8. The ertensions W/K and 0, /0, are Golods with cyclic Colovis groups of
order f, penerated by the Frobenius auformorphism o defined by { — (%, and respectively by
the automorphism ¢ which maps C fo (7,

Theorem 1.79. With the obove notation, let [ = K[a), where o hos the mindmal poly-
nomial cuver K pgiven by the mth degree Bisenstein polynomial over ox, for n o posifiuve
integer. Then L dis completely ramifled over K, |L: K| = n, and o & o prime element of
oL Furthermove, o, = og ().

Summarizing, if L/K is finite, we assume that the residue class field &g is finite, and W
iz the inertia field of the extensiom LS, then we have X C W C L, By =&, e[ LK) =1,
FILAW) =1, fFIW/K) = FIL/K), e[L/W) = e[LfK). Thus, the step from K to L is
divided mto an unramified step from K to W, followed by a completely ramified step from
Woto L.

Now let K be a field with a valuation @ [archimedean or not) and @ the extension of v to
the algebraic closure 02 of the completion K. Given a separable extension £ of K, we wish
to determine all extensions of the valuation v from K to L. Each such extension determines
an embedding of L m 2 which preserves the embeddings of K in K. Two embeddings g, o'
of L in @ are called equivalent if there exists a K-isomorphism ¢ @ p[L) =2 p'[(L) such that

o =i’ Let g, ..., i, bea full set of mequivalent isomorphisms of L into §2 which preserve
the embeddings of i in K. Let Ly = K- 5[ L) be the composite of K and (L) in 2 and
set 113 = |Ly : K. Thern, there are precisely v inequivalent valuations ¢, ..., 4 of L which

extend o, and thess are given by the formula ;(a) = (o) = {‘EENEJ;‘?[M[“]D}]M"* for
1 T3,

If A is now a Dedekind domain with quotient field X and & the integral closure of A in
L, then for every maximal ideal P of & let £-5 = [[i_, ¥ be the factorization of P - 5
into a produet of distinet maximal ideals { A} of 5. Then there are precisely + mequivalent
valuations ¢, ..., i of L which extend the F-adic valuation we on K, obtained by choasing
iy to be the Fi-adic valuation on L. The fields L; are precisely the Fi-adic completions of
L. If K 15 a mumber fleld so that the residue class fields &/F and S5fF; are finite, we
may rormolize the P-adic valuation g of K and the Fj-adic valuation g; of L, by setting
we(a) = card[R/P177 and pg (B) = card[5/F) ¥, for a € K and 6 € L. In this

case, Yo, = lp’?; on K, so lpg_n" is the wofuafion on Ei which ertends pe on Ep.
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1.7 Simple algebras over local fields

In this secticn we define the local index of a central simple algebra. The description of
the Brauer group appears m what 1s called focal closs field theory. This thecry is about
extensions, primarily abelian, of local fields [ie. complete for a diserete valuation) with
fmite residue class field. Throughout let & be a complete discrete valuation rmg with
field of guatients #, that is, A is a principal ideal domamn with a unique maximal ideal
P=af#0and & is complete relative to the F-adic valuation v on K. Let &= A/ F, the
residue class field. We assume that & is a finite field with g elements.

Let D be a division algebra with center K and mdex 1. The valuation v on K can be
extended to a vahiation vp on D given by the formula ve(a) = m_]w[Nwaa] for a & 0.
The next result shows that £ contains a unigque maximal F-order.

Theorem 1.80. A ={ae D :vpla) = 0} 45 the dntegral closure of B dn D) hence A 45 the
unigue morimol fA-order i O withp = {a € D vpla) > 0} the undgue marimal {deal,

Furthermaore, wd\ is a power of p and 1t can be shown that 74 = p™ and A= Afp,isa
field of order ¢, where 7 15 a prime element of A.

We shall see that the structures of £ and A can be described explicitly in this case, and
depend only on the index m and sorme integer + such that 1 < r < m, [r,m) = 1. The unique
unramified extension of K of degree m is K((), where { Is & primitive (g™ — 1)-th root of
unity over K. By Corollary 1.78, the Galols group Gal[#([()/K) is cyclic of order m, and
has as canonical generator the Frobenius automorphism of K[{)/K denoted by oappyyee
Recall that it is defined only for unramified extensions.

We wish to show that, in analogy with the results for the case of fields, the division ring
£ comes from an unramified extension, followed by a complete ramified extension. To begin
with, [ contains a subfield W isomorphic to K£((), so that W is an unramified extension of
K such that |[W : K| = [51 : ﬁ] = . 50, W is a maximal subfield of D, W is the nertia
field of £ and it is unigque up to conjugacy.

Let w5 be a prime element of A, that is, a generator of p. Since 1A = a8 A, the fleld
K(mp) is a completely ramified extension of K of degree m, and is a maximal subfield of
0. Forthermore, & = B|(,7g| and O = K|, 7g|. Thus D is obtained by adjoining the
alement o to any of its inertia fields K[{), or equivalently, by adjoining ¢ to the field
K(mp). Note that { and 75 do not commute, unless m = 1. The inertia field K[() is
uniguely determined up to K-isomorphism by the ndex 1. The next theorem shows that
one can select the prime element 75 with better properties.

Theorem 1.81. fef £ € D be o prisdtive (¢ — 1)-#h root of 1, and [lefm be any prime
elernent of A, Then there exists o prime element Tp © A such thoat 75 =7, '?TDIZ:'?TE] =",
where r 5 o posifive infeger such that 1 < r < m, (nm) =1, Then O = K([(,7p)] =
(KL K oginimMa), where oupoyull) = £ and the integer r 45 uniguely determined
by O, and dees not depend upon the chodee of ¢ or .

The above shows that onee the complete field K is given, the division ring D is completaly
determined by its index m, and by the integer v, Indeed, we first form the fleld K((), with
[ any primitive (g™ — 1)-th root of 1. Then we pick any prime 7 € &, and adjoin to the
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field W an element 75 satisfying the conditions listed in Theorem 1.81. This determines
the division ring D = K[, 7 5) up to A-isomorphism. The fraction ¢/ is called the Hosse
frwariant of O,

Theorem 1.82. Let] €+ < m, [rom) = 1. Given the complete fleld K, there erists o
division ring O with center K, inder m, and Hasse inwariont rfm, thol 45 each frocéon
rim arises from some division ring.

We showed that W can be embedded i D, and that there exists a prime element z € D
such that

m—
D= @ Wzl zon: ! = silal, ceW, M=m
J=0

The integer + is relatively pritne to the index mm, and O determines r mod s uniquely.
Further, it can be shown that each pair v with [rom) =1 arises from sorme D, In terms
of the notation for cyelic algebras, we have O = [W/K, 5", 7). Choose 5 € £ so that rs =
1{rod m). Then alse [s,m) =1 and D 2= [W/K,g", @) = (WK, o™, 0% = [W/K, o,7%).
Furthermore, we could have restricted s to lie in the range 1 < 5 < . An important
conseguence of this is the following result.

Theorem 1.83. Let D be o division alpebro with center K ond dnder m. Thenm = exp|D)|.
Henee, for each |A] € Br(K), exp|d| = ind|A].

Whether o not [s,m) = 1, we may still form the cyclic algebra 4 = [W/K, o, m%). The
isomaorphism class of 4 depends only on s{mod m), that s, on the fraction s/m viewed as
an element of the additive group [J/Z. Let us find the division algebra part of A. Of course,
we already know that 4 is a division algebra whenever [5,m) = 1.

Theorem 1.84. Lef W/ K be an unramifled extension of degree ™, with Frobenius auto-
morphism o, and let s € T Write 5 fm = s'/m', where [s',m') = 1. Then (W/K, 5 am®] ~
(W' K, o' m®), where the latter is o division alpebra of index m' and W'/ K ds an unrami-
fled extension of degree m', with Frobenius automorphism o', Furthermore, if o € K%, then
the cyclic algebra (W7 K, o, a) 45 o division algebro if and only Of [m,ve(a)) = 1.

Let W/ K be an unramified extension of degree m, with Frobenius automorphism oy, k.
Given an integer s, not necessarily prime to om, let us consider the cyclic algebra A =
[WfK' EFWI,'HJTS].

Definition 1.85. We defme the Hasse inwariani of 4, denoted by mv A, by the formula
v [WS K, oo’ ) = sfm e J/Z.

The drvision algebra part of A can be calculated by use of Theorem 1.84, and 1t has the same
Hasse irvariants as A. Therefors, invd depends only upon the class | 4] € Br(K), and we
shall write inv|4| rather than invA hereafter. Furthermore, by Theorem 1.81, every class in
Br[K) is represented by some cyclic algebra [W/K, oy e, m®) with W/ K unramified, and
hence there 1s a well defined map

inv : Br(K) — [}/ Z.
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Let LfK be a cyclic extension with Galois group (o) cyelic of order n, and let a & K%,
Then the cyclic algebra B = [L/K, 5, a) determines a class |B| in Br(K). However, it is
not necessarily true that inv|B| = ve(o)/m. Indeed, even when LK Is unramified, the
formula 15 valid only when ¢ equals the Frobenius automerphism op 0. In the ramified
case, the Frobenius automorphism ¢, q is not even defined and in order to compute inv| 5|
when Lj K is ramifled, we must first write 5 ~ [W/K, o, %) = A for some unramified
extension W/ K, and then we have inv| 5| = inv|d| = 5/m.

Theorem 1.86. nv: Br[K) = /T,

We shall dencte inv by invy when we need to specify the underlying field £. The next
result describes the effect on v of a change in ground fields.

Thearem 1.87. Lef {: be any finife extension of K. The followding dogrom commeutes:

T g

Br{#) e /7

L@g—l l[a: K|

Br(L) —— /2.
where the horizontal maps are Somorphisms, and the second verdcal moap 45 defined o be
the multiplication by |L: K.

Clorollary 1.88. Let D be o divdston alpebr with center K and dnder 1w, and let L be any
Jindte extension of K. Then L splits D if and enly if m |L 2 K|

A further consequence of Theorem 1.86 and Theorem 1.87 1s the following result.

Theorem 1.89. Let L/K be any finite extension of degree m. Then Br(L/K) 45 cyelie of
erder e, Hence, Br(L/K) ={|4| € Br(K): |4 =1}

1.8 Simple algebras over number fields

This section contains some deep and beautiful results in modemn algebra such as the theo-
rems that classify and describe the central stmple algebras over number fields. This work is
associated with the names of several of the greatest herces of mathematics: Hasse, Brauer,
Moether, and Albert. It Is based on developments in number theory that are due to Kro-
necker, YWeber, Hilbert, Minkovski, Furtwangler, Artin, Takagl, Hasse, Witt and many oth-
£75.

Throughout K denotes a number field. We have seen that a préme of K is an egquivalence
class of valuations of K. If £ 15 a number field, there are the archimedean or infinite primes,
arising from embeddings of K into the complex flield © and the non-archimedean or finite
primes of K, arising from discrete P-adic valuations of K, with £ ranging over the distinet
maximal ideals in the ring of all algebraic integers of K.

Let A be a central simple K-algebra and let F range over the primes of K. We shall use
K [rather than Kg) to denote the P-adic completion of £, Put

Ar = Kp®g A = P-adic completion of A.
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Then, AF is a central simple K p-algebra and the map |4] — |4p] yields a homomorphism
of Brauer groups Br(K) — Br(KF).

Definition 1.80. The [ecal Schur inder of A at F is defined as me[A) = ind|4#|.

Clearly Ap ~ Kp if and only if me(4) = 1. We say that 4 romifies at F, or that F is
ramified in A, if me[A) > 1. In the present discussion, the infinite primes of K will play
an important role. Such infinite primes occur only when K is a number field, In this case,
an infinite prime F of & corresponds to an archimedean valuation on K which extends the
ordinary absolute value on the rational field ). The P-adic completion Kg 1s either the
real field B [in which case P is called a real préme), or else the complex fleld C [and P is a
corrpler prime).

Theorermn 1.91. Let A be o central simple K-algebra, and lef e be the local inder of A af
an mfinite prime P of K.

(i) ff P 45 o compler prime, then Ap ~ Kp andme =1,

(i) ff F is o real prime, then either Ap ~ Kpand mp =1, orelse Ap ~ H andme = 2,
where H 45 the division apebra of real guafernions,

If £ isany finite prime of &, then Kg is a complete field relative to a discrete valuation,
and has a finite residus class field. We defined the Hasse irovariant inv|Ae| of a central
simple K e-algebra, thereby obtaining an somerphism inv @ Br(Hre) = (J/Z. We showed
that

(1.6)

inv|d g = spfme,
axplde| = me,

where mp = ind|dg|, [sp.me) = 1.

We would like to hawve the same formulas true for the case of mimite primes. First
we define Hasse mvariants when P is an infinite prime, and it 1s sufficient to define these
invariants for the three cases O, B and H. Set

imv|C] =0, inv|E| =0, inv|H =1/

Fermulas [1.6) then hold ecually well when F is infinite provided we know that exp|H| = 2
wher |H| is considered as an element of Br[E).

Now let 4 be any central simple A-algebra, and let F be any prime of K [finite or
infinite). Clearly, 4 ~ K = Ag ~ Kz for all P. It can be proved the extremely important
converse of this implication, by using the Hasse Morm Theorem. Let L be a finite Galois
extension of K, with Galois group & = Gal[L/K). Let F be a prime of &, finite or infinite.

Even when F 1s afinite prime, 1t 1s converient to think of £ as representing a class of val-
uations on &, rather than an ideal in some valuation rmg. From this pomt of view, the valua-
tion P extends to a finite set of inequivalent valuations on L, denoted by p[= p1)pa. ..o by
For each o & (3, there is a valuation p” on £, defined by the formula p™(z) = plc~ '),z < L.
Ye call p7 a confugafe of p. If p is a finite prime, then o carries the valuation ring of p
onto the valuation ring of p*. Whether or not p is finite, each jpy 15 of the form p” for some
e .

e set Oy = {o 2 & p” =p}, and call &y the decompesttion group of p relative to the
extension LK. The groups {(p, } are mutually conjugate in &, BEach ¢ € ¢y induces a
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K g-automorphism & of the p-adic completion Ly, since ¢ maps each Cauchy sequence from
L [relative to the p-adic valuation) onto another such sequence. The map ¢ — & yields an
imomaorphism &y = Gal{Ly f K p). We define ne = |Ly @ K| the local degree of LK at P.
Then e = Oy and np |L: K| for each P. Notice that the flelds {Ly, : 1 £ 4 £ g} are
mutually £ p-isomorphic, so e does not depend on the choice of the prime p of £ which
sxtends P.

The next theorem is of fundamental importance for the entire theory of simple algebras
over number fields.

Theorem 1.92 (Hasse Normm Theorem). Lef L be a finite cyelic exfension of the number
field K and let o K. For each prime P of K, we choose o prime p of L which extends P,
Then

aE Npppe (L) = a€ Ny, i [Lp) for each F.

The theorem asserts that o is a global norm [from L to K if and only if at each P, «
is a focof norm [from L, to Kg). Motice that the theorem does not refer to algebras, it
conearns number fields only. In the case when the degree 1 of LK is a prime number, the
Morm Theorem was known for a long time already, in the context of the reciprocity law of
class field theory. It has been meluded in Hasse's class field report from 1230 where Hasse
mentioned that it had first been proved by Furtwingler in 1802, For quadratic fields [r = 2)
the Norm Thecrem had been given by Hilbert in 1887, In 1531 Hasse succesderd to generalize
this statement to arbitrary cyelic extensions LK of number fields, not necessarily of prime
degrea,

If pand p' are primes of L, both of which extend £, then there is a K s-isomaorphism
Ly == Ly, and therefore

Noypeco (g = Neypree [Lyel

This shows that in determining local norms at P, it does not matter which prime p of L we
use, provided only that p is an extension of the valuation P from K to L.

It can be easily proved that every globkal norm is also a local norm at each P. The
difficult part of the proof of Hasse's Norm Theorem is the converse: if o € £ 15 a local norm
at each P, then a is a global norm. In proving this, it is necessary to know that 4 is a local
norm at EVERY prime P of K, including the infinite primes. The theorem breaks down if
we drop the hypothesis that L/ be cyclic. There are counterexamples even when £/ is
abelian.

Corollary 1.83. Let 4 = [L/K, o, a) be o eyelic algebra, where Gal[L/K) = (5) and
ae K* Then A~ K if and only of Ap ~ Kp for each prime F of K.

The following result is also known as the “Local Global Principle for algebras”.

Theorem 1.94 (Hasse Brauer Noether Albert). Let A be o central simple K -alpebro.
Then

An K= dp ~ Kg for each prime P of K.

Remarks 1.95. [i] For each prime P of £, there is & homomorphism Br(K) — Br[ig)
defined by e @y —. Let |4] € Br[K) and mip be the local index of 4 at P. Then me =1
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almost everywhere, which means that |4 p| = 1 almost everywhere, Hence there is a well
defined homomorphism

Br(K) — (P Br(Kg).
s

The Hasse Brauer Moether Albert Thecrem is precisely the assertion that this map is
maomnic.

(i1) A stronger result, due to Hasse, deseribes the image of Br[K) in @5 Br(Kg) by
means of Hasse invariants. [t can be shown that the following sequence is exact:

1 = Br(K) — (PBri#xe) B Q/Z -0, (1.7)
F

where Inv denotes the Hasse invariant map, computed locally on each component: inv =
frinvg,. From the exactness of the previous sequence [1.7) it follows the next relatiem which
is considered many times a formulation of the Hasse Brauer MNoether Albert Theorem in
terms of Hasse invariants:

Y inv|dp| =0, |4] € Br{x). (1.8)

Of course, inv|de| = 0 if F is a complex prime, while inv|dpg] = D0 or 1/2 if F is a real
prime. The exactress of [1.7) also tells us that, other than [1.8], these are the only conditions
which the set of local invariants [inv|4g| } must satisfy. In other words, suppose that we are
given in advanece any set of fractions {xe} from /&, such that ze = 0 almost everywhere,
> axp =0,z =0if Pis complex, xp = Dor 1/2 if Fis real. Then there is a unique
|4] € Br( &) such that

inv|de| =xp for all F.

As a first application of Theorem 1.84, we give a simple criterion for deciding whether a
finite extension of the global fleld K splits a given central simple K -algebra.

Theorermn 1.96. Lef 4 be o central simple K-alpebra. For each prime P of K, let mp =
ind|A #|. Let L be any finife extension of K, nof necessarily o Calods exfension, Then L ds
o splitking field extension for A o and only ¢f for each prime p of L,

mE l.[rp M KPJ. [19]
where F 45 the restricton of p to K.

Proof. If Fis the restriction to K of aprime pof L, then Ly, @p  Ap = L, @ [LR4 A). If
L osplits A, then L@e A ~ L, whence Ly @, Ap ~ Ly, and so Ly splits Ap and relation
(1.9) follows.

Conversely, suppose that [1.9) holds for each p. Then [for each p) L, splits Ag, by
Corollary 1.88. It follows that the central simple L-algebra £ @ g A is split Jocally at every
prime p of L. Hence by Theorem 1.84, £ @& A ~ L. Therefore, L splits 4, as claimed. 0O

Theorerm 1.87. Let A be o centrol simple K -alpebra with locol dndices [me}, where F
ranges over the primes of K. Then expld] = lem{me}, the least common multiple of the
me 5,
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Proof. By Theorem 1.94, |4]* = 1 in Br(K) if and only if |Ag|* = 1 in Br[K ) for each
F. But expldg| = mpg, 50 [Ap]t = 1 if and only if mp ¢, by each me, henee exp|d]| =
lernmig}. O

Two of the major consegquences of the Brauer Hasse Moether Albert Theorem are the
followmg two theorems.

Theorem 1.98. Lef |4] € Br(K) hove locol indices [me}. Then
ind|A] = exp|A| = lem {m e}
Theorem 1.99. Buery cenfral simple K-algebra s isomorphic fo o cyclic alpebra,

Rernark 1.100. Thecrem 1.99 has become known as the Brauser Hasse Noether Theorem
and was also called the “Mam Theorem" in the theory of algebras. It appeared for the
first time in a special volume of Crelle’s Journal who was dedicated to Kurt Hensel [the
mathematician who had discovered p-adic numbers) on his T0th birthday, since he was the
chief editor of the journal at that time. The paper |BHN| had the title: Proef of o Moin
Theorem in the theory of alpebras and was originally stated as follows:

Main Theorem. Bwery cenfral division webra cuer o number field is cyclic
{or os if &5 olso soid, of Ddickson type ).

The thearem asserts that every central division algebra over a number field & is iso-
marphic to (L7, g, a) for a suitable cyclic extension L/ K with generating automorphism
g and suitable a € K*. Equivalently, 4 contains a maximal commutative subfield L which
is a cyclic field extension of K. The authors themselves, m the first sentence of thelr joint
paper from 1932, tell us that they see the importance of the Main Theorem In the following
two directions:

1. Structure of déwision algebras, simce the theorem allows a complete classification of
division algebras over a number field by means of what today are called Hasse invariants.
Thereby the structure of the Brauer group of a number field is determined. This was elab-
orated in Hasse's subsequent paper from 1933 |Has2| which was dedicated to BE. Noether on
the ocrasion of her 50th birthday on March 23, 1832, The splitting fields of a division algebra
can be explicitly described by their local behavior. This is important for the representation
theory of groups and had been the main motivation for R. Brauer m this project.

2. Beyond &he theory of algebras, the theorem opened new directions mto one of the most
exciting ares of algebraic number theory at the time, namely the understanding of Class
Field Theory (its foundation, its structure and its generalization) by means of the structure
of algebras. This had been suggested for some time by E. Noether.

Example 1.101. Let us determine some of the local Hasse invariants of the cyclic algebra
A=[L{K, o a), where Gal[L/K) = (r) and a & K*. Let P denote a prime of £, and p an
extension of F to L. Then by |Hel, Proposition 30.8) we have dp ~ [Lp/H e, ok, o), where
k is the least positive integer such that ¢® lies in the decomposition group Gy of p relative
to LK. Of course, inv|dpe| = 0 whenever Ap ~ Kp.

(i) If Fis complex, or if both P and p are real, then Ap ~ Hp.



a8 CHAPTER !. FPRELIMINARIES

(i) Suppose that P is real, p complex. Then Ap ~ Kp, if ap > 0, and Ap ~ H, if
ap = 0, where ap represents the image of a under the embedding X — Kp. In the latter
case, inv|dg| = 4.

(iii] Let P be afinite prime, and assume that £ is unramified in the extension L/ K. This
is equivalent to assuming that L, /#p is unramified. Since &, = (#%), we may choose r € &
relatively prime to the local degree np = (), such that ¢ is the Frobenius automorphism
of the extension Ly/He. We obtain

imv|dp| =r-vela)fne,

where vp is the exponential F-adic valuation. If we reduce the fraction r-ve(al/npe to lowest
terms, then me is the denominator of the fraction thus obtamed. In particular, me = 1
whernever ve(a) = 0. Thus, mie = 1 for every finite prime P, except possibly for those
primes £ which ramify in LK, or which contain a. O

1.9 Schur groups

The simple components of a semisimple group algebra are called Schur alpebras and represent
the elements of a subgroup in the Brauer group, called the Schur subgroup. In this section
we provide mformation about Schur algekras and cyclotomic algebras, main ingredients i
the Brauer Witt Theorem. The study of the Schur subgroup of the Brauer group was begun
by Issal Schur (1875 1841) in the beginning of the last century. The Schur group of a field
K, denoted by 5K, is the answer to the following gquestion:

What are the classes in Br[ ) occurring in the Wedderburn decomposition of
the group algebra KO

Considering an irreducible character of the group O that takes values in the field K,
the Wedderburn component of K corresponding to the character is a central simple K-
algebra. The Schur group of K hence delimits the possibilities for the division ring part of
this component, mdependently on the group & under consideration. There are interesting
problems related to this topic such as to compute the associated Schur subgroup 57K of
a given field K or to find properties of a given Schur algebra over K. The Brauer Witt
Theorem has been the corner stone result for solving these questions. [t asserts that inorder
to calculate 5K, one may restrict to the classes m Br[K') containing cyclotomic algebras.

In this section we consider a field K of characteristic 0. In fact, the Schur group ower
fields of positive characteristic is trivial, as we already explained at the end of section 1.5.

Definition 1.102. Let 4 be a central simple algebraover K. If A is spanned as a K-vector
space by a finite subgroup of 1ts group of units A*, then A is called a Schur alpebra over K.
Equivalently, 4 is a Schur algebra over K if and only if 4 1s a simple component central
over K of the group algebra K& for some finite group . The Schur subgroup, dencted by
STH), of the Braver group Br( K], consists of those classes that contain a Schur algebra over
K. The fact that 5[K) is a subgroup of Br[K) is a direct consequence of the isornerphism
KG @y KH = K[G x H).
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Definition 1.103. A cyelofomic alpebra over K Is a crossed product algebra (K[ K, 1),
where ([ is a root of 1, the action is the natural action of Gal[K[()/K) on K[() and all the
values of the 2-cocyele T are roots of 1in K[,

Lernma 1.104. Let O = [K[(,, )/ Km) and O = [(K[(,,) /K m) be fuo cyeloformic
alpebras cwer K, where (,, are roots of f, fori=1,2.

Then the fensor product O @4 C9 45 Brover equivalent fo a cyclotomic apebra O =
(K [Cn)f 5, 1), where m 45 the least commnon multiple of m) and ng and 7 45 the 2-cocyele

Iﬂf[’]’ijlﬂf[fz] fﬂ‘?" Inf = Iﬂf.r{(cﬂr WO W

Proof, Using Proposition 1.5% and Ian(Cn,-}fH—erCm}fH1 we inflate the cyclotomic algebras
O, for 1 = 1,2 to the crossed product algebras & = [K((m)f K, Inf[R]) that are similar to
. Moreover, the algebras O are cyclotomic algebras becanse the values of its 2-cocyeles
Inf(n) are roots of 1 in K[ by the definition of the inflation.

Furthermaore, using Proposition 1.55 we can now have the tensor product over K of
the cyclotomic algebras ¢ and &% and obtain an algebra which is Brauer eguivalent to
the cyclotomic algebra & = [K[(,) /K, Inf[r)Inf(m]). Denote now by + the 2-cocyele
Inf(n)Inf[ra) and obtain the desired result. O

Let us consider the set of all theose elements of the Braver group Br(A) which are
represented by a cyclotomic algebra ower K. Then this Is a subgreup of Br(K). One can
consider this subgroup and the Schur subgroup STH) of Br(K). The following proposition
gives one inclusicn between these two subgroups.

Proposition 1.105. 4 cyclofomic alpebra cver K is a Schur algebra cver K.

Proof. Let A = [K[{)/K,T) be a cycloteomic algebra over K, that is, a crossed product

K() 2 CallK(Q)/K) = € K(()w,

creSal K M

where ([ is a root of 1, the action o is the natural action of Gal[ K[}/ K) on K(() and all
the values of the 2-cocycle T are roots of 1 in (). The values of the 2-cocycle 1 oand
generate a finite cyclic group (() in the group of units K (()* and K[{') = K[(), where ('
is sorre root of unity, so we may assume that § = ', The Galois group Gal[K ()7 K] can
be regarded as a subgroup of the group of automorphisms of the cyclic group () and the
values of the 2-cocycle belong to (£).

The elements 7, for ¢ € Gal[K({)/K) and £ generate a finite subgroup & in the multi-
plicative group of units of the algebra 4. This happens because from the formulas 70 = 7%
and 75 = r(r, f)ef one deduces that ((} is a normal subgreup of ¢ and the factor group
/Gy is isormerphic to Gal[K[{)1/K), hence ene has the short exact sequence

Sinece & spans A with coefficients in &, the center of 4, it follows that 4 is a Schur algebra
over K. O

The other inclusion, namely of 5[ K in the subgroup formed by classes in Br[ /] that are
represented by a cyclotomic algebra over K, is given by the Brauer Witt Theorem. In the
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1350°s, R. Brauer and BE. Witt independently found that gquestions on the Schur subgroup
are reduced to a treatment for a cyclotomic algebra. It follows that STH) = [ K) and so,
one only has to study cyclotomic algebras over K on all matters about the Schur subgroup
STH). A precise formulation of the theorem is the following and a proof of Theorem 1.106
is given in the newt chapter.

Theorem 1.106 (Brauer Witt). A Schur alpebro cver K, thatf is, o simple component
of a group afgebra KOG wiih center K, is Brouer equivalent to o cyclotomic algebra cver K.

The elements of the Brauer group are characterized by invariants, hence it is reascnable
to ask whether the elements of STA) are distinguished in Br{A) by behavier of invariants.
M. Benard had shown the following |Ben|.

Theorem 1.107. ff |A] € 5[K), for K an abelion number fleld, p s o rationol prime and
Py, Fa ore primes of K over the prime p, then 4 @x Kp, ond A @5 Kp, hove the same
tnoer,

Furthermaore, M. Benard and M. Schacher in |BeS| have shown the following.
Theorem 1.108. ff |4] € S[K) then:

(1) ff the indexr of A 45 m then Gn 15 dn K, where Oy 15 o primifive m-th root of undty,

(2) If Fis o prime of K lying over the rationo! prime p and o € Gal[K/Q) with (5, = ¢h,

then the p-invariant of A sofisfies: inve(A) = binve-[A) mod 1.

If a central simple algebra A owver X satisfies (1) and [2) above then A is said to hawe
uniformly distributed invarionts. Based on this result, R.A. Mollin defined the group O K)
as the subgroup of Br[K) consisting of those algebra classes which contain an algebra with
unifermly distributed imvariants |Mel|. It follows from the Benard-Schacher result that SK)
iz a subgroup of UK. General properties of UK and the relationship between S[K) and
LK) are investigated in |Mel|.

There are additional restrictions on the collection of local indices of central simple alge-
bras that lie in the Schur subgroup of an abelian number field. The following is a consequence
of results of Witt [|Wit], Satz 10 and 11). It alse holds in the more gereral setting of central
simple algebras over K that have uniformly distributed invariants |Maol].

Theorem 1.108. ff K 45 an obelon number field, 4 2 5[K) and p 15 on odd prime, then
p=1 mod m,[A) ffp=2then ma[Ad) £ 2

The previous result is also a consequence of a result from [Janl| and |Yam| describing
the Schur group of a subextension of a eyclotomic extension of the local field (3, for p an
odd prime number.

Theorem 1.110. Letk be o subfield of the cyclotomic extension [0, [(n]), e = e(&/],) and
ep the lorpest foctor of e coprime top. Then S(k) 45 o cyelie group of order [p— 1)/ ep and
it &5 penerafed by the class of the cyclic afpebra (£(G,)/ &, 0, (), where { 45 o generafor of the
group of Toots of undty in k& with order coprime to .
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For a field & and a positive integer 1, let W[, 1) denote the group of roots of unity
in K whose multiplicative order drvides some power of 1. In particular, if p is a prime,
WK, p) denotes the roots of unity of p-power order in K. The next result from |Janl| iz a
vary useful reduction thecrem.

Thearermn 1.111. Let K be o field of choracteristic zers, LK on erfension and o =
Gal[L/K). Letn be o fired integer and suppose thot WL, n) & findte. Let K < F < L be
such that

(i) Sal(Lf/F) = () ds cyelic,
(i1) the morm map NV, e carries W{L, n) onte W([F,n).

Let [Lf K, o) be o crossed product such thot o € W([L,n) Then there 45 o crossed groduct
(FAEC,E), with 8 € W[ F n) such that (LK, o) and [F/K, ) He in the some closs of the
Brouer group of K.

To fix the notation, let ¢ be a prime integer, 3, the complete g-adic rationals, and & a
subfield of i}, ((,]) for some positive integer s, The following lemma from [Jani] is helpful
to compute the index of cyelic algebras over the local field &

Proposition 1.112. Lef E/k be o Golvis ertension with romificotion dnder ¢ = e[ E/k)]
and € be o roof of unity in k howving order relofuely prime fo g Then

= Nge[r) for some r € B = (=L for £ o voof of undty in k.

Notice that by Corollary 1.57, having 4 = [E/&, o,a) a cyclic algebra, exp|d] is the
least positive integer £ such that o* € Nge[E*). Moreover, if exp|d| = |F: k], then d s a
division algebra. This is a corollary of Theorem 1.56 which says that [E/& 5, a) ~ & if and
only if @ € Vg, [E*).) Proposition 1.112 gives a criterion to decide when at € Vg [ 5],
for @ a root of 1, that is, exactly when af = £05/% for ¢ 2 root of 1 in k.

By the Brauer ¥Witt Thecrem, every Schur algebra is equivalent to a cyclotomic algebra
and, if the center 15 a number field, then it is isomorphic to a cyclic algebra. We call cyefic
cyelotomic algebra the algebra with these two features. Let K be a number fleld.

Definition 1.113. A cyclic cyclotoric algebra over K is a cyclic algebra that can be
presented in the form [K[{)/ K, #,£), where  and £ are roots of unity.

A Schur algebra over K is cyclic cyclotomic algebra if and only if it is generated over K
by a metacyclic group if and only if it is a simple component of a group algebra KC for O
a metacyelic group (see eg. |OdRSI|).

In Chapter 6 we will study some properties of these algebras. The next proposition gives
information about the local mdices of cyelic cyclotomic algebras.

Froposition 1.114. Let 4 = [K () K 5 m), where K 15 o number fleld and , and Gy
are roofs of untfy of orders n and m respectively. ffp 45 o prime of K, then my[A) divides
m oand if mpe(A)] # 1 and p {5 o findte prime then p divides 1.
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Proaf. [A]™ = [[K[C.)/ K, e, 1])] =1, hence m,[A) divides m[A) which divides m. Further-
mare, if p f o, then () K s unramified at p and w, [(n]) = 0 sinee (, I5 & unit in the
ring of integers of K. By Theorem 1.76, the equation Ne_¢c s/, (2] = (m has a solution in
K((,) and 5o, (A4) = 1. O

Notes on Chapter 1

This chapter mainly contains standard material on the topics listed as sections of the
chapter. The references used to collect the definitions and results presented n this chapter
are mainly |Bro, CR, FD, Hup, Isa, Pie, Rei, Seh, Ser.

MNow we give a few biographical notes about the main contributors to the development
of the theory of central stmple algebras, principal structures in this thesis. We reserve some
sparce at the end of the next chapter for K. Brauer.

Emry Noether [1882 1535) had a great influence on the development of many of the
results presented in this chapter. She strongly proposed that the non-commutative theory
of algebras should be used for a better understandmg of commutative algebraic number
theory, m particular class field theory. She also had an important contribution to the
theory of algebras and an important role, together with R. Brauer and H. Hasse, in the
proof of the “*Main Theorem in the theory of algebras”.

Helmut Hasse [1888 1879) was the one who actmally wrote the article |BHN| with the
proof of the Main Theorem. He also estaklished a collaboration with 4. Albert who had,
mainly independently, an important contribution to the development of the theory of alge-
hras.

AL Adrian Albert (1805 1972) was a disciple of L.E. Dicksor. Albert remained interested
for the rest of his career with the crossed product algebras he had studied in his earliest
wark.
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Chapter 2

Wedderburn decomposition of
group algebras

Let  be a fleld of characteristic zero and & a finite group. By the Maschke Theorem,
the group algebra O is semisimple and then & is a direct sum of simple algebras.
This decomposition is usually known as the Wedderburn decomposition of FC because
the Wedderburn Artin Theorem describes the simple factors, known as the Wedderburn
components of &G, as matrix algebras over division rings.

The Wedderburn decomposition of a semisimple group algebra F£C is a helpful tool
for studying several problems. For example, a good description of the Wedderburn com-
ponents has applications to the study of units [JL, JLdR, JdR, LdR, dRR, Rit52, Seh|,
automerphisms of group rings |[CJP, Herd, OdRS2| or in coding theory if F s a finite field
|KS, PH|. The computation of the Wedderbirn decomposition of group algebras and, in par-
ticular, of the primitive central idempotents, has attracted the attention of several anthors
|BP, BdR, JLPa, OdRI, OdRS1|.

In this chapter we present an algorithmic method to compute the Wedderburn decom-
position of £G, for & an arbitrary finite group and & an arbitrary field of characteristic 0,
which is based on a constructive approach of the Brauer Witt Thecrem. The Brauer Witt
Theorem states that the Wedderburn components of £ [ie. the factors of its Wedder-
burn decomposition) are Brauer equivalent to cyclotomic algebras [see |Yam| or the original
papers of K. Braver |BraZ] and E. Witt |Wit|). By the computation of the Wedderburn
decomposition of FC we mean the description of its Wedderburn components as Brauer
equivalent to cyclotomic algebras. The Brauer Witt Theorem is also a standard theoretical
method for computing the Schur index of a character in the abeove sitnation. See |Shi,
|Her2|, |Herd| or |Her5| for an approach that studies this aspect of the theorer, ie. the
computation of the Schur mdex of the simple components.

The computation of the Wedderburn decomposition of £ [ie. the precise description
of a list of cyclotomic algebras Brauer equivalent to the simple factors of £ for a given
semisimple group algebra £ is not obvious from the proofs of the Brauer Witt Theorem
available n the literature (e.g. see |Yam|). The proof of the Braver Witt Theorem presented
in |Yar| relies on the existence, for each prime integer p, of a p-elementary subgroup of

E5
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(' that determines the p-part of a given simple component up to Brauer eguivalence in
the corresponding Brauer group. Cur approach of the proof of the theorem uses stromgly
monomial characters or strongly monomial subgroups, that allow a good description of
the simple algebras, instead of p-elementary subgroups. Moreover, with this approach the
number of subgronps to look for is larger and eventual ly one could obtain easier a description
of a simple component or even a description In which it is not necessary to consider each
prime separately as it has to be done in general.

The identities of the Wedderburn components of £C are the primitive central idempo-
tents of & and can be computed from the character table of the group &, A character-free
method to compute the primitive central idempotents of Q& for & nilpotent has been in-
troduced in [JLPo|. In |OdRS1], it was shown how to extend the methods of |JLPo to
compute not only the primitive central idempotents of G, if & 15 a strongly monomial
group, but also the Wedderburn decomposition of Q. See section 2.1 for the definition of
strongly monomial groups, where we also present several results on strongly monomial char-
acters, mainly from |[OdRS1|. This approach was generalized to arbitrary groups by using
the Brauer Witt Theorem m |[D1t2]. We present this method in Section 2.2 of this chapter
and we give the algorithmic proof of the Brauer Witt Thecrem n four steps. In section 2.3
we give a theoretical algorithm for the computation of the Wedderburn decomposition of a
semisimple group algebra based on the algorithmic proof presented in the previous section.

2.1 Strongly monomial characters

The problem of computing the Wedderburn decomposition of a group algebra leads naturally
to the problem of computing the primitive central idempotents of Q. The classical method
used to do this is to calculate the primitive central idempotents ey ) of T associated to
the nreducikle characters of & and then sum up all the primitive central idempotents of the
form e[r o x) with o2 Gal[J[x1/10) and » € Irr(C] [zee Proposition 1.24).

Recently, Jespers, Leal and Pagues introduced a method to compute the primitive cen-
tral idemnpotents of Q& for < a finite nilpotent group that does not use the character table
of & |JLPa|. Olivieri, del Rio and Simén peinted out that the method from |JLFo| relies on
the fact that nilpotent groups are monemial and used an old theorem of Sheda [see Theo-
rem 1.26] to give an alternative presentation |[OdRS1|. In this way, the method ntroduced
by Jespers, Leal and Pagues, that shows how to produce the primitive central idempotents
of ¢ from certain pairs of subgroups [H, K7) of O, was simplified in |[OdR51| and the men-
tiomed pairs [H, K were narmed Sheda patrs of O Furthermaore, Olivier], del Rio and Simdn
noticed that if a Shoda pair satisfies some additional conditions, then one can describe the
simple component associated to the given primitive central idempotent, denoted e[, H, &),
as a specific cyclotomic algebra, This gives a constructive means of the Brauer Witt The-
orem for computing the Wedderbum decomposition of every semisimple group algebra, as
we are going to see in this section.

The followmg results are mostly from |OdR51] and play an important role in our proof
of the Brauer Witt Theorem. We present a method to calculate the primitive central
idempotents of (P& in the case of finite menomial groups given in |[OdRS1|. The primitive
central idempotent of (J& associated to a monomial complex character of & 1s of the form
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ae(f, H, K, for o € ) and [H, K) a pair of subgroups of & that satisfy some easy to
check conditions. We call these pairs of subgroups Shoda poirs due to their relation with a
theorern of Shoda [Theorem 1.26).

Now we mtroduce some useful notation, mainly from [JLPo| and [OdRS1|. F K 5 =&

then let £ (K, K) = K = & ¥, £ € QK, and if # # K then let

£(H K) = [ (K-,
MR EAH

where AM[H/K) denotes the set of all minimal normal subgroups of H/ K.

Furthermaore, let e[, H, K] denote the sum of the different G-conjugates of £[H, K)
in &, that is, if T is a right transversal of Ceng[e(H,K)) in &, then e[, H K =
T oeer E[H, K]t. where Ceng [=(H, K]] is the centralizer of £[ H, K] in & Clearly, e[, H, K
is a central element of QG If the G-conjugates of £[ A, K7) are crthogonal, then e[&) A, K]
is a central idempotent of .

A Sheda podr of O 15 a pair [H, K) of subgroups of (7 with the properties that K <1 H and
there is 4+ & Lin[ A, &) such that the mduced character +% i5 irreducible, where Lin[H, &)
denctes the set of linear characters of A with kernel K. Using Thecrem 1.26, it is easy
to show that a pair (M, K) of subgroups of & is a Shoda pair if and only if K D H, H/ K
iz cyclic, and if g ¢ @ and |H,g| N A C K then g € H. Moreover, if [H, £) s a Shoda
pair of &, there is a umigue rational rumber & such that ae[( A, K I a primitive central
idempotent of &7 |OdRS1].

A stromg Shedo podr of @ is a Shoda pair [(H, K) of & such that A = Ng[K) and
the different conjugates of £(H, ) are orthegonal. If (A, K) s a strong Shoda pair then
e[, H, i) is a primitive central idempotent of (7.

If [H,K) is a strong Shoda pair of & and i, 4. € Lin[H, £, then A[TP?,Q] =
;4[1!,?:‘3', 0], 5o we denote A(C, H K) = A[’tﬂ)c1 1) for any 1 € Lin(H, ). In other words,
the surn of the different characters induced by the elements of Lin(H, K is an irreducible
rational character of & and A[, H, £ is the simple component of & associated to this
character. Consider now i € Lin[H, K7 and let %[h] = (., an m-th primitive root of unity,
where H/K = (h) and m = |H : K|. Denote by # the induced character . Notice that
the character 8 depends not only on the strong Shoda palr [H, K, but alse on the choice
of Cm. We refer to any of the possible characters # = o€ with i 2 Lin[H, K a5 a character
induced by the strong Shoda pair [(H, £). If § and & are two characters of & induced by
[H, K) [with different choice of m-th roots of unity) then eg(f) = e[, H, K) = eq[f), 1.
f and #' are Q-equivalent. Two strong Shoda pairs of & are said to be eguinalent if they
induce [J-eguivalent characters.

Definition 2.1. An breducible moncminl [respectively strongly mencminl) character y of
(7 is a chararter of the form % = ¢ for 4 € Lin[H, K] and some Shoda [respectively strong
Shoda) pair [H, K) of G, or equivalently Ay, 01 = AT, H, K for sorme Shoda [respectively
strong Shoda) palr [(H, &) of &L Then we say that (& A, K) is a monomial [respectively
stromgly monomial] component of (.

Recall that a finite group & is monomial 1f every rreducible character of ¢ is monomial.
Similarly, we say that & is sérongly monemdal if every nreducible character of & s strongly
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maonaomial. It is well known that every abelian-by-supersolvable group is monomial, and
recently it was proved that it is even strongly monormial |[OdRS1[. In the same article it is
shown that every monomial group of order less than 500 is strongly monomial. YWe recently
found using the package wedderga that all monomial groups of order smaller than 1000 are
stromgly monomial and the smallest monomial non-strongly monomial group is a group of
order 1000, the 86-th one in the library of the GAF system. However, there are irreducible
maonaomial characters that are not strongly monomial in groups of smaller order. The group
of the smallest order with such irreducible monomial non-strongly monomial characters has
order 48.

If [H, K] i5 a strong Shoda pair of a group &, then one can give a description of the
structure of the simple component A[G, H, K] as a matrix algebra over a crossed product
of an akelian group by a cyclotomic field with action and twisting that can be described
with easy arithmetic using information from the group &, Namely, in |OdRS1, Proposition
3.4| it is shown the following.

Theorem 2.2. Let [H, K) be o strong Shodo patr of & and mo = [H : K|, & = Nz [K],
n=|C: N, hi& a generafor of H/K andmn,n’ & &, Then

AlG H K = M, [R[Cn] =7 N/H],

where the action o and the fuisting T are given as follows: a(nH) = (L | ifn=hnkK = 'K
and TnH,wHI =, ¥ |nn| K =K andi,J e T.

m

Proof. Let £ = £[H,K), ¢ = e[, H, K) and T a right transversal of & in 7, so that
g = zge?.sﬁ. First we prove that Ceng (£) = Ng[K) and e is a primitive central idempotent
of (Y. Since H < No[(K), it follows that N [K) < Ceng(e) because 8 = £[HS, K9), for
all g € (7. Now let g € Ceng(e) and & € K. Then g lkge = g7 keg = g7 'eg = 2, 50
g kg € K, henee Cenp () € Ng[K). Furthermore, the action of A/H is faithful since
[H, K i5 a strong Shoda pairs, hence if g € VY A, then |H, 5| N H € K. By Theorem 1.42,
the algebra Qe 15 simple and e is a primitive central idempotent.

The elements of {£% 5 £ '} are orthogonal, hence J&e = EB'geT DGR, If 5 e (7 then
the map given by h — hg is an isomorphism between PCe and QCef. Then gef)de =
EB';;ET C8 = [0, We have

QCe 2 Endge(Q0e) 2 Endga(Q0:)? = M, (Endge(Q0s)) 2 M, (=0G:).

But [ = (Ve because, if g € &Y W then £ge = gy~ 'ege = ge¥e = 0. Furthermore, ¢ is
a central idempotent in QA so that QN = QNe.

So far we obtained Qe = A [QNVe). To finish the proof we show that [JfVe =
Q[Cm]) =2 N/H. Using the crossed product structure Q& = QH = &/ H, one has that
OQNe =JHe *Fr’ N H 15 a crogssed product of &7 H over the field [PH . Sinee Hf7 K is cyclic,
£ = egli), where 40 is a linear character of A with kernel i, henee PHz = QHeg4) =
(J[Cm]) and the isormorphism of PHe to [(x) is given by K — | and & — p, where H =
(H, Ry, The isernorphism QHe 22 [0, ) extends naturally to an &/ H-graded somerphism

QHz +5 NfH = Q) +7 N/H,
where ¢, T are the action and the twisting o : N/ H — Aut{Q(Cnl), 7 N/H x NfH —
L(Cn)) given by oullm) = (5 FATK = K and 7(n,n") = ¢, if [n,n'|K = W7 K, for

™M

i,J 2 & 50 we have that Ve 2 (0[] T N/H. O
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The action ¢ and the twisting T of the crossed product are the action and the twisting
associated to the short exact sequence of the group extension

1 = Hi K Z () — N K — N H = L.

The arction is provided by the action of &K on /K by conjugation, that gives the action
g of MK in Aut([Ca)).

2.2 An algorithmic approach of the Brauer Witt The-
orem

The Brauer Witt Theorem states that the simple component Ay, F) corresponding to the
irreducible character ¥ of the group & over the field & is a simple algebra which is Brauer
aguivalent to a cyclotomic algebra over its center F = F[x), that is, a crossed product
algebra (F(()/F, 1), with { a root of unity and all the valnes of the 2-cocycle © roots of
unity in F(().

In this section we present a new proof of the Brauer Witt Theorem that gives a method
to explicitly construct the above cyclotomic algebra. Our proof of the Brauer Witt Theorem
is divided into four steps that one could name as: constructible description for the strongly
monomial case, reduction to the strongly monomial case, ertstence of strongly monomial
characters and change of fiefd.

First we present the strongly monomial case, that is, the conséructible descripiion of
the simple component associated to a strongly monomial character. The reduction of the
problem to strongly monomial subgroups 1s presented next. The reduction step consists
of describing the p-part of A(x, F) as the ppart of the algebra A[f, F) associated to a
strongly monomial character 8 of a subgroup of ¢ Then we are faced with the problem of
showing that the desired strongly monomial character & does exist, for every prime p. One
of the conditions on # in the reduction step is that F[#) = F, and it is not always true that
such a character with this condition exists. However, it does exist a character 2 such that
F[8) C L,, where L, is the p-splitting field of A(x, F) [see 3.2. for the definition). The
proof of the existence of the desired strongly monomial character uses the Witt Berman
Theorem. This step is the third step. So we have gone up to each L to deseribe the p-part
and now we have to retum to the initial field F. The way back 15 the change of fiefd part
which 15 cbtained through the corestriction map.

The strongly monomial case

The following proposition provides the constructible Brauer Witt Theoremn for stromgly
monomial characters. [t gives a precise description of the simple algebra associated to a
strongly monomial character as a matric algebra of a cyclotomic algebra. In this particu-
lar rase, one ohtams the description of the strongly monomial simple component at onee,
without the need to follow the next steps as 1t has to be done in the general case.

Froposition 2.3. Left [H, K) be o strong Shoda pofr of the group O, o € Lin[H, K],
N=Nz[K),m=|H:K| andn = |0 N|. Then N/H = Gal[Q[(m) /P[5
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Furthermore, if F 45 o fleld of choracteristic 0, F = F(¢%), d = m'ﬁ;"c}ﬂfﬁc} and T is
the restriction to Gal[F((m)/F) of the cocyele T associofed fo the notural erfension

I%HfKE(Cm}—}NfK—;NfH—}l [2_1]
then
A, F) = Mg [F[Gn ) /F, 7). (2.2)

Procf. It is proved in Theorem 2.2 that
AlS, Q) = My (QCn) +2 N/ H),

where the action oo is mduced by the natural conjugation map f @ & — Aut(H/K) =
Cal[P[(m) /) and the twisting is the cocyele T given by the exact sequence [2.1]). Since
H /K is maximal abelian in &/K, the kernel of f is H. The center of ﬂ.[-ﬂ;c, i) s Q[-ﬂ;cj.
henee F(N/H) C Gal[Q[(m)/Q(#C)) and the isomorphism holds because |V : H| =
A2 y(G) : QU]

Furthermare, |A[#°, F)| = Resgrpes_p([A[#%, Q1)) = [[F((n) /F, )] and

deg(AWS. F)) _ I0:H] _ nlQGa) Q) _
deg(F{Cm )/F ) |[F[Cn) < [F(Cn ) = I 1
which yields the isomorphism A[#S, F) 2= Aag(F[Gm) /F. 7). O

Remark 2.4. Notice that the description in [2.2) can be given by the murmerical information
of a 4-tuple:
['ﬂﬂr. T, [031 iy ;5';] 15l [’m‘] ]53<J’Sij| [2‘3]

where 1, d and m are as in Proposition 2.3 and the tuples of integers [on <z, [Bil12ia,
(“fij )1 cic g Satisfy the relations: =% = x% g% = xl lgj, s = 2™, for x a generator of
HiK, g1 ... € N/ K such that M /H = (1) = --- = (g (with & the fmage of 5 €
N/ in N/H), where &/ H is the image of Gal[F[{x]/F) in &/ A under the isormorphism
N{H = Gal[Q[(m) /Q[#7)) and o; s the order of g, for everyi=1,... L

Thus A[$%, F) = M, 4(A), where 4 is the algebra defined by the following presentation:

A=FCndlgre- oo G5 =3 0% =5 ggm = gy I, 1 €< J < ). (2.4)

Reduction to strongly monomial characters

Let the finite group & hawe exponent 1. For every rreducible character w of & and every
prime p, the p'-splitfing field of the simple compeonent Ay, F) over F = F[x) is the unique
field L, between F and F((,) such that [F[(.) : L] i a power of p and L, : F| is relatively
prime to p. That is, the field L, is the field corresponding to the p-Sylow subgroup of
Gal[F[(.)/F] by the Galeis correspondernce.

Let O be a division algebra central over F with index s that has the following factor-
ization into prime powers m = p)'py” .. .ps*. Then D is F-isomorphic to the tensor product
& D@ --- @ O, where £ 15 a division algebra central over F with index fp?" for every
i from 1 to s |Pigl. ¥We call the algebra class |D] the pi-port of |D] and we denote it by
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| B, Tf o, then let the p-part of |D] be equal to [F], the identity in the Brauer group of
F. Recall that my(x] denotes the Schur index of x ower F, which coincides with the Schur
index of the simple cornponent Ay, F) of £ corresponding to y. Furthermore, mp(x ), s
the p-part of the Schur index of ¥ over F.

The following proposition from |Yar, Proposition 3.8] gives the reduction part [up to
Brauer equivalence) of the computation of a simple p-component |A(x, £, for every prime
p, to the computation of the p-part corresponding to a suitable subgroup of & and an
irreducible character of it that verifies some additional conditions.

Froposition 2.5. Let 7 be a findie group of erponent 11, x an drreducible character of &
F oo field of choracterdséic 0 and F= Flx). Let M be o subgroup of & and 8 an drreducible
character of M such that for each prime p

(#1 [y, B) s coprime to p and @ fakes values tn Ly, the o' -part of F[C7F(x).

Then one has |A(x, Fl|p = [A(8, Fl|p. Moresuver, mp(x), = mo, (0]

Proof. By Theorem 1.21, F((,) is a splitting fleld for FG. Thus, F(,) is a splitting field
for both Ay, F) and A[8,F). Let Ly, be the p-splitting field of the simple algebra Ay, F).
Then the exponents of Ay, £,) and A[f, £,] in Br{L,] are both powers of p. Furthermare,
if ¥ is the character given by ¥(g) = x(g7 "), for g € &, then

|A0x &3 Lep)| = [Alxa Lol - AR Lp)| = [ L]

Henee, the character x @ % of & » & Is realized in Ly, 5o the character [ym) @ % of M =
is also realized in Ly, The character # @ % of M » & 15 irreducible and by hypothesis
L[fe¥) C L, Lett=[xp.?) such that (p,f) =1, by hypothesis. Then
[[XI"-’T] ®¥19®EJMXG = [XMWE]M - [¥1E]G' = [:{M’igj =t
Henee the multiplicity of the character 8 ®@ ¥ of M = & in the decomposition as a sum of
irreducible characters of [y ar) ® % is ¢ and therefore the Schur index mp, [f @7 divides ¢
Sinee |A[f @ ¥ L) = AR Ly)] - |A% Ep)| and both exponents of [4(#, L,)] and
| A%, Ly)| are powers of p, it follows that the exponent of [A(F @ ¥, L,)| 15 a power of p.
Furthermaore, the exponent of [A[f &%, L,]| divides the Schur index s, (#®%) that divides
t. Because [p,#] =1, ome has my (8@ %) = 1 and [A[ L,)| = |A[T L)) = [Alx, L))
By the mjectivity of Res : Br(F), — Br(L,),. one obtains that |4y, F)|, = |A[f, F),.
Furthermaore, [mr(x)]y = m([A(x Fllp) = m(|Ax, Lp)]) = m(|A(, L)]) =m [#). O

Existence of suitable strongly monomial characters

Proposition 2.5 states that the p-part of 4, ) is Braver equivalent to the p-part of A[8, F),
provided [xar, ) is coprime to p and y and & take values in F. If # is a strengly menomial
character then this p-part would be described as explamed mm Proposition 2.3, Therefore,
one would like to show that such a character # does exist for every prime p dividing the Schur
index of ¥. However, this 1s not true. Alternatively, using the following FProposition 2.6,
which is a corollary of the Witt Berman Theorem [Theorem 1.32), one can find such a
character & If F is replaced by L, the p-splitting fleld of A%, F).
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Proposition 2.6. Bvery F-character of (7 is o T-linear combination 3, a; 85, where every
a; © & and each B 4 an trreducible character of a strongly monemial subgproup of G

Proof. By the Witt Berrman Theorem [Theorem 1.532), every F-character of (7 is a F-linear
cormbimation 3, a;B5, where the f;'s are irreducible F-characters of F-elementary subgroups
H; of G, In particular, the H;'s are cyclic-by-ps-groups for some primes p;, and by |OdRS1|
each H; is strongly monomial. O

The next proposition establishes the existence of a strongly monomial subgroup and a
character with the desired properties that appear in Preposition 2.5, relative to the field L,
the p'-splitting field of A(x, F).

FProposition 2.7. Let the finife group O hove erponent n, ¢ = §, and ¥ be an @rreducible
F-choracter of (. For every prime 1, there exist o strongly moneminl subgroup M of & anad
an @rreducible chorocter 8 of M satisfing relation [+) for every prime p:

(#]  [xna.0) is coprime to p ond ¢ fokes vohies in L, the p'-port of F[C,)/F(x).

Proof. Let b be a diviser of ¢ such that & /b is & power of p and [p,£) = 1. Then, by
Froposition 2.6, blg = 3 ;¢ e A, where each )y is an F-character of a subgroup M; of
which is strongly monomial. Furthermore,

b= T eond = T eslum, 1)
i i

Moreover Fyun, ] © F[x) C F, F[A;) C F for every ¢ and F[() is a splitting fleld of every
subgroup of . Thus, if #5 is & constituent of a4, Ay, that is, 8; appears in the decomposition
of ¥, Ay as a sum of Irreducible characters, then (8, A;) is multiple of [F(#;) : F| and

therefore
by = Zdj UF[EJ]
F
where each 85 is an irreducible character in a group M; which is strongly monomial. Then

b= [x.bx) = Zd[JF - (.8

Since b is not multiple of p, there is 7 such that If M/ = M and # = & then |F[#] : F[%,6%)
is niot rrultiple of p. Thus [, 65 is not multiple of p. Since F C F(#) C F[g) and [F[£] : Ly
iz a prime power, one has that F[#) C L. O

Proposition 2.7 proves that, for each prime p, there exists a strongly monomial character
# of a subgroup M of O that takes values in Ly, and [y, &) is coprime to p. Henee, from
Proposition 2.5 it follows that Ay, L] is Brauver equivalent to A[#, L,), becanse the index
of A(x, L,) is a power of p.

Observe that it was proved that the subgroup M In Proposition 2.7 can be taken to
ke strongly monomial. Moreover, using the Witt Berman Theorem, one can prove that M
could be taken p-elementary. Howewver, for practical reasons, it 1s better not to impose M
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to be p-elementary or even strongly monomial, becanse the role of A, or better said #, Is to
use the presentation of A[#, L) as a cyclotomic algebra given I Proposition 2.3 in order to
describe the ppart of A%, L,), which is Brauer equivalent to A(B, L,)] by Proposition 2.5.
S0, by not imposimg conditions on A7 but on &, a strongly monomial character in a possibly
non-strongly monomial group, the list of possible 85 s larger and it is easier to find the
desired strongly monomial character. The proof of Proposition 2.7 does not provide a
constructive way to find the character #, but this is clearly a finite computable searching
problem. Omne only needs to compute L, an easy Galois theory problem, and then run
through the strongly monomial characters 8 of the subgroups M of & computing [y a 8)
and F[#) until the character satisfying the hypothesis of Proposition 2.7 is found. The search
of the strongly monomial characters of a given group can be performed using the algorithm
explained in |OdR1].

Change of field. The corestriction

In this last step we complete the proof of the Brauer Witt Theorem. WMoreover, using an
explicit formula for the corestriction Cor, _g on 2-cocyeles, where L, is the pl-splitting
field of A%, F), and the description of the simple components A4 (x, L) as algebras Brauer
squivalent to precise cyclotomic algebras, we ohtain a description of the simple algebra
Alx, F) as Brauer equivalent to a eyelotomic algebra.

The proof of the Brauer Witt Theorem in standard referemees Jike |Yam| does not pay
too much attention to effective computations of the corestriction Cery, _p. Unlikely, we are
interesterd in explicit computations of the cyclotomic form of an element of the Schur sub-
group. After decomposing the simple algebra Ay, £) in p-parts and deseribing every simple
p-part as Brauer equivalent owver L, to a cyclotomic algebra |[F(()/Lp, 7], the corestriction
allorrs us to returm to the initial field F. Hence, for every prime p, we have

Cor g, —w[[[F(C)/ Ly T[] = [[F(C)/F, Cory, _g(7]]]-

A formula for the action of the corestriction on 2-cocyeles is given in [Wei2, Proposition 2-5-
2|. This formula takes an easy form inour situation, because we only need to apply Core_p
to a Z-cocycle T that takes values in a cyclotomic extension F(() of F such that |&, : F|
and |[F() : Ly| are coprimes. In particular, A = Gal[F[{)/L,), the Sylow p-subgroup of
the abelian group (7, has a complement H' = GELJ[[F[I.’::I,-{L;J] on 0 = Gal[F([{)/F). We can
formulate the following proposition.

Proposition 2.8. Let E/F be o firndite Golois extension and F < L, &' < & flelds such that
LNL =Fand LL' = E. Let G = Gal[E/F), H = Gal(&/L), #' = Gal[EfL") and
re H*H,E*) a2-cocyele of H. Then G = H x H' and

(Cotom(T))(g1.92) = NE(r(m(g1),m(g2)]], (2.5

where m: G — H denotes the projection, V5 s the norm function of the extension L' <
and g1,02 © G, M porficular, if [[E/LT)| 5 o cyelotoric alpebro and £ 45 o eyelofomdc
extension of ', then

Cor e (|[E/ L. T)) = |[E/F, Coremr(T)]]

15 o cycletomic alpebra,
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Proof. By |Spd, Theoremn 22.17], H = Gal[L'fF) and H' = Gal[ L/F) and the mapping y :
¢ — Gal[L'fF) = Gal[L/F) given by ¢ — (o o, ¢ ) I5 an Isomarphism, hence & = H x H'.
Then, using H' as a transversal of H in &, the formula from |Wei2, Proposition 2-5-2| for
the corestriction i the particular case of the 2-cocycle T2 H2[H, £*) takes the following
form, where o' : (F — H' denotes the projection:

Coremp(m)(gr.g2) = [] ¢ 70w (tann (7)™ o' (2 ) e (2 g2) ™)

te L
= [T 7' v itz win' (2n)ga))
te R/
=]+ Jlg2)) = NE[r(m(gm).m[g2))).
telH’ |:|

We now present a proof of the Brauer Witt Theorem as an easy consequence of the
previous steps of the algorithmic proof.

Theorem 2.9 (Brauer Witt). ff & is o findte proup of exponent n, ¥ i3 an drreducible
character of &, F 45 o fleld of choracterdstie 0 and F = Fx), then the simple component
Alx, F) is Brover eguivalent fo o cyclofomic algebra over F.

Procf, Let p be an arbitrary prime. Using the restriction homomorphism, we obtain that
Resp_ o [[A[x Fllp) = |Alx. Lyl = |C], that is, a cyclotomic algebra over £, the p'-
splitting field of A(x, ). Propasition 2.8 implies that Caory _p[|C]) is a class of Br([F)
represented by a cyclotomic algebra over F. Let [F((,) : Ly = p® and |L, : F| = m #
O(mod p). Let a be an integer such that am = 1[mod p®). Then, using the relation
between the restriction and the corestriction given by Core _rp e Resp_p (|A(x. Fllp) =
(AL, Fi|o1™, we obtain

(Corp, —w(|C]))* = [Cory o Respoy (4% Fllp))°
= (14D FUe)™™ = [Alx, £,

Because p 15 arbitrary and the tensor product of cyclotomic algebras ower [ is Brauer
aguivalent to a cyclotomic algebra by Lernmma 1.104, we conclude that the class |4y, £ is
represented by a cyclotomic algebra over F. O

Motice that in the proof of Theorem 2.2 we mentioned that the tensor product of cyelo-
tomic algebras owver F is Brauer egquivalent to a cyclotomic algebra. The proof of this claim
i5 also constructible as it appears in Lemma 1104, Namely, by inflating two cyclotomic
algebras, say O = |[F[(,, )/F.n)| and & = |[F[L,, ) /F, 7], to a common cyclotomic ex-
tension, for example F((,) for i the least common multiple of 2y and nz, one may assume
that r; = ng and henee & @ O ~ [FL)/F, i),

This algorithmic proof shews that one may deseribe Ay, F1 by making use of Propo-
sition 2.3 to compute its p-parts up to Brauer egquivalence. In other words, each p-part
of A(x, F) can be described in terms of Ao (M, H, K], where (H, K] iz a suitable strong
Shoda palr of a subgroup M of & A stromg Shodo triple of & 15 by definition a triple
(M, H, K), where M is a subgroup of & and [H, K is a strong Shoda pair of & Motice
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that the p-part of A(x, F) is Brauer equivalent to Cary _ gy (A8, L,)1®7, where » is an
inverse of |Ly, : Fx)] modulo the maxirum p-th power dividing x(1). This sugeests the
algorithm presented in next section.

2.3 A theoretical algorithm

YWe present a constructive algorithm of the cyclotomic structure of a simple component
Alx, F) of FC given by the proof of the Brauer Witt Theorem, which can be used to

produce an algorithm for the computation of the Wedderburn decomposition of the group
algebra FC.

Algorithm 1. Theoretical algorithm for the computation of the Wedderburn decomposi tion
of Fd.

IMPUT: A group algebra £ of a finite group & over a field & of zero characteristic.

FRECOMPUTATION: Compute i, the exponent of & and &, a set of representatives of the
F-gguivalence classes of the irreducible characters of &

CoMPUTATICN: For every » € £

(1) Compute F := F[x], the field of character valies of x ower F.
(2) Compute pi,.... P, the common prive divisors of x[1] and |F[(.) : F.
(3) For eachp & |pry... 0

(a] Compute L, the p'-part L, of F[(,)/F.

(k) Search for a strong Shoda triple [, H,, £,) of & such that the character
B, of M, induced by (H,, K] satisfies:
[+ [xwmr,.Bp) is coprime to p and 8, takes values in L.

—
(=)
[t

Compute A, = [L,[Cm, )/ Ly Ty = T, ), 85 in Proposition 2.3.
(d) Compute 7, = Cory —r (7).

(e) Compute a,, an inverse of |L, : F| modulo the maximum p-th power dividing
x (L]

(4] Compute m, the least common multiple of my, ...

(5) Compute 7, = Infyqe, ywig.y (7, ). foreach i =1,

(6] Compute B := [F({m)/F,7), where + = 7, “" ... 7, “or.

(7] Compute Ay := My ,4,(B), where dy, d7 are the degrees of ¥ and B respectively.

Outrut: {4, : ¥ € E}, the Wedderburn components of F¢7.

Remarks 2.10. [i) The basic approach presented in this chapter is still valid for & a field
of positive characteristic, provided Fd7is semisimple [i.e. the characteristic of F is coprime
with the order of () [see |BdR| for the strongly monomial part). On the one hand we hawe
only considered the zero characteristic case for simplicity. On other hand the proklem mn
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positive characteristic is somehow simpler, because the Wedderburn components of £¢ are
split, that is, they are matrices over fields.

(i) In some cases, the algebra A, obtained in step [7) of Algorithm 1 is not a germine
matrix algebra, because oy does not necessarily divide o;. This undesired phenomenon
cannot be avoided berause it s not true, in general, that every Wedderburn component of
FQ is a matrix algebra of a cyclotomic algebra [see Exampls 3.6). Luckily, this is a rare
phenomenon and, even when it is encountered, the information given by E—; and B is still
useful to describe A, [for example, it can be used to compute the index of A4, ).

(iii] From the implerentation point of view, a more efficlent algorithm is the one used
in the wedderpga package |BKOOAR| that, instead of considering every irreducible charac-
ter and then searching for some strongly monomial characters of subgroups that give the
reduction step, searches for strong Shoda pairs of subgroups that verify the conditions from
step [3)(b) of Algorithm 1 running on descending order and analyzes their contribution in
step (3)[c) of Algorithmn 1 for the different characters and primes. Sorme of the stromg Shoda
pairs of subgroups contribute to maore than one character or more than one prime. In the
rewt chapter we present a working algorithm and a list of examples that explain how the
algorithm works.

Notes on Chapter 2

We give some biographical data about the protagonists of this chapter and some per-
spectives to be followed in the study of this topic.

Joseph Henry Maclagan Wedderburn (1882 1948) was a Scottish mathernatician, who
had taught at Princeton University for most of his career. A significant algebraist, he proved
that a finite division algebra 1s a field, and part of the Artin Wedderburn Theorem on simple
algebras. He had also worked in group theory and matrix algebra.

Wedderbum’s best known paper s “On hypercomplex numbers”, published in the 1807
Proceedings of the London Mathematical Society |Wedl|, and for which he was awarded
the D.Sc. the following year by the University of Edinburgh. This paper gives a complete
classification of simple and semisimple algebras. He then showed that every semisimple
algebra can be constructed as a direct sum of simple algebras and that every simple algebra
is Isomorphic to a matrix algebra over some division ring. The Artin Wedderburn Theorem
generalizes this result, beimg a classification theorem for sermisimple rings. The thecrem
states that a semisimple rimg K is isomorphic to a finite direct product of matrix rings over
division rimgs £, which are uniguely determined up to permutation of the indices . In
particular, any simple left or right Artinian ring is isomorphic to an 1 = 7 matrix ring ower
a division ring O, where both n and D are unigquely determined. As a direct corollary, the
Artin Wedderburn Theorem implies that every simple rmg which is finite dimensicnal over
a division ring (a simple algebra) is a matrix ring. This iz Joseph Wedderburn's original
result. Emil Artm later generalized it to the case of Artinian rimgs.

In the structure theorems he presented in his 1807 paper |Wedl|, Wedderburn had ef-
fectively shown that the study of findte dimensional semisimple algebras reduces to that of
division algebras. Thus, the search for division algebras and, m general, the classification
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of them became a focal point of the new theory of algebras. With Wedderburn's paper
from 1907, “On Hypercomplex Mumbers”, the first chapter in the history of the theory of
algebras came to a close. His work neatly and brilliantly placed the theory of algebras in the
proper, of at least in the modern, perspective. Later, researchers in the area such as L.E.
Dickson, A.A. Alkert, R. Brauer and E. Noether, to name only a few, turned to ruesticns
concerning more specific types of algebras such as cyclic algebras and division algebras over
arbitrary and particular fields like the rational numbers.

The Brauer ¥Witt Theorem 1s a result that was independently found in the early 1850
by K. Brauer and E. Witt. [t proves that questions on the Schur subgroup are reduced to
a treatment of cyclotomic algebras and it can now be said that almost all detailed results
about Schur subgroups depend on it.

Richard Brauer [1801 1877) was a leading mathematician, who had werked mainly in
abstract algebra, but had made Important contributions to number theory. He was also
the founder of modular representation theory., Several theorems bear his name, including
Brauer's Induction Theorem which has applications in number theory as well as finite groups,
and its corollary on Brauer's characterization of characters which is central to the theory of
group characters.

Ernst Witt (1811 1981) was a former Ph.D. student of E. Noether, who has taught at
the Gottingen and Hamburg Universities. His work was mainly concerned with the theory
of guadratic forms and related subjects such as algebraic function fields.

We present now some directions that can be followed by the interested reader in the
study of this topic. The description of the Wedderbirn components that we presented in
this chapter can be improved by a detailed study of the [local) Schur indices and the Hasse
invariants. This s the first natural next step to be followed for future study on this topic,
that is, to add local mformation obtained by using local methods and which complete the
previous data. This direction is followed in Chapter 5, where a study of the Schur group
of an abelian number field is presented and the maximum of the local Schur indices of the
Schur algebras is computed. In order to compute the Schur indices, there can be also used
new methods using Cralgebras, introduced by A. Turull, as seen in |HerS| or |Tur|.

A related topic to the one presented in this chapter is the projective Brauer group.
Recently, a projective version of the Brauer Witt Theorem has been given by A. del Rio
and E. Aljadeff |AdR|, proving that

Any projective Schur algebra over a field is Brauer eguivalent to a radical algebra.

This result was conjectured in 1885 by E. Aljadeff and J. Senn. In this article it is obtained
a rharacterization of the projective Schur group by means of Galois cohomology. This result
provides useful information that can be used to study a similar problem as the one studied in
this chapter in the case of twisting grouyp algebras, that is, to deseribe the simple components
of sernisimple twisted group algebras given by projective characters of the group as radical
algebras in the projective Schur group.



T8



Chapter 3

Implementation: the GAP
package wedderga

The computational approach and the theoretical algorithm for the computation of the Wed-
derburn decomposition of semisimple group algebras presented in the previous chapter made
possible the implementation and the creation of the functions that are the core of the GAF
package wedderpa |BKOOAR|. These functions upgrade a previous version of the package
wedderga, enlarging its functicnality to the computation of the Wedderburn decomposi tion
and the primitive central idempotents of arbitrary semisimple group algebras of arbitrary
finite groups with coefficients in arbitrary number fields or finite fields that are supported
by the GAP systemn [GAP|.

What is CAPYT The complete name already gives us a clue: GAF - Groups, dlgorithms,
Programeing - o System for Computoiional Dhscrefe Algebra, YWe cite from its webpage at
hoop://www. gap-systen. oreg:

*CAF i3 o system for computafional discrefe alpebra, with parficulor emphosis on Com-
putationo! Croup Theory, GAFP prowides o programming language, o fbrary of thousands
of funcHons dmplementing algebroic aporithms writfen in the GAF languoape os well as
lampe dafa Hbrardies of algebrate objects, CAF s used in research and feacking for studying
groups and their representafions, rings, vector spaces, algebros, combinoforiad sfruckures,
and more, ”

Marny people have helped in different ways to develop the AP system, to maintain it,
and to provide advice and support for users. All of these are nowadays refered to as the
CAF Croup. The concrete idea of GAF as a truly "open’ system for computational group
theory was born in 1985 and the GAP system was officially presented in 1888, Since then,
the GAF systemn has continue to grow with the implementation of many functions which
are either in the core of the system or inside its packages.

What is a GAP package? We cite again from the GAF webpage:

“Since (992, sets of user contrbuted progroms, colled packoges, have been diséribuied
with GA P, For convenience of the GAF users, the GAF Croup redistributes pockages, buf
the package authors remoan responsible for thetr maimienance.

Ta
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Sorree packages represent o piece of work equivalent fo o sizenble mothemoticol gublirafion,
To acknowledge such work there fins been o referesing process for packages since F996. We
call o packoge an accepted pockope (with GA P 5 the term shove pockoges was used) when {f
was sucressfully refereed or oalready disfributed with GAFP before the referesing process wos
started. All other packages distributed here and not in this category are calfed deposited
packages, these moy be submitfed for refereging or the authors may nof want to submdt them
for vorious reasons, ™

The rame wedderga stands for “Wedderburn decomposition of group algebras™ ', This
is & GAF package to compute the simple components of the Wedderburn decomposition
of semisimple group algebras of finite groups over finite fields and over subflelds of finite
cyclotomic extensions of the rationals. It also contains functions that produce the primitive
central idempotents of these group algebras. Other functions of wedderga allow one to
construct crossed products over a group with coefficients in an associative ring with identity
and the multiplication determined by a given action and twisting. In the light of the previcus
“definition” of 2 GAF package, we should call wedderpa a deposited package, since it is still
in referesing process. However, for briefness we will call it a package.

In the first section of this chapter we give a working algorithm which is closer to the
real algorithm than the one presented in section 2.3 and m the second section we give some
examples that give a good idea about the process to be followed during the implementation.

More aspects of the implementation and data on the wedderga package are given in
Appendix that contains the manual of the package. Throughout this chapter we keep the
notation from Chapter 2.

3.1 A working algorithm

Algorithm | presented m the previcus chapter is not the most efficient way to compute the
YWedderburn decomposition of a semisimple group algebra £ for several reasons.

Firstly, it 15 easy to compute the Wedderbwrn decomposition of £& from the Wedderburn
decomnposition of (PG, More precisely, if » is an irreducible character of &, k = (%) and
F = Fx), then Ay, F) = F @y Ay Q). In particular, if A(x,00) is equivalent to the
cyclotomic algebra (k(C)/k 1), then A(x,F) is equivalent to [F[()/F,r"), where ' 15 the
restriction of © via the inchuisiom Gal(F(()/F) © Gal(k(()/k). Woreover, the degrees of
Alx, ) and A[x, F) are equal [the degree of x]. This sugeests to use the description of the
Wedderburn decomposition of (PG as information to be stored as an attribute of & [Recall
that an attribute of a GAF object 1s information about the object saved the first time
when is computed in a GAP session, to be guickly accessed in subsegquent computations).
The implemented algorithm computes some data which can be easily used to determine
the Wedderburn decomposition of €. A small modification will be encugh to use this
data to produce the Wedderburn decomposition of £ In this way, the first time that the
Wedderburn decomposition of a group algebra FC is calculated by the program it takes
maore time that the next time it computes the Wedderburn decomposition of L&, a group

'The first version of wedderga was only computing Wedderburn decompesition of some rational group
algebras and. in Fact, the original name stood For "Wedderburn decomposition of rational group algebras™.
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algebra of the same group over a field £ non necessarily equal to &

gap*> G:=SmallGroup(512,21);;
gap>FG:=GroupRing (CF (5] ,G);;
gap>LG:=GroupRing (CF(7),G);;
gaprWedderburnDeconposition(FG) ; ;
Eaprrime;

11767
gaprWedderburnDeconposition(LG) ; ;
Eaprrime;

20

Secondly, if ¥ is a strongly monorial character of &, then Ay, F) can be computed at
once by using Proposition 2.3. That is, there Is no need to compute the pparts separataly
and merging them together.

Example 3.1. Let p be a prime and consider &} acting on &, by multiplication. Let
G'=Zy x Z, be the corresponding semidirect produet. Then [Z,,1] 1s a strong Shoda pair
of & and if % iz the induced stremgly monomial character, then 4 = Ay, &) has degree
p—1. For example, if p = 31, then A has degree 30. S0 according to Algorithm 1, one should
deseribe the cocyeles 1o, 73 and 15 in step (3) and then perform steps [4) [6] to compute
T =7" 3" 5", Instead, one can compute A(x, F) at onee using Proposition 2.3. O

In particular, if & is stremgly monemial [(as so s the group of Example 3.1), then instead
of running through the nreducible characters y of & and locking for some strong Shoda
pairs [H, K] of & such that ¥ is the character of ¢ induced by [H, K, it Is more efficient
to produce a list of strong Shoda pamrs of & and, at the same time, produce the primitive
central idempotents e[&, £, K) of 0, which helps to control if the list is complete. This
was the approach in |OdR1|.

Thirdly, even if ¥ is not strongly monomial and the number r of primes appearing in step
(2) of Algorithm 1 is greater than 1, it may happen that one strongly menomial character £
of a subgroup M of (7 satisfies condition [+) of Proposition 2.5 for more than one prime p.

Exaraple 3.2. Consider the permutation group & = {(3,41(5,6), [1,2,3)(4,5, 7)) and its
subgroup M = {[1,3,51(4,6,7),(1,6)(5,7)). Then & has an irreducible character x of
degree 6, such that J{x] = and [war, lay) = 1. Clearly 1y, the trivial character of 4,
is stromgly monomial and satisfies condition [+) for the two possible primes 2 and 3. Using
this, it follows at once that Ay, F) = Mg(F) for each fleld £, and so there is no need to
consider the two primes separately O

Fourthly, & strongly monomial character 8 of & subgroup of & may satisfy condition [+)
for more than one irreducible character y of &

Exaraple 3.3. Consider the group & = 5L(2, 3] = {a,b) # (¢} [where (a, &) i5 the gquaternion
group of order B and ¢ has order 3). The group ¢ has one non-strongly monomial character
w1 of degree 2 with QP[x:) = 2 and two non-strongly monomial (J-equivalent characters xz
and x5, also of degree 2, with Qx2) = Qx5 = Q[Cz). Then (M = (o, b, H = (a),1) s a
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strong Shoda triple. If € is the strongly monomial character of & induced by (A, 1), then
f satisfles condition () for both ¥ and x2 and p = 2, the unique prive mvolwed. O

Finally, the weakest part of Algerithom 1 is step [3)[8), where a blind search of a strong
Shoda triple of ¢ satisfying condition (+) fer each irreducible character of & and each prime
T1y.-..D, May be too costly

Taking all these mto account, 1t 1s more efficient to run through the strong Shoda triples
of & and fer each such triple evaluate its contributiom to the p-parts of Ay, 7] for the
different irreducible characters y of & and the different primes p. This leads to the guestion
of what is the most efficient way to systematically compute strong Shoda triples of &, The
first version of wedderga included a function StrongShodaPairs which computes a list of
representatives of the equivalence classes of the strong Shoda pairs of the group given as
input. So one can use this function to compute the strong Shoda pairs for each subgroup of
. However, most of the strong Shoda triples of G are not necessary. For example, if & is
stromgly moneomial, we only need to comnpute the strong Shoda triples of the form (O H, K7,
i.e. in this case one needs to compute only the strong Shoda pairs (H, K) of & Again,
this is the original appreach in |OdR1|. This suggests to start by computing the strong
Shoda pairs of & and the associated simple components as in Proposition 2.3, If the group
is strongly monomial, we are done.

Which are the next natural candidates of subgroups AF of & for which we should compute
the stromg Shoda pairs of 4% That s, what are the strong Shoda triples (M, H, K] most
likely to actually contribute in the computation? Take any strong Shoda triple [, A, K]
of & If M) i a subgroup of A containing A, then (A, H, K] is also & strong Shoda triple
of (. Mow let ¢ be a linear character of A with kernel K and set 8 = ¢™ and &, = ™1,
Themn, for every irreducible character x of &, [y, F1) = [}{,ES'IG] = [}{,EG] = (w0, by
Frobenius Reciprocity. So 8 satisfles the first part of condition [+] if and enly if so does
#,. However, F(8) C F(#) and so, the bigger A7, the more likely B to satisfy the second
condition of [+) and, in fact, all the contributions of #; are already realized by 8.

Exaraple 3.3. (continuation) Notice that (H,1) s a strong Shoda pair of AF, but it is
not a stremg Shoda pair of L In somne sense, (A, 1) Is very close to be a strong Shoda pair of
, because it is a strong Shoda pair in a subgroup of prime index in & On the other hand,
(H,H,1) is also a strong Shoda triple of &, However, the strongly monomial character £
of A [in fact linear) indueed by [H, 1) does not satisfy condition [+) with respect to either
¥1 0T ¥z, because the field of character values of # contains ¢ = /=1, So, & is too big for
(&, H,1] to be a stremg Shoda triple of O while # is too small for [H, H,1) to contribute
in terms of satisfying condition [+). O

Motice also that if AF 15 a subgroup of & and g € &, then the strong Shoda pairs of
M and MY are going to contribute equally in terms of satisfying condition [+) for a given
irreducible character y. This is because if [H, ') is a strong Shoda palr of A, then [H¥, K7)
is a strong Shoda pair of M9, and if @ is the character of & mduced by [H, K], then 69
is the character induced by [H¥ K9). Then [xm.f) = [xnr. %) and & and 6% take the
same values. So, we only have to compute strong Shoda pairs for one representative of each
conjugacy class of subgroups of G

Summarizing, we chose the algorithm to run through conjugacy classes of subgroups
of & m decreasing order and evaluate the contribution on as many p-parts of as many
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irreducikble characters as possible. In fact, we consider the group M = & separately, be-
cause Proposition 2.3 tells us how to compute the corresponding simple algebras without
having to consider the p-parts separately. This is called the STRONCLY WMONOWMIAL PART
of the algorithm and takes care of the Wedderbumm components of the form A(x, F) for
¥ 2 Irr[d) strongly monomial. The rermaining components are computed in the Nown-
STroNCLY Monowial PART, where we consider proper subgroups M [actually represen-
tatives of conjugacy classes). For such an A we use the function StrompShodaPairs to
compute a set of representatives of strong Shoda pairs (A, K) of & and for each [H, K)
we cherk to which pparts of the non-strongly moncmial characters of & the character £
induced by [H, ) contributes [iLe. condition (+] is satisfied). The algorithm stops when
all the p-parts of all the rreducikle characters are covered. In most of the cases, only a few
subgroups M of & have to be used.
MNow we are ready to present the algorithm.

Algorithm 2. Computes data for the Wedderburn decomposition of G

INPUT: A finite group & [of exponent ).
STroMCLY MowowtaL ParT:

1. Compute 5, a list of representatives of strong Shoda pairs of G

2. Compute Data = |y, ke, e, Gale, 7] - £ € 5], where for each r = [H, K) € 5t
w g =[O V], with & = N[ K
w k. =10][f,), for £, a strongly monomial character of & nduced by [H, K);
w my o= |H K
e Cal, = Callk, (G, ) /%.);

w T, := Ty, the 2-cocycle of Gal, with coefficients in Q[(n_) given as in Propo-
gition 2.3.

NoH-STrRONCLY MoNoMIAL PAarT: If ¢ is not strongly monomial

1. Compute £, a set of representatives of the [Fegquivalence classes of the non-
stromgly monomial irreducible characters of .

2. Compute Primeslps = |Primeslp, @ x € E|, where PrimesLP, Is the list
of pairs |p, Ly|, with p & prime dividing ged(x (1), Q50 2 Q%)) and Ly, is the
v-part of the extension () Q(x].

3. Initialize £ = £, a copy of £, and
Parts := |Parts, := || : x € E|, a list of length E formed by empty lists.

4. For A runnimg in decreasing order over a set of representatives of conjugacy
classes of proper subgroups of & [while £ 2 @):

Compute Syy, the strong Shoda pairs of M and for each [H, K) € S :
« Compute #, a strongly monomial character of Af induced by [(H, K.

e Compute Drop = |Drop, @ x € E|, where Drop, is the set of |p, L] In
PrimnesLps, , for which [+] holds,
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» For each [p, L] in Drop,, compute m, 1, and o, as in Step (3] of Algo-
rithrn 1 and add this mformation to Farts,.
e Privneslps, = Primesbps, \ Drop,.
e £ i=FE'Y Iy e E: PrimesLyps = {i}.
5. Compute Data' .= ||n, , k, ,m,, CGal, 7| x £ £, where
¢ by o= 00x);
w 11, = Least cormrmaon multiple of the my’'s appearing in Farts,;

%1}
S me :k: !

e Gal, := Gallk, [(m, ) /&, );
» 7, Is computed from sm = m, and the 7;'s and a,’s in Farts,, as in Steps
[3)3(E) of Alzarithm 1.

OuTpuT: The list obtained by merging Data and Data’.

* Ti, 1=

Motice that the guestion of whether & 15 strongly monomial or not, needed to decide
whether the Non-STrowcry MoMowial ParT of Algorithm 2 should be ran for &) is
already answered in the first part because the actual algorithm for the STRONCLY MONC-
BITAL PART computes at the same time the primitive central idempotents associated to the
strongly monomial pairs obtained. The algorithm stops if the sum of the primitive central
idempotents at one step is 1.

The ocutput of Algorithm 2 can be used right away to produce the Wedderburn decom-
position of &, Each entry |m, ke, Gal, | parameterizes one Wedderburn compenent of
(7 which is isomorphic to M, [ (k. ) /. 7).

For an arbitrary field F of zerc characteristic, some modifications are needed. The
rumber of 5-tuples, say », of the output of Algorithm 2 is the number of (J-equivalence
classes of rreducible characters of &, Let ¥;,...,%, be a set of representatives of Q-
equivalence classes of irreducible characters of & Then QC = @®i_, Ay, Q) and o FC =
Feg Q0 =a6_,F &g Ay, Q). Moreover, if 4 = A, 10), then

Fagd=FegQix) @qasx 4= |F Q0 :QFx @ax A = Fn Q0 QA F).

Thus, an entry |z, k, e, Gal, 1] of the output parameterizes [F Mk : ] Wedderburn corrpo-
nents of FG, each one lsomorphic to F @y Ma ([K[0n )k, 7)) = Maa[F((n)/F, 7)), where

[F is the compositum of k and &, d = %ﬁ% = %1 Gal’ = Gal[F[(wn)/F) and 7 is the

restriction of T € H?[Gal ,F((w)) to a 2-cocyele 7' € H2[Gal | F[(m]].

If {m € k then Gal =1 and, in fact, Algerithm 2 only loads the information |, k|, which
parameterizes the simple component M, (k) of Q& and [Fnk : ] simple components of £
isomorphic to M, (F). If y & k, then the simple component of PG is & matrix algebra of size
1 of a non-commutative cyclotomic algebra. However, if (m € F [equivalently if Gal’ = 17,
then the simple components of G given by this entry of the output are isomorphic to
Mud [F]

3.2 Examples

In this section we give a list of examples that illustrate the performance of the package
wedderpga and how to use the main functions of the package.
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Exaraple 3.4. Consider the group & = ([3,4)(5,6), (1,2,3)(4,5,7)) from Example 3.2.
This group is the group (168,42) frem the AP library of small groups and it is isomerphic
to SL[3, 2). The Wedderburn decomposition of G can be computed by using the function
WedderburnDecomposition of wedderga.

gap> G:=BmallGroup(185,42);;

gap>QG:=CGroupRing(Rationals,G);;

gap>*WedderburnDecomnposition (QG) ;

[ Ratiomals, ( Ratiemals"[ 7, 71 J, ( WF(T,[ 1, 2, 4 1)°[ 3, 311,
{ Ratiomals"[ 6, 6 1 J, ( Ratiocmals"[ &, 81 ] ]

Thus
QG = Q& M () & M3 ([ -7)) & Mg(1) & Ma(1]).

Notice that the center of the third compenent is [I{/=7), the subfield of (J[{7) consisting
of the elements fiwed by the automorphism (7 — G2

MNow we explain how the package obtains this information. As it 1s explained above, the
first part of the algorithm computes a list of representatives of the strong Shoda pans of &
using the function StrongShodaPairs. This part of the algorithm provides two strong Shoda
pairs and the first two Wedderburn components of G, which are calculated as explamed
m Proposition 2.2.

gap> BtronpgShodaPairs(G);
[ [ Growp([ (3,4)(5,6), (1,2,3)(4,5,7) 17,
Group([ (3,4)(5,8), (1,2,3)(4,5,7) 1) 1,
[ Group([ (3,4)(5,8), (1,7)(5,6), (1,3,5)(4,8,7), (2,8)(4,8) 1),
Grewp([ (3,4)(5,8), (1,7)(5,8), (1,3,50(4,6,7) 1) 1 1]

The other part of the calculation provides ancther three Wedderburn components. They
correspond to three (J-equivalence classes of non-strongly monomial characters represented
by the following characters, where a = (7 + (2 + (¥ = % w7

| 1 [3,4)[5.8) [2,3,4)(567 (2379846 [1,2,3,5674 (1,237,465
¥1 | 3 -1 0 1 -1 — ck
¥2 | 6 2 ] 0 -1 -1
¥z | B ] -1 ] 1 1

So the center of Ay := A%, Q) s Plx1) = Pla) and the centers of Az := Ax2, Q) and
Az = Alxz, Q) are Qxa) = Qlxz) = ). Now the program has to compute cyclotomic
algebras equivalent to 4;, Az and As. The degrees of these algebras are 3, 6 and 8 respec-
tively. Since the index of a central simple algebra divides its degree, one has to descrike
the 3-part of A4, the 2 and 3-parts of 4; and the Z-part of Az, By Proposition 2.5, the
2 and 3-parts of 4, can be obtained by using two strong Shoda triples of &) However, as
we have seen In Example 3.2, ((x2)m. 1) = 1 for M = ([1,3,9)[4.6 7). [1,61(5, 7]y, So,
there is a unigue strong Shoda triple of &, namely [0, M, M), which provides the stremgly
moncimial character 14y satisfying condition () for the two primes involved. It was already
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explained that 4(yg, ) = Mg[) and this takes care of the fourth entry given as output
by WedderburnDecomposition.

For the other two characters the algorithm obtains the stromg Shoda triple (ML, H =
([3,41(5,86), (1,6, 7,8)[3,4)), K = ([1,6,7,51(3,4))] for both of them. Since H = ¥ [K)
and | : K| = 2, the algebra A[M, H, K) iz Brauer eguivalent to (i) = ) [Propo-
sition 2.3). Let £ be the strongly monomial character of M induced by [(H, K). If F
is the center of A(x;, Q) ({ = 1 or 3) then Ay, Q) = Alx;, F) iz Brauver egquivalent to
A[#, F] [Froposition 2.8) and this Is isemnerphic to £ &g A(M, A, K) = F. S0 we obtain
Al Q) = Ma[Q(=7)) and A[33,Q) =~ Ma().

Notice that for all the used stremg Shoda triples (L, H, ) of ¢, the subgroup L is
sither & [for the STrRoNCLY MoNOWMIAL PART) or A [for the NoN-STRONCLY MONOMIAL
FarT). The group & has 15 conjugacy classes of subgroups, one formed by &, two classes
consisting of subgroups of order 24 and the other classes formed by subgroups of smaller
order. The advantage of rTunning through subgroups m decreasing order becomes apparent
in this computation, for only the groups & and & have been considered m the search of
“useful” strong Shoda triples. This has avoided many unnecessary computations. O

The ¥Wedderburn components of Q& for the group & of BExample 3.4 are matrix alge-
bras over fields. Of course this does not oceur always. In general, the Wedderburn com-
ponents are egquivalent to cyclotomic algebras, which WedderburnDeconposition presents
as matri algebras over crossed products. In this case it is difficult to use the output
WedderburnDecomposition to describe the correspondmmg factors. The other mam func-
tion WedderburnDecompositionInfo provides a numerical alternative, giving as output a
list of tuples of length 2, 4 or 5, with numerical mformation describing the Wedderburn
decomposition of the group algebra given as mput. The tuples of length 5 are of the form

I’ﬂ.k. Triy Iﬂs.ﬂaﬁa]]gagu [’Yaﬂ]gi{jgtL [3‘1]

where k is 2 fleld and n, &, 9, 05,05 > 0 and §i, %5 = D are integers. The data of [3.1)
represents the matrix algebra 87, [A) with 4 the cyclotomic algebra given by the following
presentation:

A =k[|:m][g],. st (:g{ = C;"‘gf* = C%*gj'gi = Q'iQ'j':Eji 1 == ._'.l. < {] [32]

The tuples of length 2 and 4 are simplified forms of the 5-tuples and take the forms |r, k|
and |r, ko, |0, o, 3] respectively. They represent the matrix algebras M, (k) and 07, (4],
where A has an interpretation as in [3.2) for [ = 1.

In Example 3.4 each Wedderburn component is described using a unigue strong Shoda
triple. The next example shows a Wedderbuwrn component which cannot be given by a
unigue strong Shoda triple.

Exarnple 3.5. Consider the group & = (x4 » (o, b, where {r,3) = {Jg, the quaternion
group of order 8 and {a, 6) is the group of order 27, with a® = 1, ¢ = 6% and ab = ba?. The
action of a,b on (x, v} is given by [z, a) = (y,a) = 1, z® =y and * = ry. This is the small
group (216, 38) from the GAF library.
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gap> G:=SmallGroup(216,39);;
gap>G:=GroupRking (Rationals,G);;
gap> WedderburnDecompositionInfo ((G) ;

( {1, Ratiomals ], [ 1, cF(3) 1, [ 1, CF(3) 1, [ 1, CF(3) 1,
[ 1, cF(3) 1, [ =, Ratiomals ], [ 3, CFEBJ 1. [ =, cFiz) 1,
[ 2, cF(9) 1, [ 1, Rationals, 4, [ 2, 3, 211,

[ 1, cF(3), 12, [ 2, 7, 6811, [ 1, CF(3), 12, [z, 7,611,
[ 1, cF(3), 12, [ 2, 7,611, [ 1, cFi{z), [z, 3, 211,
[ 1, cF(3), 36, [ 6, 31, 18 ] ] ]

Using [3.2) one cbtains

QG = Q& aA0(Cz) © Mg (L) & 203 (0[03)) & Mz[Q[le)) & A B34, & Az & Ay,

where
Ay = QG =G v =G =-1
Az = QGallu: Cm—lf]:u'“ —C12= -1
Az = QG&E)Ca|u: ¢F = v® = Cd = 1]
Ag = QCelle: G = 33?11'“'3 = 35 = -1

Recall that H[k) denotes the Hamiltonian quaternion algebra with center k. Then 4; =
H{i}) and A; = 43 = H[P[¢z)). Moreover, using that —1 belongs to the image of the
nerrm map Moy end Froposition 1.56 one has that Az = Az = M) and 44 =
Ma (L))

Merw we explam which are the strong Shoda triples that the program discovers and uses
to describe the last Wedderburm component 44. The simple algebra Ay 35 Ay, ), where »
iz ome of the two [(Jequivalent) characters of degree 6 of . The field k = (J[x) of character
values of x is (J(g5). It turns out that, unlike in Example 3.4, the factor Ay of QO cannot
be given by a unigue strong Shoda triple able to cover both primes 2 and 3 in terms of
satisfying condition [+). Indeed, if such a strong Shoda triple (M, H, K) exists and # is
a character of A nduced by (H, K, then [xw, 8] i3 coprime with 6 and (Q(8) © (3],
because the exponent of & 1s 36 and [(J(izg) : k = K0[3)] = 6. The following computation
shows that such a strong Shoda triple does not exist.

gap> chi:=Irr(G)[30];;
gap> Forimy(List(ConjugacyClassesSubproups(G) ,Representative),
> M->Forfiny (StrongShodaFairs (M),
x>
Gocd(6,ScalarProduct ( Restricted(chi,M) ,
LinCharByKernel (x[1],x[2]1)°M J) = 1 and
ForAll(list(ConjugacyClasses (M) ,Representative),
< -» ¢"(LinCharByKernel (x[1],x[2])"M) in CF(3) )

WONWOOW N W YN

false



BB CHAPTER 5. IMPLEMENTATION: THE GAP PACKAGE WEDDERGA

The function LinCharByKernel is a two argument function which, applied to a pair
[H, ) of groups with £ = # and H/K cycelie, returns a linear character of H with kernel
i’

The two strong Shoda triples of (G obtained by the function WedderburnDeconposition
to deseribe the 2 and 3-parts of A, are

[fll"f2 = (':[1:511">1 Ha = l:.':[“T}i Kp = (1}31
(M3 = (airz, a2bryh, Hy = (ﬂ31rz21 alberyh, K = (ﬂsz;y}],

The 2' and 3'-parts of Q) /k are Ly = Q[() and Ly = Q[{,7), respectively. Follow-
ing Propositions 2.3, the algorithm computes A g, (Mo, A, K2) = [(Q(Cz6) /(o) 2] and
Ap (Ma, Ha, K3) = Ma(Q[C)2)) [the latter s equivalent to [Q[{2)/Q(C12), 72 = 11). Then
the algorithm inflates m and m to (P((zg), corestricts to 0f(cz) and computes the cocy-
cle 7, as in steps [3) — [B) of Algorithm 2. This gives rise to the numerical information
[ 1, cF(3), 36, [ 6, 31, 18 1 1 ] ohtained above. We have seen that the mterpreta-
tion of this data is that Ay Is isomorphic to Mg (0D((z)). This may have also been obtained
by noticing that Ar, (Mo, Ha, K2) = H[Q[(e)) = Ma[Q[e)). Then the 2 and 3-parts of Ay
are trivial in the Brauer group, and so Ay = Mg (Q()). O

Exarmple 3.6. Notice that the size of the matrix 4, in step [7) of Algorithm 1 is a rational
rurmnber rather than an mteger. The group of smallest order for which this phenomenon
occurs is the group [240,88] in the library of the CAP system. Although this does not
make literal sense, still the algorithm provides a lot of information on the Wedderburn
decomposition.  This example shows how one can use this information. Let & be the
mentioned group. Then the cutput of Algorithm 2 applied to Q¢ provides the following
rurnerical mformation for one of the simple factors of QG-

[ z/4, 40, [ [ 4, 17, 201, [ 2, 31,0171 1.

Motice that the first entry of this 4-tuple is not an integer and a formal presentation of the
corresponding simple algebra is given by

Az Mapg (Q[Cap)(g, h 0 =G5 G =CGp 0" = —1,R* = 1,5h = hg)).

Denate A = My, 4 (B). The center of the algebra B is Q[\fﬁ] and the algebras (J[(e)[A (F =

Cg_],hz = 1] = MZ[Q[VE]] and J(¢s)(g F = ¢f.g" = —1) are simple algebras in B.
Furthermore

B = MiQ(v2)) &y 7, (QV2) 2 Q(G)e (E = (.6 = -1))
= MRV ey Q) (g (f =3¢ = -1))

Hence, we can describe the algebra 4 as

Map (D2 @ Qg ¢ = . g" = -1))

and we conclude that the algebra A is Isomorphic to either M3 D) for some division gquater-
nion algebra over [/2) or to Ma(Q[/2)). In fact, in order to decide which one of these
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options is the correct one, one should compute the local Schur ndices of the cyelic algebra
C'=0Q(v2) &g QE) g ¢f = ¢d.¢" = -1) = (V(V2, =)/ Q(V2), -1

The algebra €' has local index 2 at co, because K @y = [Q[\,@1 (:5],-"@[\;’5], -1 =
(C/E, —1) = H[E). Thus 4 = M3(D), for D a division algebra of index 2 and center
iJ(+/2). Notice that O is determined by its Hasse invariants by the Hasse Brauer Noether
Albert Theorem. Now we prove that the local mdices of A at the finite primes are all 1.
By Proposition 1.114, mi,(4) = 1 for every finite prime p not dividing 5. Thus, we only
have to compute mg(A). Note that (4 € (Js, 5o Qs[v’ﬁ] = [J5((e] is the unique unramified
extension of (g of degree 2. Thus §z € Z(P(+2)s B3 " and N@sfﬁ.cs}fmsfﬁ}[CEJ = -1,
By Proposition 1.112, mig[A] = L.

Thus, the Hasse invariants of A at the finite primes are all 0 and they are 1/2 at the
two infinite primes. Using these calculations, one deduces that & = H[Q[ﬁ]) (zee also
Example 6.13) and A = My [H[Q[/21)].

Remark 3.7. The approach presented in this chapter 1s still valid for a field & of positive
characteristic provided, A& is semisimple (i.e. the characteristic of & is coprime with the
order of ). The strongly meonomial part has been presented in |BdR| and implemented in
the package by O. Broche and A. del Rio. In general, the problem in positive characteristic
is somehow simpler because the Wedderburn components of G are split, that is, they are
matrices ower fields.

The functionality of the package wedderga depends on the capacity of constructing fields
in the GAP system. In practice wedderga can compute the Wedderburn decomposition of
semisimple group algebras over finite abelian extensions of the rationals and finite flelds.

Notes on Chapter 3

A useful tool for further study of the description of the Wedderburn decomposition of
group algebras of finite groups could ke a program able to compute the Schur indices of
Schur algebras [see e.g. Example 3.6) using methods that were develeped in | Tur, Sch, Herd|.
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Chapter 4

Group algebras of Kleinian type
and groups of units

In this chapter we present some applications of the first part of this work to the study and
classification of some special algebras, called of Kleinian type, and applications to the study
of units of group rings. The algebras of Kleinian type are finite dimensional semisimple
rational algebras A such that the group of units of an order in A is commensurable with a
direct product of Kleinian groups. The aim of this chapter is to classify the Schur algebras
of Kleinian type and the group algebras of Kleinian type. As an application, we want to
characterize the group rings £¢, with & an order in a number field and & a finite group,
such that the group of units of A& is virtually a direct product of free-by-free groups.

Historically, the study of Kleinian groups, that is discrete subgroups of FRL[C), goes
back to the works of Poincaré and Bianchi and it has been an active field of research ever
since. Poincaré described m 1883 a method to obtain presentations of Kleinian groups using
fundamental domains |Pedl. In 1882 Bianchi computed fundamental domains for groups of
the form PSLa[ &), where A is a ring of integers of an imaginary quadratic extension |Bial.
These groups are nowadays called Bioncht groups. During the last decades, Kleinian groups
have been strongly related to the Geometrization Program of Thurston for the classification
of 3 manifolds |EGK, MR, Mas, Thy|.

The method of studying a group by its action on a topological-geometrical object was
first used by Mmkowskl, then by Dirichlet to prove the Unit Theorem, and later on was
generalized by many authors like Eichler, Poincaré, Borel, Harish Chandra or Slegel. The
classical method consists of finding a fundamental domain of the action, that is, a subset
of the geometrical object on which the group s acting which is almost equal [in a precise
way] to a set of representatives of the orbits of the action, and using the fundamental
domain find presentations of the group. Unfortunately, urnless the geometrical object has
small dimension and the action is controlable, as in the case of the action of PSLa [£] on the
hyperbolic plane, 1t s very difficult to find a fundamental domain or the proklem of finding
a presentation of the studied group 1s computationally unfeasible,

In the case of the Dirichlet Unit Thecrem, the group of units of the ring of integers of
a number fleld is mcluded in the Euclidean space using the logarithmic map. In the case

83
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of the group PSL4(Z), it acts by Mébkius transformations discontinuously on the Poincaré's
model of the hyperbolic plane H?. Recall that the Mobius transformation associated to an

Z) i5 the map M4 : - given by Ma(z) = ::_':_'3, where

T denotes the cornpactification of the plane (identified with C) by one point. The map
A 0, defines a group homomaorphism from PSL,(C) to the bijections of C on itself. If
we identify the hyperbolic plane with the positive semi-plane H? = [t = x+gigc C:y > 0},
then the matrices with real entries leave H® invariant and they mduce isometries of F2.
In fact, the map 4 — M4 induces an isomorphism between PSLg(E) and the group of
orientations preserving isometries of H?. Moreover, theset {e=r+3i:2x =1, ¢ <1} 1is
a fundamental domain of the action of PSLa[Z) on H? Using this information and classical
methods, one can deduce that FSLg[F) is a free product of the free groups €5 and Cs.

invertible matriz A = (:

The action of PSLa(C] on C can be extended to an action on the 3 dimensional -
perbolic space H?, the so-called Poincaré extensions. In faet, PSLa(C) is isomorphic via
this action to the group of isometries of H¥ that conserve the orientation. The subgroups
of PSL,(C) that act discontinuously on H? are exactly the discrete subproups of FSL, [T,
that is the projections in PSLg[C) of the subgroups of SLa[C) having the discrete Euclidean
topology induced by Ada[C) [that we identify with E® = C9). These groups are called
Kletnion groups |Bea, Mas|.

The use of the methods of Klemian groups to the study of the groups of units of group
rings was started in [Rui] and |[PARR| and led to the notions of algebras of Kleinian type
and finite groups of Kleinian type. There it is shown how one can theoretically study L [EC)
by considering the action of the simple components of the Wedderbwrn decomposition of
)& on the 3 dimensional hyperbolic space if & s a finite group of Kleinian type. These
groups have “manageable” simple components 5 of QO that can be fields, or totally definite
positive gquaternion algebras or quaternion algebras such that the group of units of reduced
nerrn 1 of an order in 5 is & discrete subgroup of SLa [C).

In order to present the main idea of this approach 1t is convenient to consider a maore
general sitnation that we summarize from |PdRR|. Let A be a finite dimensional semisimple
rational algebra and & a F-order in 4. It is well known that £* is commensurable with
the group of units of every order in A and, if 4 is simple then K" is commensurakle with
Z(R)* x £, where £! denotes the group of elements of reduced norm 1 of A Two subgroups
of & given group are said to be commensurable if their intersection has finite index m both of
therm. In particular, if 4 = H:‘. ¢ Ay with each A; a simple algebra, then £* is commensurable
with [Tier Z[Ai)" = [1ie, (H:), where A; is an order in 4; for each i € £, Since Z[H;)* is
well understood by the Dirichlet Unit Theorem, the difficulty in understandmg £* up to
commensurak lity relies on understanding the groups of elements of reduced norm 1 of orders
in the simple components of the Wedderburn decomposition of A. If each simple component
5 of A can be embedded in Adz(C) so that the image of [Rg)' is a discrete subgroup of
SLa(C), for Ag an order of &5, then one can describe A* up to commensurability by using
methods on Kleinian groups to describe the groups of [Rg)!, for 5 running through the
YWedderburn components of 4. In case 4 = JC, this method can be used to study the
group of units of the mitegral group ring &, which is an order i Q. This motivates the
followmg definitions that rigorously introduce these objects.
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Let K be amumber field, 4 a central simple K-algebra and & an order in 4. By order
we always mean a Z-order. Let &' denote the group of units of & of reduced norm 1.
Every embedding & : K — T induces an embedding 7 : 4 — M[C), where d is the degree
of 4. Namely Fa) = ¢l @ a), where p : T@g 4 — Mp[C) is a fived Isomorphism
and & : M;[(C) — M,[C) acts componentwise as an autormorphism of C which extends o.
Furthermare, E[R]] C SLg(T).

Definition 4.1. |PdRR| A simple algebra 4 is said to be of Kleindan fype if either 4 s a
number field or 4 is a quaternion algebra over a number field £ and F[A') is a discrete
subgroup of SLa (C] for some embedding & of £ in €. More generally, an alpebra of Kleindon
fype is a finite direct sum of simple algebras of Kleinian type.

Definition 4.2. A finite group & is of Kleinian fype if the rational group algebra )¢5 is of
Eleinian type.

If & 15 a finite group of Kleinian type, then thecretically one can obtain a presentation
of a group commensurable with L4[E2C) as follows: first, compute the Wedderburn decem-
position ]_[:1 A; of the rational group algebra PG and an order £ of A; for each A;; second,
apply Dirichlet Unit Theorem to obtain presentations of Z[A;)*; third, compute a funda-
mental polyhedron of [7;)! for every 4; fourth, use these fundamental polyhedrons to derive
presentations of (&) for each 4; and finally, put all the information together, namely W [ZC)
is commensurable with the direct product of the groups for which presentations have bean
ohtainerd.

The finite groups of Kleinian type have been classified in [JPARRZ|, where it has been
also proved that a finite group & is of Kleinian type if and only if the group of units 2G* of its
integral group ring £ is commensurable with a direct product of free-by-free groups. This
article was our staring point for the study of this topic and the main reference. Following a
suggesticn of Alan Reid, we continued the previous work by studying the consegquences of
replacing the ring of rational imtegers by another ring of integers. This leads to the following
twio prohlems:

Prohlem 1. Classify the group algebras of Kleinian type of finite groups over
rummber fields.

Problem 2. Given a group algebra of Kleinian type KC, describe the structure
of the group of units of the group ring AG for & an order in K.

The simple factors of K¢ are Schur algebras over their centers. So, in order to solve
Problem 1, 1t is natural to start by classifying the Schur algebras of Kleinian type. This is
obtained in Section 4.1, Using this classification and that of finite groups of Kleinian type
giver in |JFdRRZ| we obtain the classification of the group algebras of Kleinian type in
Section 4.2, In Section 4.3 we obtain a partial solution for Problem 2.

4.1 Schur algebras of Kleinian type

Throughout K is a number field. A cyelic eyelotomic alpebro is a cyclic algebra L/ K, a),
where L/K is a cyclotomic extension and a is a root of unity. A cyelic cyclotomic algebra
(LK, a) is & Schur algebra becanse it is generated over K by the finite metacyclic group
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{u,C), where { Is a root of unity of L such that L = K[{). Conversely, every algebra
generated by a finite metacycelic group is cyclic cyclotomic. Some properties of this type of
algebras are studied in Chapter 6.

We will make use several times of the method to compute the Wedderburn decompositicn
of Q& for & an arbitrary finite group given in Chapter 2, as well as of the GAP package
wedderga presented in Chapter 3. Now we quote the following theorem from |JPARRZ|.

Theorermn 4.3. The following stafements are eguivalent for o central stmple algebra A cver
o number field K.

(1) A &5 of Kleindon type.

(2) A 45 either o number fleld or o guaternion algebra which 43 not romifled at of most one
infindte place.

(3) Ome of the followdng conditions holds:

(a) A

(b) Adsa rotaﬂy defenite quafernion alpebra.

(e) A= M)

(d) A= M’:[Q[v"_]] for d o sguare-free negabive inieger.
(e]

2] A ds a guaferndon division alpebra, K 45 tetally real and 4 ramifies at all but one
real embeddings of K.

(f1 A ds o guaternien division alpebra, K hos eractly ene pair of compler non-real)
embeddings and A ramifies af alf real embeddings of K.

We need the following lemmas.
Lemma 4.4, f[f K = Q[v‘?) with d o squore-free negabive dnfeger then
(1) H[£) 45 o divisien alpebro if and onlyif d =1 mod 8.
(2 {%} i3 o dinision algebra if and ondy if =1 maod 3.

Procf. [1] Writing H[K) as (K [)/ K, 1), one has that H[K) is a division algebra if and
only if —1 is a sum of two sguares in K. [t is well known that this is equivalent to d = 1
mod & |FGS|.

(2] Assume first that 4 = {_]F‘(_E} is not split. Then A is ramified at at least two
fmite places p; and ps since Eplnv[filp] = 0 in /& by Hasse Brauer MNoether Albert
Theorem [zee Remark 1.95 [i1)] and 4 is not ramified at any infinite place. Writing A as
[K[{z)/ K, -1) and using Theorem 1.76, cne deduces that p; and po are divisors of 3. Thus
3 is totally ramified in K and this implies that the Legendre symbol {g} =1, where D is
the discriminant of & [see Theorem 1.9). Since D =dor D =4d and {£) = p mod 3, for
each rational prime p, one has d = (§) = () =1 mod 3.

Conversely, assume that = 1 med 3. Then 3 15 totally ramified in K. Let p be
a prime divisor of 3 m K. Then the residue field of K, has order 3 and K, [(4)/ K, is
the unigque unramified extension of degree 2 of K, by Theorem L.77. Sinee w,[-3) = 1,
we deduce from Theorem 176 that —3 is not a norm of the extension A, ((4)/#K,. Thus
Ko@p A= [K,[(a)/ K, —3) 15 a division algebra, hence so is A, O
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Lemma 4.5. Let O be o division guoaternion Schur algebro over o number field K. Then
0 iz generated cver K by o mefabelion subyroup of D7,

Procf. By means of contradiction we assume that £ is not generated over K by a metabelian
grout. Using Amitsur's classification of the finite subgroups of division rings [see |Ami| or
|5W¥]] we deduce that O is generated by a group & which is somorphic to one of the follow-
ing groups: %, the binary octahedral group of order 48; 5L{2, 5), the binary icosahedral
grou of order 1207 or SL[2,3) = M, where M is a metacyclic group. Recall that O =
{rypya,bxd = 22? =22 = o = l,ab = a7 2¥ =270 2P =g, 20 = 27Ty, 90 = 270
Ye may assume without loss of generality that ¢ is one of the above groups. Let O be the
rational subalgebra of & generated by . It is encugh to show that £ is generated over [
by a metabelian group. So we may assume that O is generated over () by &, and 50 D is
one of the factors of the Wedderburn decomposition of (G

Computing the Wedderburn decomposition of Q[E*) and PSL[2,5) and having in
mind that £ has degree 2, we obtain that O = [Q[ﬁg]f@[\,ﬁL—l], if & = @, and
0=~ [Q[CE];’Q[V@], -1, if & = BL[2,5). In both cases O s generated ower its center
by a finite metacyclic group.

Finally, assume that & = SL[2,3) » M, with & metacyclic. Then D is a simple factor of
Ar@g Az, where 4; is a simple epimorphic irmage of (PSL[2, 3] and Aj; is a simple epimaorphic
image of QM. Since Ap is generated by a metacyclic group, it is encugh to show that so
is 4;. This is clear if 4, Is commutative. Assume otherwise that A4, is not commutative.
Having in mind that £ s a division quaternion algebra, one deduces that so is A; and,
cornputing the Wedderburn decomposition of 0 5L(2, 3], one obtains that 4; is isomorphic
to H[(}). This finishes the proof because H()) is generated over () by a quaternion group
of order 8. O

For a positive mteger 11 we set
Mo =Ca+ (7 and dn =(a — (7.

Observe that n2 — A2 = 4 and hence Q(n2) = Q[AZ). Furthermore, if m = 3, then A2 is

totally negative because (28 + (728 < 1, for every ¢ € Z prime with n. Therefore, if A2 € K
then (EKL]) ramifies at every real embedding of K.

We are ready to classify the Schur algebras of Kleinian type.

Theorem 4.6. Lef K be o number flald and fef 4 be o non-commuiotve central stmple
K -algebra. Then A ds o Schur alpebra af Kieindan fype i and only 4f 4 {5 Somorphic fo one
af the follouing alpebras:

(1) MK, with K =0 or Q[vq] for d o sguare-free negabive infeger.

(2] H-[[[Q[vfc_f]], for d o square-free negabive inieger, such thai d =1 mod 8,

(3) (ﬁ), for o o square-free megotive inéeger, such thatd =1 mod 3.

2
(4] (i%])J where 1 > 3, m, © K and K has af least one real embedding and of most

one pair of compler (non-real) embeddings.
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Procf, That the algebras listed are of Kleinian type follows at once from Proposition 4.3.
Let K be a field. Then Ma[K) is an epimorphic image of K Dp and if A2 € K then the

algebra (ﬁw;]) is an epimorphic image of K(,,. This shows that the algebras listed are

Schur algebras because H[K) = (gw;]) and {LK_]) = (EEK;])

Now we prove that if 4 is a Schur algebra of Kleinian type then one of the cases (1) [4)
holds, If A is not a division algebra, Propesition 4.3 mmplies that A = M K) for K = or
am imaginary guadratic extension of (3, so (1) holds,

In the remainder of the proof we assume that 4 1s a division Schur algebra of Elenian
type. By Lemma 4.5, 4 is generated over K by a finite metabelian group &, Then 4 =
K@, B, where B is a simple epimorphic image of QG with center £ and, by Proposition 2.3,
B is a cyclic eyelotomic algebra ((P(G.)/ L, £2) of degree 2. Since A is of Kleinian type, so
15 5.

Mow we prove that £ 1s totally real. Otherwise, since £ 1s a Galols extension of , L
is totally complex and therefore K is also totally complex. By Proposition 4.3, both L
and K are Tmaginary quadratic extensions of @ and so L = K and win) = 4, where p
is the Euler function. Then either [a) n = 8 and K = J[(4) or K = Q[/=2); or [b)
=12 and K = Q[(4) or £ = Q[{z). If n =8, then 5 is gernerated over ) by a group
of order 16 containing an element of order 8. Smee B s a division algebra, & = (g
and so B = H{Q(+2)], a contradiction. Thus 1 = 12 and hence B = (QC72) /QCa). €50
where = 6 or 4. Since (g is a norm of the extension Q[(2)/Q((s), necessarily d = 4. So

A=5 = [Q[{2)/Q4).058) = (%ﬁ) Smee X =14+ (y, Y =y is a solution of the
erquation (yX? — 3Y? =1, (4 is a norm of the extension Q[C]1/Q(Cs), and hence so is (8,

yielding a contradiction.
So L s 8 totally real fleld of indew 2 in Q[C,). Then L = (J[ry) and necessarily 5 is

isomaorphic to [R(G)/Q01.), -1 = (AE‘E{_]). This 1mplies that 4 = (AE‘T_]) [f K has

sotne errbedding in K, then (4] holds, Otherwize i = Q[J’E], for some sguare-free negative
integer d. This implies that & =}, Then n = 3, 4 or 6 and so A is isomorphic to either
H{K) or {—1{,{—3}‘ Since A 15 a division algebra, Lemma 4.4 implies that, in the first case,
d=1 mod & and condition (2) holds, and, in the second case, d =1 mod 3 and condition

(3) halds. O

4.2 Group algebras of Kleinian tyvpe

In this section we classify the group algebras of Kleinian type, that is the number flelds K
and finite groups & such that K& 15 of Kleinlan type. The classification for K = [) was
given in |JPdRRZ|.

We start with some notation. The cyclic group of order 1 1s usually denoted by &Y. To
arprhasize that a € (' is a generater of the group, we write & either as {a) or (a),. Recall
that a group & is mefobelion if " has an abelian normal subgroup N such that 4 = &FN s
abelian. e simply dencte this mformation as & = & : 4. To grha a concrete presentation
of & we will write IV and A as direct products of cyclic groups and give the necessary extra
information on the relations between the generators. By T we denote the coset x/V. For
example, the dihedral group of order 21 and the guaternion group of order 4n can be given
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by ~

0o, = (} (E:u} =1, =a"".
Wan = (a)aa : (b)a, ab=¢" ", 6 =a™.

If & has a complement im & then A can be identify with this complement and we write
' = & xn A For example, the dihedral group can be also given by Da, = (o), = (bjg with
ab = a1 and the semidihedral groups of arder 2742 can be deseribed as

DE.: = (@hgeer 2 ibha, b =a®"+,
D0, = Aoigaer 2 (B, ab = a7,

Following the notation in [JPARRZ|, for a finite group O, we denote by O the set of
isomaorphism classes of noncommutative simple quotients of . We generalize this notation
and, for a semisimple group algebra K<, we denote by O[H () the set of lsomorphism classes
of noncommutative simple quotients of £ Fer simplicity, we represent () by listing a
set of representatives of its elements. For example, using the isomorphisms

QO =A0E Ma ()& M (3(V=2)) and QD = a0 20(:) & Ma[Q[1))
one deduces that C[DF,) = {Ma(Q(E))} and C[ D7) = {Ma (), Mo (D[ =2)) 1.

The following groups play an mportant role in the classification of groups of Kleinian
Ly pe.

W = {{#

-._,_,_-

X (wha) s ((Tha = (e, with ¢ = [y, 2) and Z(W) = (27,37, 1),

W]n =

(e
me = (fie

II:|3

ho x H ) {xhg, with & = [, 2) and Z[Wh,) = (&, .. . ., 200

II:|u

) (xhg, with £y = [, 2) = vf and Z[Wha,) = (f,... ta. 27,

v = ({tha = {2¥ha x (7ha) s (T2 % (@h2), with ¢ = [y, x) and Z(W) = (=°,4°, 7).
Via = (ﬁ filo * H (1s) ) M (xye, with & = [pi, z) and
Z(Via) = (t1 . tnevde vz
Vaw = (1_1] (e ) el with £ = (3,3) = 3§ and Z{Vi) = (157
3 3
L = ( IT itz = 1 (L‘i}z) : (]_[ (j,.'_k}z)1 with #;; = (14, 1:) and
12iegs Py =1

Z{h) = (t12, 12, 23, 10, 15 030
3
e = (b e x e x e} { TT (e . with 2y = fg 3l 3 = e
=1

1 =tz and Z[th) = (hatiztael. 08 0
T = [(8)a % wie): (T2, with ¢ = (g, 2) and x? = ¢ = [z, 1.
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T (ﬁ(m*’*ﬁ@i“)”(ﬂsi with & = (g3, 2), [1,%) = & and
i=1 i=]
Z['-T]n] = ':f? ----- #2 :_I"z}
BT (“(“>3>”“"“*“’”hfs=iwl=y:” and Z(Tan) = (£}, 2 270,
i=1
T = (tfadx e fle) s @ withts = (.a), 2) =2, 22 =
i=12

Z(Tan) = (th5. ... vk 2 and, if £ 2 2 then ; = o],
8 P =[0F = ) : (T, with ) a subgroup of index 2 in F and

Sn.P,Q

% = 7! for each z € OF.

e collect the following lemmas from |JPARRZ]|.

Lemena 4.7. Let & be o findte group and A an abellan subgroup of O such that every sub-
group of A is normal in G Let H={H H is a subgroup of A with A/H cyclic and &' €
H}. Then O[C) =| g CICTHI.

Lemma 4.8, Let A be a finife abelian group of exponent d and & an arbifrary group.
(1) Ifd 2 then C[A = &) = C[4).

(2) if d4 and C[C) C {ME[QJ,H[QL [%)1%[@[@])} then C[A x ) € €[G) U
{02 (LD Cal)

(3) Jf 46 and C[C) € { M), H(D), (-—Li:—z)ﬂz[@[cg]]} then C[A x &) € C[C) U
{02 (D))}

Lemma 4.9. (1) (W) = {M(1)}.

C(W) = C(Wan) = [ M), H[D)}
CV1LEV1a) €[ Van) CL41 ). C (U2, E[Tha ) © { M2 (), H[Q), M2{LD(Cal]}
CIT),C(Tan), C(Tan) € {M2(0), H{D), M2 (Q(Ca)), HD(2)), M2 (Q{=2)]}.
Let O = Sy .

(2)
(3)
(4]
(5)

(a) If P = [z} is eyelic of order 27 then C[C) = C[C (z%)) U {(E‘m—‘;)}

fn partcular,
w if P =5 then O[C) = { Mz (1]

{
o if P =Yy then £[C) = {M; Q), (-—1&7—3)} and
. if P =y then O[G) = {

—
—
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(B) If P=Win and @ = (y1- B tr, - 2,27 then C(C) = { 472(QQ), (%) ,
Ma[R[Ca))

(c) If #=Wa and @ = (3], 1) then C[C) = { M2(), H[(D(v3)], M2 (Q(Ca)),
Ma ((Ca)1}

We are ready to present our classification of the group algebras of Kleinian type.

Thearem 4.10. Lef K be o number field and & o findte group. Then K& & of Kleindan
fype if and only 4 & & either abefian or an epimorphic dmage of A = H, for 4 an abef{an
group, and one of the folloudng conditions holds:

(1) £ =10) and one of the following conditions holds,

(a) A has exponent 6 and H {5 edther W, Wi, or Why,, for somen, or 0 = Spam, Lo
With = (D1, oy UmaFlae-esEma 20}, for somen and m,

(b) A hos exponent 4 and H 15 edther Uy, Ua, V, Vi, Vo, or 5, 0y ey, for some n,

(0] A has exponent 2 and H is either T, T1,,, Ton, Tan o7 Sy, o with Q = {yi, o),
for some 1.

(2) K #0) ond hos of most one potr of compler mon-real) embeddings, A hos exponent 2
and H = (Js.

(3) K is an dmoginery guadrofic erfension of 1), 4 hos exponent 2 and H 45 edther W,
Wi, Why or Sac,.0, for some n,

(4) K = Q[L3), A has exponent 6 and H s either W, Wi, or Waa, for seme n, or
H=80 .0 WA Q= (U M Erae B2y, for somen and m.

(8) K = 0Q[q), A hos exponent 4 and H &5 edther Uy, U, V, V0 Vo, T 60 Sy oy o JOF
some 1.

(B) K =03[+/=2], A has exponent 2 and H 45 either D[, or Tg,,, for some n,

Procf. Toavoid trivialities, we assume that (¥ is non-abelian. The main theorem of [JPARRZ|
states that P& is of Kleinian type if and only if &7 is an epimorphic image of 4 x A for 4
abelian and A4 and A satisfy one of the conditions (a) (c] from [1). So, in the remainder of
the proof, we assume that £ &£ [

First we prove that if one of the conditions (2] [6) holds, then K@ is of Kleinian type.
Fer that we compute C[K @) and check that it consists of algebras satisfying one of the
conditions of Theorem 4.6. Since (K ) C C[K G, for G an epimorphic image of &, it is
enough to compute [ for & = 4 x H and K, 4 and H satisfying one of the conditions
(2) [B). e use repeatedly Lernmas 4.8 and 4.9 which provide an approximation of C[&)
and C[KG) = [KZ[Al@zcay A A C(C) ]

If [2) holds, then C[HG) = {H[K)}.

If [3) holds, then O[] C {ME[Q],H[Q],(_]@_3)}1 and we deduce that O[KGT) C
{am (1) H{K), ()]

Similarly, if () holds then C(G) € C[H) U {M2(QE)} € (Ma(Q) I, (=52,
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Mo (e} Henee C[KG) = [ Mo [Q[Ca)) ], by Lemma 4.4

Arguing similarly, ene deduces that if [3) holds then O[K G = [ Mo Q4]0 ]

Finally, assume that [6) holds. If # = D7 then O(C) = [Ma(i]), Ma(Q(/—2))} and
so O[O = [M[Q[/ =211}, Otherwise, H = T, for some n. In this case we show that
CIKG) = [Ma[)[—211}. For that, we need a better approximation of C[G) than the
one given in Lemma 4.8. Namely, we show that C[G) = [ Ma (D), H[Q), M2 ([ —2))}.
Let [ be a proper subgroup of A [the derived subgroup of A) such that A°/L s cyclic.
Using that (p,x)y” = 1, for each 9 € (91,...,¥a), One has that Fa./L s an epimorphic
image of T3; % G;_]. Then Lemmas 4.7 and 4.8 imply that C[&) = [T21). S0 we may
assume that & = T5;. Now take B = Z(T5;) = (%, x%) = C? and L & subgroup of B
such that B/ L is cyclic. If #2 ¢ L, then T3, /L is an epimorphic image of W and therefore
ClTrfL) € [M2(D),H[)}. Otherwise L = (z?) or L = (x?); hence Toi/L = O}
and so &(Far /L) € { M), Ma(Q[/—2))}. Using Lemma 4.7, one deduces that £[%,) =
{H[jS ME[QL MZ[Q[V‘{__ZH} as claimed.

Conversely, assume that K¢ is of Kleinian type (and ¢ is ron-abelian and & #£ Q).
Then Q¢ is of Kleinian type, that is & is an epimorphic image of 4 = H for 4 and H
satisfying one of the conditions [a] [e) from [1). Furtherrmore, K has at most one pair of
complex embeddmegs, by Theorem 4.6, We have to show that K, 4 and H satisfy one of
the conditions [2) [6). We consider several cases.

Case [, Buery element of O[C) 45 o division algebra,

This implies that & is Hamiltonian and so & =~ Ja x Ex 7 with & an elementary abkelian
2 group and £ abelian of odd order |Reb, 5.3.7. If £ = 1, then [2) holds. Otherwise,
C{K ) contains H[K[(.)), where 5 is the exponent of £, Therefore n = 3 and K = Q[(z),
by Theorem 4.6. Since Qg is an epimorphic image of W, condition [4) holds.

In the remainder of the proof we assume that O[Q7) contains a nen-division algebra 5.
Then & = Ma[L) for some field L and therefore Ma(K L) € C[HT). Sinee K # 0], KL
i5 an imaginary gquadratic extension of () and L C K. Let & be the center of an element
of O[&). Then K& is the center of an element of O[K ). If KE # K, then the two
complex embeddings of K extend to more than two complex embeddings of K E, yielding a
contradiction. This shows that K contains the center of each elernent of O[47).

Case 2. The cenfer of each element of O[04 45 ().

Then Lemmas 4.8 and 4.9 imply that O[C) < {6, (0, H{E), (%)} Using this and
the main theorem of |[LdR| one has that & = A » H, where 4 s an elementary abelian
2 group and H is an epimorphic image of W, Wi, W, of 8, o for some n. So
satisfles [3).

Coze 5. At least one element of C(0) hos cenfer different from Q.

Then the center of each elerment of O[] is either [ or K. Using Lemmas 4.8 and 4.9
one has: If A and H satisfy conditien [l.a] then £ = Q[(z), hence (4] holds. If either 4
and A satisfy [L.b] or they satisfy (1.c] with A = T, for some n, then K = J{(4) and
condition (5] holds.

Otherwise, A has exponent 2 and H is either 7T, T2, T3, or Sn.Wm.{;.',’.rii for some .
Sinee A has exponent 2, one may assume that &= A4 = Hy, for & an epimorphic mage of
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H and H; 1s not an epimorphic image of any of the groups considered above, We use the
standard bar notation for the images of QA m JH;.

Assume first that H = T. Then [M = {y,#), L = {fp~?)) is a strong Shoda pair of T
and, by using Preposition 2.3, one deduces that if e = [T, M, L) = E%, then e ~
JI-II[Q[\/E]] Since H[Q[\jﬁ]j is not of Kleinian type, we have that ® = 0, or equivalently
79 € L. Hence either 7 = 1, F = 1 or T = 7=2. So H, is an epimorphic image of
either T (yy, T/(#%) or T/ (ty?). In the first case H, is an epimorphic image of 737 and in
the second case M7 is an epimorphic image of V. In both cases we obtan a contradiction
with the hypothesis that A is not an epimorphic image of the groups considered above.
Thus # is an epimarphic image of T/(ty?) = Dj,. In fact H; = D), because avery
proper nor-abelian gquotient of D7, s an epimorphic image of W, Then O[5 = (D7) =
[0 (D), M2 (Q[ =201} and so K = [/ —2). Hence condition [6) holds.

Assume now that A = Ta,,. By the first part of the proof we have C[H) = {H[J], M2 (],
Ma(Q[(+/—2))}. Since we are assuming that one element of £[() has center different from
i}, then Ma(Q[=2)) € C[H,) and so K = I/ —2). Hence condition (6] holds.

In the two remaining options for H we are going to obtain some contradiction.

Suppose that H = Ty, We may assume that 1 is the minimal positive integer such
that & is an ephmerphic image of T3, »x A, for 4 an elementary abelian 2 group. This
implies that (#3,%2,...,fa) is elementary abelian of crder 27 and hence (T7°, T2, ... T} =
O Let M = (910 %20e0oaut 8nd Ly = & 1977 YauUae oo o Un). Then [M, L] Is a strong
Shoda pair of H. By using Proposition 2.3, we obtain that QHe[H, M, L) = H[Q[v@]j

This implies that e[H, M, Ll]_: 0, or equivalently # = ¢ € L;. Since £ has order 2

and E & (ta,...,ta) one has £ = ;97257 -5~ for some oy,..., . € (0,1} Since,
by assumption, M, is not an epimorphic image of 75, we have o, # 0 for some 1 > 2.
After changing generators one may assume that ap = 1 and o; = 0 for ¢ > 3. Thus

f = y]_:fz. Let now Lo = {t]yl_z,ygpl_z,yg1.. <yWa). Then (M, Lg) is also a strong Shoda
pair of H and QCe(H, M, Ly) = H[J(+/2)). The same argument shows that ;¢ = # ¢
Lo = (6,977 v297 % T3+ - - Tn)- This yields a contradiction because #3772 = [1377)° <

(207" Taeee - To) ad T & (wo07 " Tae o T

Finally assume that H = Sy,,.0, with @ = &, ) and set y = ;. Sinee, by as-
sumption, & does not satisfy [1.a), one has T =7, # 1. Moreover, as in the previous case,
ohe may assurne that e is minimal [for & to be a quotient of A x A, with A elementary
abelian 2 group). Let M = (T, x, 1) and L = (Z),2r), where Z; is a maximal subgroup of
Z = (%. Then [M, L) is a strong Shoda pair of A and QHe[H, M, L) = H[{}[/3)). Thus
D=ce[H M L) = E[l - Z1{1 — ), where z € Z% Z;. Comparing coefficients and using the
fact that ¥ # %, for each z € Z, we have E[l — &) =0, that is L. = Z and this contradicts
the mmimality of n. O

4.3 Groups of units

In this section we study the virtual structure of BC™, for & a finite group and & an order
in a numkber field K. More precisely, we characterize the finite groups & and number fields
K for which RC™ 15 finite, ¥irtually abelian, virtually a direct product of free groups or
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virtually a direct product of free-ky-free groups.

We say that a group wirfually satisfles a group theoretical condition if it has a subgroup
of finite index satisfying the given condition. Motice that the virtual structure of £G* does
not depend on the order A and, in fact, if 5 is any order in K¢, then 5* and RG* are
commensurable [zee Lemma 1.15].

It i5 easy to show that a group commmensurable with a free group (respectively a free-
by-free group, a direct product of free groups, a direct product of free-by-free groups) is
also virtually free [respectively virtually free-by-free, virtually direct product of free groups,
virtually direct product of free by-free groups).

An impartant tool is the following lemmea.

Lemma 4.11. Let A =[], A; be o finite dimensional rational algebra with A; simple for
gvery 1. Let & be an order in A and 5; an order in A;.

(1) 5% is findte if and ondy if for each i, A; 45 efther Q) on dmoginary guodratic exfension
of [ or o fotally definite guafernion algebra cuer ],

(21 5* {5 wirtually cbefion if and only of for each 1, A; {5 edther o number fleld or o totally
definite guafernion alpebra,

(3) 5% 45 wirtually o divect product of free groups if and only ff for each i, 4, 45 efther o
number field, o fotfally defintte quaterndon alpebra or My (D).

(4] 5* i3 wirtually a divect product of free-by-free groups if and only if for each i, 5] is
wirtunlly free-by-free,

Procf. We are going to use the following facts:

(a] 5* is commensurable with []{_, 87 and 57 is commensurable with Z(5;)* x 5], [This
is because & and [];_, S are both crders in 4.

; 15 finite if and only if A; is either a field or a totally nite guaternion algebra
k) 5 is fi fand enly if 4 h field \ly defi algeh
[zee [Klel] or [Seh, Lemma 21.3]).

{e) If 4; isneither a field nor a totally definite quaternion algebra and 5] is commensurable
with a direct product of greups & and o, then either &y or 5 is finite |[KdAR|.

(d) 8} is infinite and virtually free if and only if 4; = Ma()) [see eg. |[Kle2, page 233)).

(1) By (a), 5* is finite if and only if 5 is finite for eachd if and only if Z(5;)* and 5}
are finite for each 4. By the Dirichlet Unit Theorem, if A; Is a rumber fleld, then 57 is finite
if and only if 4; is either I or an imaginary gquadratic extension of £, Using this and [b),
one deduces that, if 4; s not a number field then Z[5;)* and 5] are finite if and only if 4;
is a totally definite quaternion algebra over ().

(2) By (a), 5* is virtually abelian if and only if 5} is virtually abelian for each 1. If
Ay 1s either a number field or a totally definitive quaternion algebra then 5] is finite and
in particular virtually abelian, by (b). Conversely, assume that 5] is virtually abelian.
YWe argue by contradiction to show that 4; is either a number field or a totally definite
quaternion algebra. Otherwise, S} is virtually mfinite cyclic by (b) and [c) and the fact
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that 57 is finitely generated. Then [d) implies that 4; = A5((}) and so 5] s commensurable
with SLg[Z). This yields a contradiction becanse SLa(Z) is not virtually cyelic.

(3) By (a) and |JdR, Lemma 3.1, 5* is virtually a direct product of free groups if and
only if so is 5] for each ¢, As in the previous proof, if 4; is neither commutative nor &
totally definite quaternion algebra, then 5} is virtually a direct product of free groups if
and enly if it is virtually free if and only if 4; = Mo [0D).

(4) Is proved in JPARRZ, Theorem 2.1]. O

The characterization of when AG™ is finite (respectively virtually abelian, virtually a
direct product of free groups) is an easy generalization of the corresponding result for integral
ETOUT TIMES.

Theorem 4.12. Lei @ be an order in o number fleld K and & o finite group. Then RC™
is findte of and only if one of the following condifions holds:

(1) £ =10) and & {5 efther abelion of exponent dividing 4 or 6, or isomorphic fo Qg 2 A,
for A an elementary abeltan 2 group.

(2) K 15 am dmoginary guadrafic exfension of [ and O 45 an elementary abelfion 2 group.
(3) K =0[(z) and 45 abelion of exponent 3 or 6.
(4) K =0[(q) ond O 45 abelion of exponent 4.

Proof. If K = (), then & = & and 1t s well known that £&* 15 fimite if and only if & 15
abelian of exponent dividing 4 or 6 or it is isomorphic to Qg x A, for A an elementary akelian
2 group |Seh).

If one of the conditions (1) (4) holds, then K& s a direct product of ceples of (3,
imaginary quadratic extensions of ) and H[(}). Then £G* is finite by Lemma 4.11.

Conversely, assume that £C™* is finite and K # [ Then 4™ is finite and therefore
is either akelian of exponent dividing 4 or 6, or isomorphic to Qs x A4, for 4 an elementary
abelian 2 group. Moreover, £ is finite and so K = Q[ﬂ] for d a sguare-free negative
integer. If the exponent of ¢ is 2 then (2] holds. If & is non-abelian, e, O = Qg x A with
A elementary abelian 2 group, then one of the simple components of K¢ 1s ME[Q[\E{]],
contradicting the previous paragraph. Thus & is abelian. If the exponent of & is 3 or 6,
then one of the simple components of K& is Q[V‘E 3], henee d = -3, and therefore [3)
holds, If the exponent of 7154 then one of the simple components of £ is Q[vq, Cq) and
therefore d = —1, that is [4) holds. O

Theorem 4.13. Lei & be an order in o number fleld K and & o finite group. Then QC™
is wirtually abelion ¢f and only if either G 45 abeffan or K 45 fotally real and & = (s = A,
for A an elementary abefion 2 group.

Procf. As in the proof of Theorem 4.12, the sufficient condition is a direct conseguence of
Lemma 4.11.

Conversely, assume that BC™ 1 virtually abelian, Then ZC™ is virtually abelian and
therefore it does not contain a non-abelian free group. Then & is either abelian or isomorphic
to O = gdg % A, for A an elementary abelian 2 group [Theorem 1.35). In the latter case, one
of the simple components of K& is H{K) and henee £ s totally real, by Lermma 4.11. O
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Thearemn 4.14. Lei 7 be an order in o number fleld K and & o finite group. Then 0™
is wirtuolly o dérect product of free groups if and only if either & 45 abelian or one of the
following conditions holds:

(1) K =0 and ' = H = A, for 4 on elementary abellan 2 group and H 45 either W,
W]m W]HI(IE}J WZ?IJ WZ}‘IJ'F(IE}J WZ?IJ'{(‘TZ-'{:]}J 'Tzn or H ZS:&,C‘“,CEJ fD‘?" somen ond
t=1,2o6r4.

(2) K s tofally veal and @ = Qg »x A, for A an elementary abellon 2 group.

Procf, The finite groups ¢ such that £ 15 virtually a direct product of free groups were
classified in [JL, JLAR, JAR, LdR| and are the abelian groups and those satisfying condition
(1). S0, in the remainder of the proof, one may assume that & # £, or equivalently K # 0],
and we have to show that £C* is virtually a direct product of free groups if and only if
aither (7 15 abelian or [2] holds.

If either (& is abelian or (2] holds then ARG is virtually abelian, hence BG™ Is virtually
a direct product of free groups, because it is finitely generated.

Conversely, assurne that BC™ s virtually a direct product of free groups and & is non-
abelian. Sinee K # (0, M3[0Q) is not a simple quotient of A J, henee Lermma 4.11 implies
that every simple quotient of K 15 either a number field or a totally definite quaternion
algebra. In particular, ¢ 1s Hamiltonian, that is & = Qg x 4 = &, where 4 15 an elementary
abelian 2 group and F is abelian of odd erder. If 5 s the sxponent of & then H[HK([(a))] Is
a simple quotient of K& and this implies that ® =1 and K is totally real. O

Mow we prove the main result of this section which provides a characterization of when
/O™ s virtually a direct product of free-ky-free groups.

Thearemn 4.15. Lei @ be an order in o number fleld K and & o finite group. Then 0™
i wirtually o direct product of free-by-free groups if and enly if edther (43 abelion or one of
the folloudng conditions holds:

(1) & is an epimorphic fmaoge of A x H with A cbellon and K, 4 and H sobisfy one of
the condifions (1), [4), 18} or [8) of Theorem 4.7,

(2) K is tofally real and @ = A = (Jg, for A an elementary abellon 2 group.

(3) K= Q[v‘?], for o o square-free negative indeger, SL:[E[V?]] 15 wirtually free-by-free,
and = A x A where A 45 an elementary abelion 2 group and one of the following
condifions holds:

(a) H is either Wia, Wiaf(z?), Waa/(z?) or Sus, 0, for seme n.

(b] H is either W, Wan or Whayu/(x?t)), for somen and d # 1 maod 8.

(c) H=38uc,0, for somen and d =1 mod 3.
Procf. To avoid trivialities we assume that & is not akelian. Along the proof we are going to
refer to conditions (1] [6) of Theoremn 4.10 and to conditions [1) (3] of the theorem being

proved. To avold confusion, we establish the convention that any reference to conditions
(1) [3) refers to condition (1) [3) of Theorem 4.15.
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We first show that if X and & satisfy one of the listed conditions then £G™ is virtually
a direct product of free-by-free groups. By Lemma 4.11, this is egquivalent to showing that
for every B € C[K ) and § an [any) order in B, we have that &' is virtually free-by-free.
By using Lemmas 4.8 and 4.9 and the computation of Z[K ) in the proof of Theorem 4.10,
it is easy to show that if K and  satisfy one of the conditions (1) or [2), then every
alement of O () 5 either a totally definite gquaternion algebra or iscmorphic to M. (K] for
K= Q[\f&]1 withd =10, -1, -2 or —3. In the first case 57 is finite and in the second case 57
iz virtually free-by-free [see Lemma 4.11 and [JPARRZ, Lemma 3.1| or alternatively |Klel],
|[MER, page 137 and |WZ|). If K and & satisfy condition (3) then Lernmas 4.4, 4.8 and 4.5
imply that C[KG) = [Ma[Q[Vd))}. Since 87 and SLy(B|vd]) are commensurable and, by
assuTnption, the latter is virtually free-by-free, we have that 57 is virtually free-by-free.

Conversely, assume that £C™ is virtually a direct product of free-by-free groups. Let B
be a simple factor of K'Y and 5 an order m 5. By Lemma 4.11, 87 is virtually free-by-free
and hemnce the virtual cohomological dimension of 57 is at most 2. Then 5 is of Kleinian
type by |[JPARRZ, Corollary 3.4]. This preves that K& is of Kleinian type. Furthermors,
B is of one of the types (a) [f] from Proposition 4.3. However, the virtual cohomological
dimension of 57 15 0, if B is of type (&) or (b); 1 if B is of type [c); 2 if it is of type [d) or
(e]; and 3 if B is of type [f) [JPARRZ, Remark 3.5, Thus B is not of type [f). Since every
simple factor of K& contains K, either £ is totally real or K Is an imaginary quadratic
extension of ) and K¢ is split.

By Theorem 4.10, & s an epimaorphic image of 4 = & with 4 abelian and K, 4 and H#
satisfying one of the conditions (1) [6) of Theorem 4.10. If they satisfy one of the conditions
(1), [4), [5) or [6) of Theorern 4.10, then condition [1) [of Theorem 4.15) holds. So, we
assure that #, A and A satisfy either condition (2) or [3) of Theorem 4.10. Since A is
an elementary abelian 2 group, one may assume that &= A4 = A, with A, an epimorphic
image of M.

Assume first that K, 4 and H satisfy condition (2) of Theorem 4.10. Then cne of the
simple quotient of K¢ is isomorphic to H{ /). If K is totally real then comdition [2) holds.
Otherwise K = Q[vq'] for d a sguare-free negative integer and H[ /) Is split. By Lemma 4.4,
d#1 mod 8. Since Qg = Way/(x?%), condition (3b) holds.

Secondly assume that K, A and H satisfy condition [3) of Theorem 4.10 and set £ =

Q[JE’] for d a sguare-free negative integer. Then O(d) C {H[Q],ME[Q], (_]@_3)}* by

Lemma 4.9, By the main theorern of |JdR|, H; iz isomorphic to either W, Wi, Waa,
W]nfl::_l"%‘ Wznf{(‘rl]j-bi Wan{(‘T?T]}i Sn.l:?z.] or S?‘I.G-n.c:ni for some n. If H is either Wia,
W]nf(z'ﬁ}‘ Wgu,-"(:z?} of Sy, then [3a) helds. If A is either W, W, or W:nf(rr:f]}
then O[&) = { Mo (D), H[})} and, arguing as in the previous paragraph, one deduces that
d £ 1 modB. In this case condition [3k) holds. Finally, f & = 8, ¢, o, then O[C =

{Mg[@]. (_]@_3) } and using the second part of Lermma 4.4 one deduces that d £ 1 mod 3,

and condition [3c) holds. O

The mam theorem of |JPARRZ| states that a finite group ¢ is of Kleinian type if and
only if 20 s commensurable with a direct product of free-ky-free groups. One implication
is 5till true when Z is replaced by an arbitrary order in a number field. This is a consequence
of Thearems 4.10 and 4.15.
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Corollary 4.16. fef £ be an order in o number flefd K ond & o findte group. ff G s
comemensurable with o direct product of free-by-free groups then KOG 45 of Kleindan fype.

It also follows from Theorems 4.10 and 4.15 that the corverse of Corollary 4.16 fails. The
group algebras KO of Kleinian type for which the group of units of an order in K< is not
virtually a direct product of free-by-free groups ocour under the following circumstances,
where &= A » H for A an elementary akelian 2 group:

(1) £ is a number field of degree = 3 over () with exactly one pair of complex embeddings
and at least one real embedding and H = Js.

(2) K= Q[v’?]. for d a square-free negative integer with d = 1 mod 8 and H = W, Wa,
ot W/ {z?¢1), for some .

(3) K= Q[v“?] for d a sguare-free negative mteger with d =1 mod 3and H = & s

(4] £ = Q[ﬂ] and & and A satisfy one of the conditions (3a) [3c) from Theorem 4.15,
but SLa [F[v'd]) is not virtually free-by-free,

Resuming, if K¢ is of Kleinian type, then we have a good description of the virtual
structure of £C™ for A an order in 0, except for the four cases above. It has been conjectured
that SLQ[E[VG]] is virtually free-by-cyelic for every negative integer d. This conjecture has
beer verified for o = —1,-2, -3, -7 and —11 [zee |MR] and |WZ|). Thus, maybe the
last case does not occur and the hypothesis of SL.Q[E[\HE’]] being virtually free-hy-free in
Theorem 4.15 is superfluous.

In crder to obtain information on the virtual structure of AG™ in the four cases (1) [4)
above, one should investigate the groups of units 5*, for 5 an order n the following algebras:
H{ ), for K a number field with exactly one pair of complex embeddings and H[ K7 is not

split, H[Q[v'd)) with d = 1 mod &, (&f’;&g) with d = 1 mod 3 and, of course, & [(J[v/d))

for o a squarefree negative integer. Notice that K = J[/-7) and &' = Qs = W11/ {x?) is
an instance of cases (2] above and, if f is an order in K, then AQY is commensurable with
H{A)*. A presentation of H[R)*, for & the ring of integers of (J[/—7) has been computed
in [CJLdR].

Notes on Chapter 4

The aim of this chapter was not to give a self-contamed presentation about group algebras
of Kleinian type, but to continue the work presented in [JPARRZ| generalizing the results
to arbitrary rings of integers. Since we need only selected topics, we are far from presenting
a complete picture of them, so that we do not msist on their general history. As already
mentiened, cur starting point and main reference was the article [JFdRRZ|. The reader
is refereed to |Pol, Bia, WZ, Mas| for further information on the topic of Kleinian groups
and to |[EGM, MR, Mas, Thu| for the applications related to the Geometrization Problem
of Thurston for the classification of 3 manifolds.

A more extensive and complete presentation of groups and algebras of Kleinian type can
be found in the thesis |Rui| and in the article |PdRR|, where these notions were first defined,
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in the master thesis |Pit, Bar|, and in the article |JPARRZ|. In the latter it has been also
given a characterization of finite groups of Klenian type in terms of the group of units of
its integral group rmg.

Some possible further development of the results from Section 3 of this chapter can be
the generalization of some results to semigroup algebras. It could be interesting to know if
the methods developed in |DJ| to reduce problems on semigroup Tings to similar problems
on group rings and the Wedderburn components of group algebras could be applied here.
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Chapter 5

The Schur group of an abelian
number field

In this chapter we characterize the maximum r-local index of a Schur algebra over an abelian
number field & in terms of global information determined by the fleld &, for r an arbitrary
rational prime. This characterization completes and unifies previous results of Jarmsz |[Jan3]
and Pendergrass |Pen?|.

Throughout let £ be an abelian number fleld. The existence of the maximum r-local
index of a Schur algebra over K is a consequence of the Benard-Schacher Theorem [see
Thearem 1.108) which gives a partial characterization of the elements of the Schur group
STH) of the field K. According to this thecrer, if n is the Schur index of a Schur algebra A
over i, then the group of roots of unity W (K] of K contains an element of order n. Since
STH) is a torsion abelian group, it is enough to compute the maxirmum of the r-local indices
of Schur algebras over K with index a power of p for every prime p dividing the order of
WK). We will refer to this number as pPelti In |[Jand], Janusz gave a formula for pPelr
when either p is odd or K contains a primitive 4-th root of unity. The remaining cases were
considered by Pendergrass in |Penl|. However, some of the calrulations involving factor sets
in |[Penl| are not correct, and as a consequence the formulas for 28207 for odd primes r that
appear there are maccurate. This work was mainly motivated by the problem of finding a
correct forrula for pPel7h in this remaining case. Moreover, we need to apply the formula
in the next chapter. Smee the local index at ma will he 2 when K is real and will be 1
otherwise, and for r = 2 one has G,(r) = D unless p = 2 and 5 & & and S[K;3) # 1, in
which case (J2[r) = 1, the only remaining case is that of » odd. This is the case considered
in this chapter. The characterization of fields # for which S[K37) is of order 2 is given in
|Penl, Corellary 3.3].

The main result of the chapter [Theorem 5.13) characterizes p%™} in terms of the

position of K relative to an overlymg cyclotomic extension & which 1s determined by K
and p. The formulas for %} are stated in terms of elements of certain Calois groups in
this setting. The main difference between our approach and that of Janusz and Pendergrass
is that the field & that we use is slightly larger, which allows us to present some of the
sornewhat artificial-looking caleulations in [Jan3| in a more conceptual fashion., Another
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highlight of cur approach is the treatment of calculations involving factor sets. First we
generalize a result from [A S| which describes the factor sets for a given action of an abelian
group & on another abelian group W in terms of some data. In particular, we give necessary
and sufficient conditions that the data must satisfy in order to be induced by a factor set.
Because of the applications we have in mind, sxtra attention is paid to the case when W is

a cyclic pgroup.

5.1 Factor set calculations

In this section W and ( are two abelian groups and T : ¢ — Aut[W) s a group ho-
momotrphism [later on we will assurne that W ois a cyelic p-group). A group epimorphism
1 G — G with kernel W is said to induce T if, given u,; € & such that w[u,) = g, one has
-ug-tu-ug_] = T(g)[w) for each w e W. If g — ug; is 8 cressed section of m [Le. w(ug) = g for
each g € () then the map o« & x F — W defined by wgu, = oy g, is a foctor sef [or
Z-cocyele) o € Z2[(, W). We always assume that the crossed sections are normalized, i.e.
u; =1 and hence gy 3 = &y 5 = 1. Since a different choice of crossed section for m would be
B MAED g~ Wy, where w : & — W, 7 determines a unigque cohomology class in K2 [, W,
narmsely the one represented by o.

Given a list g1,..., 0. of generating elements of &, a group epimorphism 7 @ & — &
inducing T, and a crossed section g — w, of m, we associate the elements §;; and - of W,
for 4,7 < n, by the egualities:

ug g, = [iug g, and
. 2l t[_”] [5.1]
Ug: = g - Ug o4

where the integers g and fg.i} for 1 <4< nand 03 < 4are determined by

[l [_r'Il .
g = order of gy medulo (g, .., 500, gF = gt]‘ ---gﬁ'_ ;. oend 0« fg-a} < gy [5.2)

If @ is the facter set associated to w and the crossed section g — vy, and the generating set
H14..049n 15 clear from the context, then we abbreviate the above by saying that o induces
the data [§i;,%). The following proposition gives necessary and sufficlent conditions for a
list [Ji;,) of elements of W to be induced by a factor set.

Froposition 5.1. Lt W oand = (g1,..., 940 be cbelian groups and lef T : & — Aut[W]

be an acton of & on W, For every | << 4,7 < n, let ¢; and fg.i} be the infegers defermined
by [5.2), For everywe W and 1 <4 < n, let
T, =T, N‘-t[-w] = wTi[w]Tf (] --- TE_] (w), and N; = Nf".

1

For every | <4,] £n, let By and 7y be elements of W, Then the following condifions
are equivalent:

(1) There 5 a factor set & € Z2 [0, W) inducing the dafa [Siy.1i).
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(2) The felloudng equalities hold for every 1 <4, 0,8 < n:
(C1) G =Byl = 1.
(C2) Biifgieles = Te (D) Ta[Hne ) T4 [P
! t[ o

t[r'] t[” t[F] t[F] t[F] :
[CSJ M [.533']% = TJ‘[’H]”f [.S]J']T]1 [sz [.52;1]] o 'Tl1 ng v T:‘.—: [ i—1 [-8(1—1}3]]
Proof (1) implies [2). Assume that there is a factor set o € Z7 ([, W) inducing the data

(Fij.v:). Then there is a surjective homomorphism 7 : ¢ — & and a crossed section g — uy
of m such that the J,; and +; satisfy [5.1]. Condition [€1) is clear. Conjugating by wg, in

g Uy, = Dijig g, ¥ields

Bie Ty [Bie) Bigug g, = O Ty Buelugug, = Bjeug, By, = g, g, ug '“g;,] =

Ug&.gaj'ﬂg,ﬂg,ﬂ;,‘ = T(Fy ]ﬁaﬁ:nﬁfﬁjkngr =T (Pi) 5T [ﬁjk]ﬂgfﬂm

Therefore, we have G Ty (G Fi = Te(Fi)Fie Ti(F5e) and so [C2) follows from [C1).
To prove [C3), we use the obvious relation [wug )t = N(w)ul . Conjugating by u,, in

o
t[.;] 1:['r.j'l -
'“E-",- = g - -tg o results in
£ "o o . o o o
NGy )vsug) ng, U= N (Gl = (g, )® ~u, uliug, =%,’hﬂs‘1 -
v b Mo
= Taln) LS]J :31 i -yt 1]tr. "= [ N .51;1]'“51 ML) (Braonyg)ug,

t[ il t[r'il t t Fage t[ ] [ i t[ ]
= Tj[m] N] [.5'1;1 Ty (87 [Bagl)-- T' T SEPRI  FL [ﬁfa—l}:l]]'“m g e
Cancelling on both sides produces [C3). This finishes the proof of (1) implies [2).
Before proving [2) implies (1], we show that if m : G — (& is a group homomaorphism
with kernel W nducing T, g — uy is & crossed section of m and 8y and - are given by
(5.1], then (' is isomorphic to the group G given by the following presentation: the set of

generators of G is {40, 5 cw e Wi =1,...,n}, and the relations are
. e P P =~ .,-\..,-i[] .,-IE.:]-|
Wy = wi#z, Tilw) =505 . 5 =0y ad 5 =55 ---§.,. [(53)

for each | <4, < n and w, 1wy, w; © W. Since the relations obtained by replacing & by w
and F; by u,, in equation [5.3) for each x € W and each 1 <4 < n, hold in T, there is a
surjective group hormaomorphism & G — @, which associates @ with w, for every w e W,
and & Wlth g, for every i =1,...,m. MDTEDVET, ¢ restricts to an Jsammphlsm Wo— W
and gz(W Gyae-e1Bi_1) = ;. Hence [G W= = - =[G : W] and so G =T. We
conclude that ¢ is an isomeorphism.

(2) mmplies [1). Assume that the Ji;'s and s satisfy conditions (1), [€2) and [C3). We
will recursively construct groups Co Gy e, O Start with ©p = W. Assume that Ce_y =

(W, Ugy veeea g, .+ has been comstructed with gy ree gy (in the roles of Gy, ... Ge1)
satlsfying the last three relations of [5.3], for | <4, 7 < &, and that these relations, together
with the relations m W, form a complete list of relations for Ce_;. To define 7y, we first

construct a semidirect product Hy = et Mg, lxe), where op acts on Gy by

celw) = Telw), [we W, Celig, ) = Py, .
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In order to check that this defines an autorerphism of &e_, we need to check that o,
respects the defining relations of Gy_,. That it respects the relations of W is clear because
T is an autemorphism of W. New we check that it respects the last three relations in [5.3)
for 1 < 4,7 < k. Using that & is commutative one has T, T; = T; Ty and hence

e (Ti[wl)ee (ug,) = Te(Ts(w)lfiwug, = Ti(Telw))fieng = Gy, Te(w] = ci(ug, Jee[w],
which shows that o, respects the secomd relation. For the third relation we have

ﬂa:['ﬂg,-]ﬂ.t['ﬂg,-] = ﬁg‘kﬂgfﬁikﬂg; = .g;uc Tj[ﬁik]ﬁijng;ngf = Ti[ﬁjk]ﬁiﬁ:Tk[ﬁijjng;ngf
= Te(Fig)Bwng, Fievg, = ce(Fig)eeug, Joelug, ).
Finally, for the last relation
] ) ] i t££31
celig ) = (P )% = Nilfiwud = Nilfulnwa - ug
tl?? ! el gl L i )
= Te[w)N) (Gl Ty (B [Fzed]---T9 T L T2 (VD [.5(3—1}.\:]:1“;311 g
el i i i i £,
ce(w) (N (Fredugy 1N (Faedugy 1--- (VD) (B pelug: 1)

[

e
e[ 1) (Breug - (B g, o)

1

[é) [é]
Ek[’h]ﬂk[ﬂm F‘ TG ['uﬁr' 1]ti T

Notice that the defining relations of By are the defining relations of Gp_; together with

the relations et = Ty (wlre and rpu, = Sigug . Using [C3) one deduces ngr.:ri“'u;,f,] =
N . . o,
g, Yellgy - Uge g« for each © < & — 1. This shows that pe = x, “reigd g

belongs to the center of Hy. Let Gp = Hyf (v and u,, = relye). Now it is easy to see
that the defining relations of &y are the relations of W and the last three relations in [5.3),
for D0<4,7 < &

It is clear now that the assignment w — 1 and w,, — g; for each i =1,...,51 defines a
group homomerphism 7 & = @, — & with kernel W and inducing T. If & is the factor
set associated to  and the crossed section g — wg, then (S, p) is the list of data induced
by ce. O

Mote that the group generated by the values of the factor set o concides with the group
generated by the data [§;;,+). This observation will be used in the next section.

In the case & = (g} = --- = (gq) we obtain the following corollary that eme should
comnpare with Theorem 1.3 of |AS].

Corollary 5.2. ff ' = (g} % --- % (ga) then o fist O = [0, %)14i 520 of elements of W
is the lisf of dofa associated to a foctor sef in Z° (G, W) if and only if the elements of D
satisfy (C1), [C2) and N3 [Fi)v = Tilw), for every 1 <4, <n.

In the remainder of this section we assume that W = ([} is a cyclic p-group, for pa prime
integer. Let p® and p®+? dencte the orders of WS = lr e W :T(glx) =r for each g € G}
and W respectively. We assume that 0 < a,b. We also set

C=KexT) and D={geC:T(g)(¢)=C¢or T(e)) = ¢}
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Note that D is subgroup of (f containing &, &/ D 15 eyelic, and |0 : O] £ 2. Furthermore,
the assumption a > 0 implies that if & # O then p® = 2.

Lerma 5.3. There exists p € D and o subproup B of O such thet D = (p) = B and
C=(p" = B.

Proof. The lemma is obvious if & = D [just take p = 1). So assume that & # D and
temporarily take p to be any element of DY O Since D : O] = 2, one may assurne without
loss of generality that g is a power of 2. Weite ' = O = Oy, where (% and O denote the
2-primary and 2-primary parts of &, and choose a decornposition & = (o)) = --- = (o,) of

Ch. By reordering the e;'s if needed, one may assume that p? = 2 ... 2%l ... 2% with
ay,...,0p odd. Then replacing p by pc;_t‘]‘” ...c;%~ one may assume that p° =ci'...cp",
with ay, ..., 0 odd, Let & = (g1, .. e, Then p /2= o= exp[H N O, the exponent

of HN &, and so pis an elernent of maximal order in A. This implies that H = (g = H
for some Hy < H. Moreover, if A € H) 4 & then | # p'”z = 7 (@ 1 Hy, &
contradiction. This shows that H; © O Thus € = [A N CY) = feepr) -0 % [on) =
(o) % Hy % {epgad % --- % (2,). Then pand B = H) % {gp1) = - - % (2,) x Ch- satisfy the
required conditions. O

By Lemma 5.3, there is a decomposition 0 = B x i) with &' = B = (), which will be
fiwed for the remainder of this section. Moreover, if ¢ = O then we assume p = 1. Since
G0 s cyelie, /0 = (pC) « (o) for some ¢ 2 &L Tt s easy to see that ¢ can be selected
50 that if 0= then ¢ =1, and () = ° for some integer ¢ satisfying

a, if G0 18 cyelicand & # 0,
[e% —1) = a+b, v,(c—1] = a+b6, ifC&fC 1 oyelicand &= 0, and (5.4]
d = 2, for some integer d, if &/ is not cyclic,

U

where ¢, = oC and the map v, :  — Z is the classical p-adic valuation. In particular,
if G/C is non-cyclic [equivalently & # D # () thenp® = 2, 6 = 2, p(¢) = (7! and
g[czb 1]=I:_2b 1‘

For every positive integer { we set

t
-1
V[ﬂ=1—|—|:-|—r_'2-l—---+|:‘t_]=If .

Mow we choose a decomposition B = {ey) % --- x (£} and adapt the notation of Prapo-
sition 5.1 for a group epimorphism f : ¢ — @ with kernel W inducing T and elements

LTPRU TR T TP c (¢ with Flue,) = o, flus) = pand flus) =&, by setting
—1 —1 —
.82'-21' = ['Uc,-1‘ur_-,-l1 .Sif.?' =M T I'uat'uﬂsji Bir = oo l'ﬂm'ﬂc,-L and IS'II'J = ﬂﬂ'] = Lgf""{jﬂ-]'
We also set
=, gp=p, and o =gt

where D€ ¢; < qyand D= ¢, < & . (5.5)

. With a slightly different notation than in Proposition 5.1, we have, for each 1 <4 < n,
fg-l} =0 for every 0 < 5 < 1, fg‘j} =0, fgﬁ} =+;, and tgr} = 2¢,. Furthermore, g, =1 =D
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and g, is even if ' # 0. Continuing with the adaptation of the notation of Proposition 5.1

we et
to, 2t

— v R
H=uy, Fp=ur, and e =uru" ot

vie refer to the list { Sy Gics Fio o Fop ¥ To P : 0L i = J < ﬁh which we abbreviate
5 [, ], as the data associated to the group epimorphism f : ¢ — @ and choice of

crossed sectlon e, ..., e Ua bp, OF 85 the data mduced by the corresponding factor set
n Z[d, W
Furthermaore, for every w e W, 1 <4 < n and ¢ > 0 one has
wh, fp=1;
Niw) =wt, Niw)= w’®  and N;[-w] =+ 1, ifp#1 andtis even;

[ @ fp#!landtisodd
In particular, for every w € ¥ one has
Nilw) =w®, N (w) =¥} and Ny(w] =1,
Rewriting Proposition 5.1 for this case we obtan the followme.

Corollary 5.4. Let W be a finife cyclic p-group and lef (7 be an abelan group acting on W
wtth G = {e1,. .ot p), B= (o) % - x{ea), D=8 x [p) and C = B = () as above,
Let g, 0, Qe ond Ehe §; 5 be given by (5.5) Let Orpi¥p¥e € W ond for every 1 < 4,7 <0
let By, iz Bip ond -y be elements of W, Then the following condifions are equivalent:

(1) The given collection (8, v) = |y Bie 1 Fig Cop War o ¥} 18 the fist of dofo dnduced by
some factor set in Z2 (G, W,

(2) The fellouing hold for every 1 <4, 7 < n:

(C1) By =Gl =1
(C2) () By € WE.

(b) ffp#1 then 2 =81
(C3) [a) 8% =1.
[bj r_- ].
(

—""fﬁ' } ty lﬁln
"

1i4 e i

(

o

t. _

s
d] i

(€] ffﬁ—l fhﬂﬂ.ﬁw—ﬁm— P =1

() Ifp#1 then §lnf = 1, B8 42 = g ... 0, and v, € WE,

Procf, By completing the data with 35 = ,{5’;. fo = ,{5';9]. Bor = ,{3’,;‘:,] and For = Hp =1
we have that [C1) 15 a rewriting of condition [C1) from Propesition 5.1,

(€2] 15 the rewriting of conditien [C2) from Proposition 5.1 because this condition
vanishes when 1 = 4, J, & = n and when two of the elements <, 7, & are equal. Furthermore,
perrruting 4, J, & in condition [C2) of Proposition 5.1 yields equivalent cenditiens. So we
only have to consider three cases: substituting i =4, =3, and k =0o; ¢t =4, j = 4, and
E=pmandi =4, j = p and & = . In the first two cases one obtains & (3] = p(Fi) = By,
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or equivalently f8;; € WS, For p = 1 the last case vanishes, and for p £ 1 [€2) yields
b =i

Rewriting [C3) frem Proposition 5.1 we obtain: condition [C.a) for 4 = 4, § = J;
condition [C3.b) for ¢ = 4 and J = ; condition [C3.c] for ¢ = ¢ and J = 4 and condition
(C3.d) for i = ¢ and j = .

We comnsider separately the cases p = 1 and p # 1 for the remaining cases of rewriting
(C3). Assume first that g = 1. When 1 is replaced by pand j replaced by i [respectively,
by &) we obtain §;, = 1 [respectively §,, = 1). On the other hand, the requirement of only
using normalized crossed sections implies 5y, = 1 in this case. When j = g the obtained
conditions are trivial.

MNow assume that p £ 1. For i = ¢ and j = p one obtains ﬁ'wq«; =1. Fori = g and

j =1 cne has a trivial condition because Ny(z) = 1. For 4 = ¢ and j = p, we obtain

”0}2 ﬁﬁm Fer i+ = pand j = ¢ one has ¢(y,) = y,, and for i = g and j = p

one DthIJTIE p[’yp] %,. The last two equalities are equivalent to v, € W&, O

The following result will show to ke useful m the proof on the mam thecrem.

Caorollary 5.5. With the notofion of Corellary 5.4, assume thot G0 45 non-cyelfic ond gy
and tp oare even for some & = n. Let (J,) be the lst of dota dnduced by o factor set in
ZAC, W) Then the fist obtained by replacing Ser by —Jre and keeping the rematming dota
Jired 45 afso induced by o factor set dn Z9(C, W,

Procf. It is encugh to show that Jee appears m oall the conditions of Corollary 5.4 with
an evern exponent. Indeed, it enly appears in [C2.b) with exponent 27 in [CA.b) with
exponent gy in [C3c) with exponent —V(gs); and in [C3.d) and [CAf) with exponent
tp. By the assumption it only remains to show that V(g,) is even. Indeed, w (Vg )) =
tafe® — 1] —wafe—1)=1+4+b—wa(c—1) = | because e £ 1 mod 2l+b O

The data [, ) induced by a factor set are not cohomaologically imvariant, because they
depend on the selection of 7 and of the u,'s, u, and w,. However, at least the [, are
cohormaologically invariant. For every o H2 [G W) we associate & matrix B = [Sij) 126520
of elements of WS as follows: First select a group epimerphism 7 : & — & realizing o and
Ty geee e, @ such that te, ) = g5y and then set &y = Iﬂ:f1ﬂ:;l- The definition of &,
does not depend on the choice of 1 and the u,,'s, because ifwy, wo € W and m{w ), mlua) e
ther |wiwg, webg| = [, g

Froposition 5.6. Let § = [Bjlizigea be o mofrir of elements of WC and for every
1 <4, =mn letay; =0 and a; = minfa, vy (gl welgg)), F1# 7.

Then there 15 an o € H [, W) such that § = B, if and only if the following conditions
hold for every 1 <4, 5 << n;

iy = p T =1 (5.6]

Proof. Assume first that § = 8, for some o € Z?[C, W). Then [5.6) is a conseguence of
conditions (C1), [C2.a) and [€3.a) of Corollary 5.4,

Conversaly, assume that [ satisfles [5.6). The ides of the proof is that one can enlarge
& to a list of data [3,) that satisfies conditions [(C1) [C3) of Corollary 5.4. Hence the
desired conclusion follows from the corollary.
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Condition [C1) follows automatically from [5.6). If 4,7 < n then 8;; € WEC follows from

the fact that o = a;; and so [3.6) implies that ,{3'5“ = 1. Hence [CZ2.8) holds, Alse [C3.a)
holds automatically from [5.6) because p® divides g;. Hence, we have to select the S,
Sia'n s, Bepy ¥, and v, for [C2.0) and [C3.b) [C3.f) to hold

Ansure first that O = &, In this case we just take Sie =0, == =9 =7 =1
for every <. Then [C2.1), [C3.k), [C3.d) and [C3.f] hold trivially by cur selection. Moreowver,
in this case ¢ =1 and so ¢; = 0 for each i =1,..., %, henee [C3.0) also holds.

In the remainder of the proof we assurne that 0 # ¢ First we show how one can
assign values to By and oy, for ¢ < n for [C3b) [C3.d) to hold. Let o = wy[e — 1] and
e=v,[V(gs)) = a+ b —d. [see [34])). Note that d = if C'=Danda=1=2=d=bif
C' # D [because we are assuming that O # &), Let Xy, A2, ¥y and ¥5 be integers such that
r—1 Zpd.Xh Vige) =9 &2, and X ¥ = Aa¥o =1 med p“"‘b. By (3.6], f;ij =1 and 5o
Gy & W' 77 Therefore there are integers by, for 1 < 4, § < such that b;; = by +6;; = 0
and Gy = """ "7, For every ¢ € noset

1 1
. L i .
=Yy tbupt T, B = T, m=NT, ij'ba'ipﬂ_if‘ and -y = 0¥
=1 i=1

Then V(g lpttr; = p2X,Y, Z?:] tibypd—oi = Z;L] tibupe =i mod po+® and there-
fore

rl
LA AR UL LIS L t;
-‘gu-i =CZI-] e ' _H'SJ';'
i=1

that is [C3.c) holds. Moreover gip? ™%z = p¥s Z;L] f_.,-b:,-i?‘?ﬁ—f = 9% = (¢ — 1) and
therefore 8% = ~f~", that is [C3.b) holds.

We now compute
Tioitiri = Ya3ligg e titibypt Tt 57
! —a: - -
= Yy tlepeet + 1y 2 1cicggn tity(byy + by lpt T =10,

Then setting «, = 1, one has
n rn " “
v [t = Jete " =g "Dt =
i=1 i=1

and [C3.d) holds. This finishes the assighments of 8, and -+; for ¢ £ n and of 7,

If & = O then a gquick end is obtained assigning B, = fop = 1, = L.

So it only rermains to assign values to @, Jap, and 9, under the assumption that & # D,
Set §;, = ("%, In this case p® = 2 and therefore 2p®~%r; = p¥r; = (o — 1]1¥x; and
@Y 1x = 2. Thus ﬁfﬂﬁ;] = (B Twpl-SNs ) hance (€2.b) holds, and g+ =
(oA =1 hence the first relation of [C3.6) follows.

Finally, using [5.7) one has

it tr it ta =1 2
-8].1-;- np_[ ]::r“‘ rlrJ'] 1_1_(-)‘#

and the last two relations of (C3.f] hold when G-, = v, = 1. O
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Let § = (f;;] be an n x 1 matrix of elements of WS satisfying [5.6]. Then the map
V: B x B — W given by

ity
Ti(el" .. .ehr,ed el = l__[ 8y
1=i7%n
is & skew pairing of B over W in the sense of |Jan3|; that is, it satisfies the following
conditions for every r,u, & € B:

(V1) P[rzx)="P(zp)¥(px) =1 (P2) W(xpz)="P(x,p)¥(x, ).

Conversely, every skew pairing of B over WS is given by a matrix § = (B = Ve ) igigsn
satisfying [5.6). In particular, every class in H? [, W) induces a skew pairing ¥ = ¥, of
B over W& given by U[r,y) = Czr‘yﬂ;ic, for all x4y € B, for any cocyele o representing the
given cohomaology class.

In terms of skew pairings, Propositicn 5.6 takes the following form.

Clarollary 5.7. [f ¥ s o skew patring of B over WS then there is an o € H G, W such
that b =P,

Corollary 5.7 was obtained in |Jan3, FProposition 2.5 for p* # 2. The remaining cases
were considered in |Penl, Corollary 1.3], where it is stated that for every skew pairing ¥ of
' over WS there is a factor set o & ZZ[CL W) such that ¥ (r, ) = QI&.Q;‘L. for all z, e C.
However, this is false if 5° £ | and B has nontrivial elements of arder 2. Indeed, if ¥ is the
skew pairing of B over W given by the factor set o then Uz, p?) =1 foreachr € C. To
see this we introduce a new set of generators of I, namely & = {o1,..., gu a1, o o) with
Cat1 = p. Then condition [C3) of Proposition 5.1, for i = pand j =4 reads Brarrs =1
which Is equivalent to ¥(e;, p°) = | for all 1 <1 < m Using this it is easy to give a
counterexample to |Penl, Corollary 1.3).

Before finishing this section we mention two lemmas that will ke needed in the next
section. The first one is elementary and so the proof has been omitted.

Lemma 5.8. fef 5 be the set of skew pairings of B with values in WS, [f B = B' »x B
and by, b e B' and b3 € BY then

roax |V (by - by, b2) s b € §} =max |G (by, ba) : U € 5} -max|[bs, ba) : U € 5.

Lemma 5.9. Let B =5 » {gy be an abelion growp and let h € B, ff k& =ged{p®, o} oand
t = hB* them t is the moximum possible value of V(h,g) as ¥ runs over all skew poirings
of B over {Cpe )

Proof. Since k divides p2, the hypothesis ¢ = AB* implies that there is a group homaomar-
vhism % : B — (() such that x[B%) = 1 and x[#) has order £. Let ¥ : BxB — ey
be given by Ulrgt, we?) = x(xiy=H = xlr)ix(p)~7, for z,y € B. If g = g, then
i =14 mod g and hence i = i mod k. Therefore, z'B* = 2¥ B*, which implies that
¥ [x)? = ){[1‘]3’, This shows that ¥ is well defined. Now it s easy to see that ¥ is a shew
pairing and L[k, g) = x[h) has order t.

Conversely, if ¥ is any skew pairing of B over (e} then Dlz,g)? =1 and Plr,g) * =
T(l,g) = 1 for all z € B. This implies that D[z*,g) = ¥(z,g)* = 1l forall z € B, =0
L(B*,g) = 1. Therefore b (A, g)t = V(A% g) € V[B* g) = 1, so the order of U[A, g) divides
t. O
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5.2 Local index computations

In this section K denotes an abelian number field, p a prime, and » an odd prime. Our goal
is to find a global formula for @(r) = &, (r), the maximum nonnegative integer for which
pPrt s the r~local index of a Schur algebra over K.

Ye are going to abuse the notatien and denote by K, the completion of /£ at a [any)
prime of K dividing r. If £/ K is a finite Galois extension, one may assumse that the prime
of E dividing v, used to compute £, divides the prime of K over », used to compute K.
Sinee EfK is a finite Galois extension, e[ &E/K, ), f(E/K,r) and m, [A) do net depend on
the selaction of the prime of £ dividing r [Thecrem 1.108). Because S5(K,) dividesr -1
(Theorem 1.110), if either {, € K or = 1 mod p then #r] =0 [see Theorem 1.108 and
Theorem 1.109). So, to avoid trivialities, we assume that (, £ K and r=1 mod p.

Suppose £ C F = (J[(.) for some positive integer 1 and let n = p¥ly’ Then
Cal[ £/ contains a canendcal Frobendus automorphism af r, which is defined by o (Copm ) =
Croctar 8nd . [0,) = (1., We can then define the comonical Frobendus automorphism of ¢
in Gal[F/K)as ¢, = w;f#‘fﬁ’,r}‘ Or the other hand, the inerfia subproup of r in Gal(F/K)
is by definition the subgroup of Gal[F/K) that acts as Gal[F, /K, (7)) In the completion
at

We use the following notation.

Notation 5.10. First we define some positive tnfegers:
o= mindrum even positiue infeger with K C Q(Cm],
a4 = mindram positive infeger with (e € i,
5 =1i,[m) and

5, if pods odd or (g € K,
b= s+w[|[KNQe): Q) +2, if Gal[K[(y2ava)/ K] is mot cyclic, ond
| s+ 1, wtherurse,

We also define
L= Q[':qu ':= Ck:-“‘“' W = (C)i F= L[CL
C=Gal(F/K), C=GallF/K[()), ond D=GallF/K[C+¢')).

Since , € K, the cutomorphism T 0 & — Aut[W) dnduced by the Calods action sotisfies
the conditions of the previous section and the nefafon 15 consistent. Asin that secfion we
Jir elements p ond 7 in G and a subgroup 5 = [y % --- = (ea) of O such that O = B = (@,
C= B x (p?) and OFC = (pC x (0. Furthermore, ¢(() = (® for some inieger ¢ chosen
according fo (540 Notice that by the chotce of b, & # B,

We also fir an odd prime v ond sef

e=e[K[( ) K r), F=F(K/Qr] ond vlr)=max{la+v,(e] - 'up['rf - 1)}
Let i £ (F be the canonieal Frobendus outormorphism af + dn (), and write

b= oy, withneB, 0<j < p and 0=j< oC.
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For any odd prime g not dividing m, let G, = Gal[F([(,)/K), O, = Gal[F[,1/K[()
fnete that by this notafion we do not mean the g-port of proups @ or O7) and let op dencte
a generator of Gal[F[()/F) . Finally we fix

f =+t,, o penerafor of the inertio proup of r i O, ond
f, =cprd = eftnpd 0f = Ty 7 57, the conowical Frobenius automorphism af T in O,

Observe that we are considering F as a subgroup of Iy by identifying (f with the group
Cal[F[G) /K (¢,]). Again the Galois action induces a homomorphism T, @ &y — Aut[#W]
and W% = ((,.). So this action satisfies the conditions of the previous section and we
adapt the notation by setting

By =lce) x B, C,=Cal[F[()/K[() =Ker[T,) and DO, =Gal[F[)/ K[+,

Notice that Gy = (ep) x ' = By x (¢} and Dy, = D x (cp). Hence G/C = G/,

If ¥ is & skew pairing of B over W© then ¥ has a unique extension to a skew pairing ' of
' over W< which satisfies (5, p?) = ¥[p%, B) = 1. So we are going to apply skew pairings
of B to pairs of elements m & under the assumption that we are using this extension.

Since p # v, 8 £ . Mareover, if r = ¢ then # is a generator of Gal[F[{,]/F) and
otherwise 8 € . Notice also that if &/ Is non-cyclic then p* = 2 and K N iJ(i=] =
Qe + C;]], where f = w,[e — 1], and so0 b =5 4+ d.

It follows from results of Jarmsz |Jand, Proposition 3.2] and Pendergrass |Fen2, The-
orem 1| that 2?0} always ocours as the »local index of a cyclotomic algebra of the form
[L[£,)/ Loy ), where g is either 4 or a prime not dividing m and o takes values in W L[],
with the possibility of ¢ = 4 occurring only in the case when p* = 2. By inflating the factor
set o to F[(,) [which will be equal to & when p* = 2], we have that P = [ A), where

A=[F[¢,)f K o) [we also write o for the inflation),
¢ is an odd prime not dividing 1, and (5.8)
o takes values in (i) if p® =2 and in (-} otherwise.

S0 it suffices to find a formula for the maximum r-local index of a Schur algebra over K of
this form.

Write 4 = P,
FC,) and g, h & &, After a diagonal change of basis ome may assume that if g =
epe] Ldepterte with 0= 5 < 08 = 0,0 = 5, < p and 0% 5, < g = &
then u, = wifudl .. ,n::n:."-uf;,

It i5 well known (see |Yam| and [Jan3, Theorem 1|) that

FlC ) ug, with n;‘mg = glx) and wgu, = g pugn, for each x €

el

iy [A] = 5 . where 5 = {r:r = (%) n;”.—[rlfr"_]}" [59]

Cep .0
This can be slightly simplified as follows. If e then (#) has an element #* of order ». Since
g fixes every root of unity of order coprime with r, necessarily r? divides s and the fixed
field of 8% in L is (G pr ). Then K QP(C,, ), contradicting the minimality of m. Thus »
does not divide e and so
Gom, /g Cepp, =2 1

= —Eng = —To, " = g cug ¥y © . Where v = up. (5.10)
Bty X8
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With our choice of the {u, : g € G}, we have

[ug, e, | = lug g, ul] = V(8.7 [ug, u] v,

where ¥ = P, is the skew pairing associated to . Therefore,

£=L0(fn,) with fo=lpo =|usudul]y © .

Let [2,) be the data associated to the factor set o [relative to the set of generators
LS I, 3 5

Lernma 5.11. Left A = [F[{) K, o) be o eyclotorde algebra sofisfying the conditions of
(5.8) and use the aboue notaron, Let @ = op%el’ - - el p®aet with 0 < 5y < g for 0 =54 =l m,
and 0= 8, = p*.

(1) I G/C is cyclic then &8 =1,
1 c e
(2) Assume that G/C i3 non cyclic and let ;= G o Then ;= +1 and £8 o
IT:. EA S R Y
i=0 My :
Proaf For the sake of regularity we write ¢4 = p?. Since e = €, we have that g divides
es; for each 4. Furthermore, v,(e) is the maximum of the v, (qu) fori=1,...,m.
Then

wple) — wu(rf — 1) =ma,x{wp (gcd[gi sf;[frf — 1)) vi= 1....,n}.

max{0, vple) + o — wu(rf — 1)}

=
e
Il

= min{rz 0:p* divides pr-#1 for each i = 1..._111}_ (5.11)

Mewr we complte g in terms of the previous expression of . Set v = wiv?! and ¢ =

ugtudl ---ugir. Then
ug =yv =yvy, with y=V[e)V) gl ... o).
Thus 4* = e, ogtel’ ..., cir) = 1. Using that [y, y| = 1, one easily proves by induction
on m that
()™ = fy[?)ymvm,
Henee S
(yo)* = 7Glytus = plilyeagzar = 4lElyeymr,

and 'y[;] ==1. [If por e is odd then necessarily 'y[;] = 1.] Mow an easy induction argument
shows

rap  ray 1,  otndl
Tasl

o= gt Y e rp 'y for some = £1.
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vlm el el ,r_' 1

Note that v[r) 4+, [rf — 1) —wy(e) = a = 1, by (5.11). Then z? =1y =1,
because both ¢ amd 7, are £1, and they are 1 if p is odd [see [C3.e) and [C3.f]). Thus

vici el 1
[ o
o = I |’Ti

a1 eler e 11ay
i;JHET

(5.12)

(1) Assume that (/¢ is cyelic. We have that g =1 and v,(c — 1) = a. Note that the
&'s and «y's are p-th roots of unity by [5.8).
Let ¥ be an integer satisfymg Y“p;,] =1 mod p. Sinee &, = o, withn, € ¢, we have

. = ;
rf =cf mod pott and so Y—";__] = Y“K;] £=1 = V(5] mod p’. Then ,5';;_"'_ = ,{i‘:;fj}.

Using that p® divides p"f”}%{_—” [see (5.11)) and Yf“p_—,]} =1 mod pb we obtain

it aglef 1 vl
T [“5 o y el ,;[,lf .
¥y =[%"") o .

Combining this with [C3.b) we hawe
vl .,-[r-f_ 1 [T T

’)‘::l o = lnc_iuﬂ_ls;'w‘fj}p"[r] [(Y;_]]YD‘ 7 n;

wled g 1 of
ey ol 11 5.13
= ['i.:,-ﬂrrls"vmpnﬁw P ( )

= [lﬂr.'u ﬂﬁjﬁia]pV[ﬂsr.vfj} =1,

g o

becanse Jip = |ug, e, = ['ucr..'ug]_]. Using [5.12) and [5.13) we have

gl gl peto o 1 = s 5 t? P"[’J'_i["'r_”
_ T _ : 0; _
8] - lﬂg1ﬂﬂ-l T - I | l'uc,-‘nﬁrl ¥ =1
i=D

and the lemma is proved m this case.

(2) Assume now that &fC is nem-cyelic,. Then g* =2 and f f = wa(c — 1) then d = 2
and b = 54+ d. The data for o lie I ({oae1) © (Coe) © (Coreaen) = W[Fl2. [C2E] implies
s = £1 and using [C3.b) and [C3.f) one has 7' = g% o+ Let X and Y be integers
satisfying X“;] = Y%‘—] =1 mod 2'1%H9 and set 7 = Y?JT_].

Recall that 2* = 2 divides 2"”}%{_—]}1 by [5.11). Therefore,

zv[rj’-[-"r 1 sz[rl,l;[..,n' 1

e e

Let j = j' mod 2 with j¥ € {0,1}. Then T(p ) = T[] and Ngr[w] =w? . Therefore,

vl
yE (5.14)

A v ) § e S —a; T A
we.ud ul] = fue,ud Jud e, udfuy? = TTg(65,7)7 (657 @Y

—z. —a. L] 1T
[T (5,7 (g™ = V= (5.15]

g ir

N T R Y L
= [Iaglo ) (8 = =0,
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Using [5.12], [5.14] and [5.15) we obtain

vir1 e
avie fyavier aviil_1

B = ety

- 5.16)
—e 2T E TN - S LA LY [
e AT (1 [ P G

We claim that Z+j" =0 mod 2°7). Onone hand ¥ =1 mod 297!, On the other hand,
$o = ¢ 0T, with o, € O and sorf = (17’ mod 21+, Henee »f = [—1)7" = [-1)?

mod 28 and therefore Z + 7 = Y”r:—_] + 7' = L + 4" mod 2971, Considering the
all

two possible values of 7% 2 {0, 1} we have (=] L + " =0 and the claim follows.
From d =ws(c — 1) one has e = 1 + 2271 mod 29 and hence ¥ =1 + 297! mod 29 and
o =07 = (1)1 + 529 mod 2'H*+9, Then

Z4g" _ el =133 'I’I,'l,'—]}f”f]-l-jﬂ"}—1}+2j" _ Y(%_‘_(_]}j"jzn‘ Vi

a0 1 - oo = ad - ad 1
B O T S S DL Al T S W M ST - 0 VA Al - €3 VU Sl =
= a1 - ad 1

—3 (ST = g+ = g mod 2,

Using this, the equality ,{3'3?: = p; e and the fact that g = £1 we obtain

XT‘T'T

1 ot 1z " s
—(Z4"y A TEHTY X 2.,-”1 o A ,:11
i = ﬁs.g = Iﬁio = ia

Combining this with [5.16) we hawe

j+j .5'

vlrl S avlel | = % ]1"+M zei"
RN | Yl | W (- i G

i=D i
qelel

ad

a8z pxeT 10 1]Ir+:.x'[z+f”Jl

n vl g e n :
= [licoe G+ [l

To finish the proof it is enough to show that the sxponent of each &, in the previous
expression is a multiple of 217°. Indeed, 2% = X2 — 1] mod 2" and 5o

297 4 X[e? - 1)[-1 X(Z+3M=ZX[e-1)-X(d - 0)[-17" +2X(Z +3")

= XY e+ D + [ - D=0 +2i) = X{{rf - Dy S -1 4 (-1)87 4257
:X[fr‘f—l—c-"[—lj +11=0 mod 2!+

as required. This finishes the proof of the lemma in Case 2. O

Yie need the following Proposition from |Jand).

Proposition 5.12. For every odd prime ¢ # v not dividing m et d(g) = min{a, v, (¢ — 11}
Then

LILY

(1) e CfCe™™ < gfCIC? | and

(2) the equolify helds if ¢ = 1 mod p* and r 45 net congruent with o p-th power modulo
g. There are infintiely many primes ¢ safisfying these condifons,
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Proof. See Proposition 4.1 and Lermma 4.2 of |Jand|. O
YWe are ready to prove the main result of the chapter.

Theorem 5.13. Let £ be an abefion number field, p o prime, © an odd prime and let pPe (7
be the morimum r-local tnder of o Schur algebra over K of inder a power of p. [f etéher
o K oorr£1 modyp then S,(r) =0, Assume otheruise that (, € K and r=1 mod p,
and wse Notation 5./8 including the decomposition & = np’ of with n e B.

(1) Assume that v does nof divide m.

(a) If GfC ds non-cyelic and § # 7' mod 2 then G, (r) = 1.

a1

(b) Otheruise @3, (r) = max{v(r)v,[ 557 1}, where d[r) = min{a,v,[r — 1)}

(2] Assume thatr divides m ond let ¢p be on odd prime not dividing m such thot gp = 1
mod p* and r 45 not o p-th power modulo qo. Let 8 =6, be o penermafor of the fnertio
group of G, of 7

(a) ff GYC ds mom-cyckic, j 3 " mod 2 ond # is nof o square @ O then G, (r) = 1.

(b) Otherwise f,(r) = max{vir), ko, [ 87C%" 1}, where A = maxy {v,[ V(#,7) 1} as
T oruns cver afl skew pairtngs of B over ().

Procf. For simplicity we write 8(r) = 8,(r]. We already explained why if either , & & or
r# 1 mod pthen J,(r) = 0. So in the remainder of the proof we assume that (, € K and
r=1 modp, and so K, p, and  satisfy the condition mentioned at the beginning of the
section. It was also pointed out earlier in this section that p®%? is the r-local index of a
crossed product algebra A of the form A = [F[(,)/ K, &) with ¢ an odd prime net dividing
e and o taking values in (.} or in (4. Maoreover, since prlrd in the r-local index of the
cyclic Schur algebra (K[ /K, ep, (e ) [Jand], we always have v[r) < 3],

In case | one may assurne that ¢ =+, because [F[(,)/ K, o) has r-local index 1 for every
¢ # r. Since Gal[F(()/F) is the nertia group at v in O, in this case one may assurme
that 8 = #, = rp. On the contrary, in case 2, ¢ # v, and 8 = 7' ... p?®ner | for some
=5 PR i

In cases [1.a] and [2.a), &/C s non-cyclic and hence p* = 2. Then @(r) = 1, by the
Benard-Schacher Theorern, and henee if v[r) = 1 then @(r) = 1. So assume that v(r) = 0.
Furthermore, in case [2.a), 5; is odd for some € < 5, because 6 ¢ D2 Now we can use
Corollary 5.5 to produce a cyclotomic algebra 47 = [F[(,)/ K, o) so that & = L.
Indeed, there is such an algebra such that all the data associated to o are equal to the
data for A, except for S, in case [1.a), and 8,,, case (2.a). Using Lemma 5.11 and the
assumptions ¢(r] = 0and § £ j° mod 2, one has fpp = —Lpor and Py = Yo Thus
£y = =Ly, as claimed. This shows that #(r) =1 in cases [1.a) and [2.8).

In case [1.h), ¢ = £pP[ep,m). By Lemma 5.11, &y has order dividing p70F in this
case and, by Lemma 5.9, max{ ¥[fn) : ¥ = 51 = T;I'B*’E[r] . where 5 is the set of
skew pairings of B, with values in {p®). Using this and »[r) £ fr) one deduces that
Br) = max{p{r), v, [ 7B 1}

The formula for case [2.b) is obtained in a similar way using the equality £ = LU (8 )
V(f, eft) and Lemmas 5.8 and 5.9, O
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Remark 5.14. In the previous proof we have cited |[Jand| to show that there is a cyclic
Schur algebra [K(()/K, cp,(pe ) of rlocal index p¥ In fact, p¥' is the maximum index
of a cyclic cyclotomic algebra over K in S{H),. A proof of this result will ke given in the
next chapter in Theorem 6.9,

Notes on Chapter 5

The proklem of the computation of the Schur group of a number fleld K heavily depends
upon the arithmetic structure of K in a way which sometimes defies the intuition. The
interested reader may find an exhaustive and technical account of varicus results related to
this tepic in Yamada's book |Yam)|.

The problem of computing &, (r) makes sense for an arbitrary number field K. As far
as we know, this has not been treated in the literature. If £ is the maximum cyclotomic
subfield of ', then the inchision 7 — K induces a homomerphism 5(F) — S[H). Since
avery elerment of 57F) is splitted by a cyclotornic extension of £, the values of @,(r] for £
and /£ might be strongly related.



Chapter 6

Cyclic cyclotomic algebras

In this chapter we study some properties of cyclic cyclotomic algebras. These algebras com-
bine properties of both cyelic and cyelotomic algebras and have the advantage of having
a form that allows one to apply specific methods for both types of algebras. Cyclic cyclo-
tomic algebras arise naturally as simple components of semisimple group algebras of finite
metacyclic groups [see section 1.9).

In this chapter we are interested in two aspects of the cyclic cyclotomic algebras: firstly
the ring isomorphism between these algebras, and secondly the subgroup they generate
inside the Schur group of a field. In the first section, we show that the invariants that
determine the ring isomorphism between cyclic cyclotomic algebras over abelian number
fields are essentially the local Schur indices at all rational primes and we give one example
showing that this 1s not the case for arbitrary Schur algebras. The results of this section are
collected in [HOdR1|. In the next section we give a characterization of when the subgroup of
the Schur group generated by classes contaimmg cyclic cyclotomic algebras over an abelian
nurnber field K has finite index in S[A) in terms of the relative position of K in the lattice
of cyclotomic extensions of the rationals. The results of this second section are established
in [HOdR3|.

6.1 Ring isomorphism of cyclic cyclotomic algebras

In this section we show that a ring Isomorphism between cyclic cyclotomic algebras over
abelian rumber fields is essentially determined by the list of local Schur indices at all ratiomal
primes. 45 a consegquence, a ring isomorphism between simple components of the rational
group algebras of finite metacyelic groups is determined by the center, the dimension ower
(}, and the list of local Schur indices at rational primes. An example is given to show that
this does not hold for finite groups in general.

Let K be a semisimple group algebra. The calculation of the automorphism group of
KO reduces to two problems, namely first to compute the Wedderburn decomposition of
K& and then to decide which of the Wedderbum components of KG are ring isomorphic
[not necessarily isomerphic as algebras) [see |CJP|, |Herd| and [OdRS2|). Similarly, deciding

127
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whether two semisimple group algebras £ and KA are isomorphic is equivalent to decide
if there is a one-to-one correspondence among the Wedderburn components of KG and KH
which associate ring isomorphic components. This yields the problem of locking for effective
methods to decide whether two Schur algebras are ring isomorphic.

If two Schur algebras 4 = Ay, £) and B = A4, K] are ring isomorphic, for x and
irreducible characters of some finite groups, then A and 8 have Isomorphic centers and the
same degrees and indices. However, this information 1s not always encugh, as it can be sean
in the next example.

Example 6.1. The dicyclic group & = ¢ » Oy of order 12 and the gquaternion group Qe of
order 8 have rational valued characters of degres 2 for which the simple components H[Q)

and (_ 1(.1—3) respectively, are drvision algebras of index 2 that are not ring isomorphic. This

i5s because the local indices of these characters do not agree at the primes 2 and 3. Both
algebras have index 2 at infinity and at finite primes the algebra H[}) has non-trivial Schur

index only at 2, and (%ﬁgj has non-trivial mdex equal at the prime 3. O

Assume now that & 1s an abelian number field and » and 4 are irreducible characters of
sotne finite groups. Ring isomorphism between Ay, ) and A[i, K forees all local Schur
indices m, (%) and iy, [48) to be equal for all raticnal primes p, including the infinite prime.
By the result of Benard [see Theorem 1.107], the local index of a simple component of a
rational group algebra is the same for all primes of its center that lie over a fixed rational
prime. Recall that, by definition, m,[x) is the commeon Schur index of the p-local algebra
H(x)p @wcpyy Alx, K) for any prime p of £ [x) lying over the rational prime p

The conditions that the centers, dimensions, and local indices of Ay, £ and A4, K are
respectively equal are not encugh to force the two simple components to be ring isomorphic.
Ye give an example of this situation in Example 6.3. Cur goal i this section is to give
some conditions on the groups & and & which imply that the above conditions are encugh
to force the two simple components to be ring isomorphic. We will show in Corollary 6.7
that this is the case as long as both of the groups are metacyelic,. This is an immediate
conseguence of Theorem 6.6,

For division algebras whose Brauer classes lie in the Schur subgroup of an abelian number
field, a theorem of Spiegel and Trojan |ST| provides a necessary and sufficient condition for
ring isomorphism, which we will apply several times in this section.

Theorem 6.2 (Spiegel-Trojan). Suppose D ond A are division alpebros of erponent m
whose Brauer closses Me tn the Schur subgproup of an abelan number fleld K. Then D and
&oare ring isomorphic of ond ondly if there 45 an dnfeger 5 coprime fo m for which |D)® = |4y
in Br(K7).

We now give an example of two simple components of a rational group algebra whose
centers, dimensions, and Jocal indices are respectively equal, but they are not ring isomor-
phic.

Example 6.3. The non-abelian groups 4 = 1y 2 Chg and B = O« Chs both have
faithful irreducible characters ¢ € Irr(A), & € [r1[ 5] with degree and Schur index 5. The
only neontrivial local indices of these characters are my(#) = 5 and ma (f) = 5. Let
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K=0Q[&0), OD=KgA$ ), and A = K@ A[F, (0). Sinee K : Q[4)] and | £ : Q[F])] are
relatively prime to 5, O and A are K-central division algebras of index 5.

et =4 x A x B x B, where the groups 4 and 2 are defined as above. Note that
iz metabelian, but not metacyelic. Define y, 40 € Irr[) by

y=¢@lywfefd, and Pd=¢R4R1500

where ¢ and £ are the characters defined above, Then the simple components 5, and Sy of
K are central simple K-algebras of the same dimension, whose local indices are equal to 5
at primes of & lying over 11 and 31, and whose local indices are trivial at all other primes
of #. However, the class of S, in the Brauer group Br(K) is the class |D]|A]?, and the
class of Sy is |O]?|A]. These classes are not powers of ane another in Br[ K, so by Spiegel
and Trojan's Theorem, these two simple components are not rmg isomorphic. O

Since a cyclic cyclotomic algebra over K s automatically a cyclotomic algebra over K,
the class in the Brauer group of K generated by a cyelic cyclotomic algebra over K always
lies in the Schur subgroup of K by the Brauer-Witt Theorem. By Theorem 1.107, this
implies that the p-local index of 4 is the same value my[A) for all primes p of £ lying over
the same rational prime p.

Lemma 6.4. Let K be an abelian number fleld. Let A= (L/K,o,() and A" = [L/ K, o', (")
be cyclic alpebros defined cver the same cyclic extension LK, with ¢ and (" roots of uniéy
in i, ff A and 4" hove the same exponent in Br(K) then A is ring isomorphic fo A,

Proof. Since Gal[L/K) = (¢) = (g"), there exists some nteger », coprime with |L: K], such
that o' = o". If rs = 1 med |L : K|, then A’ is isomerphic to [L/ K, o, (") as an algebra
over K by Theorem 1.56. Thus cne may assume without loss of generality that o = o',
Let £ be a root of unity in & such that ¢ = £” and ¢ =£7 for some positive integers
nand n'. Let B = [L/K,5,£). Then |B|" = |4] and |B]Y = |4/, Hence |4| and |4]]
are two elements of the same order in a cyclic group and therefore they generate the same
cyclic subgroup in Br(K). Thus A and A’ are isomorphic as rings by Spiegel and Trojan's
Theorem. O

Mote that it is not necessary for L/} to be an abelian extension in the above lemma and
50 Lf K may not be a cyclotomic extension.

Lemma 6.5, Let K be an obefion number fleld Let D ond O be fwio division algebros unih
center K whose Braver clusses e in the Schur subgroup of K. Suppose

1D = 41| Ry - R |A] end [ D] = [A)] @ --- Ry |4, in Br(K]),

wtth m[As) = m[AD) = pi, fori = 1,...,m and P1,..., Pa diséinct rafional primes,

If A; and A} are ring isomorphic for all 1 = 1,.. ., n, then D i ring isemorphic to D',
Procf, By Spiegel and Trojan’s Theorem, for eachi = 1,...,n there is an integer r; coprime
to p; such that [4;]" = |4}]. By the Chinese remainder theorem, there is an integer » such

that r = mod p?" far all . Therefars,

o7 = [T1ad" = [T1a™ = 11148 = 12

S0 by Spiegel and Trojan's Thecrem again, £ and £ are ring somorphic. O
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The main result of the section s the following theorem.

Theorermn B.6. Lef A and A be fwo cyclic eyclotomic algebras cuer an abefion number fleld
K. Assume that |4] = |D| and |A'] = |D'] in Br(K), for division alpebras D and D'

ff A and A" have the same local Schur indices at every rafionad prime p (including ca),
then O and D' are ring dsomorphic,

Proof Let B = [#[(a)/#, o,(¢) be a cyclic cyclotomic algebra over K. If 2 =7 - - pf s
the prime factorization of £, then in the Brauer group of K we have

t
|B] = HI[K[CH]IKi &y ':p:'f”

It is clear that the index of each eyelic algebra B; = [K[(,)/K 0, () divides pf for each
i. Therefore, for each rational prime ¢, the local index of each B, at the prime ¢ is & power
of p;, and so it follows that m, [ B)] = m,[B1) - - -1, [By) for all rational primes ¢.

Applying this to 4 and A" and using Lernma 6.5, we may assume that 4 = [K[(, )/ K, 5, &)
and 4" = [K[(a)/ K, ¢',a") are cyclic cyclotomic algebras such that the common index of
A and A, say m, is a power of a single prime p and & and &’ are powers of a p®-th root of
Uity (pe € i, where m divides p*. Since the local indices determine elerments of the Schur
subgroup of K that are of exponent at most 2, we may assume e > 2. By Theorem 1.108,
the fact that both 4 and A lie in the Schur subgroup of K implies that there is an odd
prime r for which m = m (4] = m, [A') > 2. Since (x € K, it follows that |K((,.) : K] is
a power of p, for every positive integer b,

For every subextension & of £[(,)/#, let £, denote the maximal subextension of £/ K
of degree a power of p. Let £ and E' be two subextensions of K[{,)/ K. We claim that
(EE')y = ExE,. The inclusion £, &, C (EE'], is clear because

B, B K| = |ELE) : Byl|Ey: K| = |Ey - By EL||E, : K]

and |E, : B, &| divides |E, : K|. On the other hand, |E, &' : £, E| divides | : £ | and
s0 |E,E: B, E,| is coprime to p. Similarly, |EE, : E,&,| is coprime to p. Therefore

|EE': E,EL| = |(EE,)(E,E') : E,E})

is coprime to p. Thus (EE7), C &, E, and the claim follows.

Furthermaore, either &£, C EI; or EI; C E,, since f{[{,)/ K is cyelic. In particular, if & and
k' are two coprime divisors of %, then #[(ew ), equals either K{Ge)y o1 K [(er)p. Therefore,
there exists a prime ¢ and a power d = ¢® of ¢ that divides n for which K[C,), = K[C4),.
Maoreower, if ¢ # p then K[(5), = K (), 50 in this case one may assume that f = g

It follows from Theorem 1.60 that there exists an mteger w coprime to p such that

[4] = [[K(Ca)/ Koo a)] = |[K[Ca) /K, T a™)].

So one may assume that o= d. In a similar fashion, for the algebra A ane may assume
that n' = d' = ¢'™ for some prime ¢’ and, if ¢ #p then &' = 1. If K((a) = K([(q-) then it
is immediate from Lemma 6.4 that £ and £ are ring isomorphic.,
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Suppose K[(;) # K[(3]. Let r be a rational prime for which s, (4) = m,. (A = 2. The
facts pomted out m Theorem 1.102 mmply that + must be an odd prime which is not equal
to p. By Theorem 1.6 and Theorem 1.56, both of the extensions K [(g) /K and K[{z)/ K
must ramify at any prime of K |lyng above r. However, the only finite rational prime that
ramifies in the extension J(C,«]/ is ¢. By Lemma 1.11, it follows that » = ¢. In a similar
manner, we can show that r = ¢'. But then d = ', a contradiction. O

Corollary 6.7. Let K be an abelfan number field, &, H finite mefacyclic groups and x €
fre[), o 2 frr(H). Suppose
(%),

(1) K(x) = K[v

(2) x[L) =%(1) end

(3) smy[Alx, K)) = mu (Al K)) for olf rational primes p (inchiding ca),
Then Alx, K) and A, K are ring tsomorphic,

Proof. Let K = K[x] = K[i). Since x[1) = (1), A%, K) and A, K] have the same
dimension over K, so it suffices to show that their division algebra parts D, and Dy are
ring Isomorphic. Since F is metacyclic, the character ¥ is induced from a maximal akelian
nerral subgroup A/ ker (%] of C/ker(x ), and &/4 is cyelie. Suppose that a maximal cyelic
subgroup of A/ker[x) has order n and that there s an element g € & of order £ for which
(gA) = /4. Then K C K[{.) and Ay, £ can be naturally identified with the cyelic
cyclotomic algebra (K[, )/, o, ) [see Proposition 2.3). In a similar fashion, we can shew
that A, ) can also be expressed as a cyclic cyelotomic algebra. The corollary then fol lows
because Theorem 6.6 can be applied. O

6.2 The subgroup CC({K) of the Schur group S{X) gen-
erated by cyclic cyclotomic algebras

Throughout this section £ is an abelian number field. It is well known that every element of
Br(i) iz represented by a cyclic algebra over K and every element of 5K Is representerd
by a cyclotomic algebra over K by the Brauer Witt Theorem. However, in general, not
every element of 5K is represented by a cyelic cyclotomic algebra. In fact, as we will see
in this section, in general, STA) is ot generated by classes represented by cyelic cyclotomic
algebras.

Let OO denote the subgroup of STK) generated by classes containing cyclic cyelo-
tornic algebras. In other words CC[K) is formed by elernents of STH) represented by tensor
products of cyclic cyclotomic algebras. The alm of this section is to study the gap between
STH) and OC(K). More precisely, we give a characterization of when CC[K) has finite
index in STK) in terms of the relative position of & In the lattice of cyclotomic extensions
of the rationals.

By Benard-Schacher Theorermn [Theorem 1.108), 5[K) = EBPS[K']RJ. where p runs over
the primes such that §, € K and S[H), denotes the p-primary part of S{H). Thus CC(K)
has finite index in STA) if and only if OC[H), = OCTK)NS[K), has finite index in 5TH),
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for every prime p with {, € K. Therefore, we are going to fix a prime p such that ¢, € K
and our main result gives necessary and sufficlent conditions for |5, - CC(K),| < oo,
in terms of the Galois group of a certain cyclotomic fleld & that we are going to introduce
next.

Let £ = QQ[(,,) be a minimal cyclotomic field containing #, a the minimum positive
integer such that (= € K, 5 the minimum positive integer such that (- £ L and

s, if pisoddory e K,
b= s+wp([KNQE-) Q) +2, if Gal[K[{,2..]/K) is not cyclie,
541, otherwise,

where v, : [} — & denotes the p-adic valuation. Then we let { = (,e.. and define & = L[{].
The Galois groups of F mentioned above are

[=Gal(F/), G=Cal(F/K), C=Cal(F/K([0)) and D= Gal(F/K[C+( ).

Motice that D # & by the definition of b, and if &' # D then p® = 2 and p[¢) = ¢! for
every pe D4 C.

As in Chapter 5, we fix elements g, 5 of @, with @ = (5 o, &, such that O = B » ()
and ' = B = (p?) for some subgroup B of & and O/C = (pCf x (o). Furthermore, if
GFC s cyelic [equivalently F = D) then we select p = 1 and otherwise ¢ is selected so
that ¢((y) = . The existence of such p and ¢ in & has been proved in Chapter 5 [see
Lemma 5.3].

Finally, to every it & [ we associate two non-negative integers,

d(if) = minfa,maxih = 0:@[Cpr) = G b} and  vii) = max{0,a — v [ #G ],

and a subgroup of C;

s < 14D

Tl={neB:w" 87 L

New we are reardy to state the main result of this section.

Theorem 6.8. Let K be an abefion eriension of the rafonals, o o prime tnfeger and use
the aboue nofation.
IFCIC ds cyclic then the followdng are eguivalent:

(1) CC[K), has finite dndex in STK]),,.

it =1
(2] Forevery i € [y one has 1&:-"["3 = U triT['tE,:].
=0
o —1
(3] Foreuery i € [y satisfying v() < minfuv,(exp B, d[¥)}, one hasi ¥ € U T ).
i=0

FO/C is mom-cyelic fond dn porticulor p = 2} then the folloudng are equivalent:

(1) OC[K)2 hos findfe dnder in 5K ).
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(2) Foreveryibe Do\ G df d = wo (| N Q[C) : )] + 2 then

i —1

¥ e GallF/Q(Can )| ) ( | cf"‘(mT[’tﬂ*J}) -

i=0

Notice that conditions (2] and [3] in Theorem 6.8 can be verified by elementary compu-
tations in the Galols group [

The subgroup of S(K) generated by cyclic cyclotomic algebras

Now we provide sore information on the structure of CC(K],. We start by introducing
sotne notatioh and recalling some known facts about local information concerning STH).

Let P = {re M:risprime} U {co}. Given r ¢ P, we are going to abuse the notation
and denote by K, the completion of £ at a [any) prime of X dividing v If £/K is a finite
Calois extension, one may assume that the prime of & dividing v, used to compute £,
divides the prime of K over v, used to compute K.

We also use the followme notation, form C P andr €

SiH,m) = {4 e 5[K) :m,.[A) =1, for eachre Py w},
S{Kr) = S[K.{r}],
Cd(,m) = CO[K)N 5[, ),
MK, r) = CO[K)IN S,
P, = {reP\{co}: OC[K, {rco}), = CC[K, 1), E COK, o)y}

If pisoddaor iy & K then m,,[A4) =1 for each Schur algebra A and so P, = P {ca}.
Finally, if » is odd then we set

vir) = max{0,a +v, (e[ K (L) K r)) — v WKL

Motice that the notation for v[r] coincides with the one given in Notation 5.10. This is a
conseguence of the structure of unramified externsions of (Y, [zee Theorem 1.77).

The following theorem provides information on the structure of CC[K],.

Theoram 6.9. For euery prime n we hove

ac(), = [ D e, | B B colx. (reol),

relf, rePyP.

Let X, demofe the divect summand lobelled by r [of etther the first or the second knd) in
the previcus decomposition.

(1) ffr i3 odd then X, 45 cyclic of order p*'t and i3 generafed by the class ef (#[C )/ K ).

(2) X2 hos order 1 or 2 and if ©f has order 2 then p° = 2 and X2 15 penerafed by the closs
of (K(Ca)/ K, —1].
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(3) ffX.#F1 thenp =2, KCR, and X, has exponent 2,

Proof. Let A = [E/K,£) be a cyelic cyclotomic algebra with [4] € S[H),. One may
agsgurme without loss of generality that £ € W[K),. As in the proof of Lemma 6.4, there is
& prime power »* such that £ = |E : K{({,«]] i5 coprime to p. Then |4®) = |[E/K,£8)] =
[[F[Ge) 5, E)| and wmg [A) = 11, [ABE) = [ K [Cx) I L), for every g € P If g & {700}
then K((«)/K Is unramified at ¢ and therefore m,[4) = 1 by Lemma 1.11. Thus |4] €
COK, {7 ca}). This shows that CO[K], =3 COK, {roa}],.

If PY {oa} =P, then this implies that

rePh o}

CO[K), = B0k, r) = (@ GC[K,T]) B OOk, ca)

relP relPfs

as wanted. Assume otherwise that PY{co} £ P, If 1 # |4] € CC[K, w) thenforeveryr € P
and |5 € CC(K, {roo )\ OO, co) one has |B] = |4 @ 5| - |4] and |4 & 5| ¢ CC[K, 7).
This implies that OC[K, {reo}) = OO, r) OO0 K, so), contradicting the hypothesis.
Henee OO K, co] =1 and then

CO(K), = (GB C’G‘[lep) @( b coix, {r,m};p) ,

relf, rEPVP

a5 desirer.

(1) Letr € P. The map K, @ — : X, — 5[, ) Is an injective group homomaorphism. If
15 odd then ST, ) is oyclic of order e[ K[C) /K, r) and it s generated by the cyelic algebra
(K (G5, Cn), where = WHK,) [see e.g. Theorem 1.110 and |Yam|). Therefore &, Is
cyclic and henee it is generated by a class containing a cyelic cyelotomic algebra 4. As abowve
we ay assume that 4 = (K[« )/ K, Cg.] for some k.4 = 1. Since |A] = |[# (e /5 Cpe )]
one may assume that £ = 1. Then

Ke =me[A) = mp ([H[Ge) T Cpe )] = e ([ KK Goe )] = [ [ (G ) G G )) =
e[ [ F (G ) Qp,,;.[ﬂ]@“m] = p¥("}, where o + a[r) = wy(n). This proves [1).

(2) and (3] follow by similar argurnents. O

Remark 6.10. Notice that the proof of Theorem 6.8 shows that if A is a cyclic cyclotomic
algebra of index a power of p, then |4 € S[K, {r co}) for some prime » € P4 {co}, and if
p s odd or g € K, then |A] € S[K,r).

By Theorern 8.9, if r s odd then v(r] = max{v,[m. [4)] : [4] € CT[K),}. We can
extend the definition of v(r) by setting v[2] = max{v,[ma[4)) : [4] € TC[H]),}. Notice
that v[2) = 1 and »(2) = 1 if and only if p* = 2 and [K[)/ K, —1) Is non-split. We will
nesd to compare v(r] to Fr) = max{ v, (m (A0 [4] € STHL)

Proposition 6.11. Letr ¢ P. Then
(1) OC[K), = 5[H), if and ondy if v(r) = B(r) for each r e PY {co}.

(2) OC[K), has findte dnder dn SR, of and ondy if v[r) = F(r) for oll but finitely many
BIUTES T
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Proof. We prove (2] and let the reader to adapt the proof to show [1].

Assumne that C'C(K), has finite index in 57K and let |A44],..., |44 be & complete set
of representatives of cosets module OO, Thenw = [r 2 P: m[4;) # | for some 4} is
finite and v(r) = Fr) for every r € Py 7. Corversely, assume that vr) = G(r) for every
r e PYa, with m 2 finite subset of P containing co. Then 57, 4], is finite and we claim that
ST, =5(K, 7l + OC[K),. Let |B] € 5[/, We prove that |B| € 5[, 7], + CC[H ],
by induction on A(B) = [[,p ,m-(B). If A(B) =1 then |B| € 5[K, 7], and the claim
follews.  Assurne that A[B) > | and the induction hypothesis. Then there is a cyclic
cyclotomic algebra A and = € Py« such that m[8) = m.[A) > 1. Since 5[K,] is
cyclie, there is a positive integer £ coprime to m,(B) such that [.-4@"?] @y K, =2 5@y K,
85 K -algebras. Let O = [4°P)®f @ B. Since A®f ¢ CC[K, [r oo}y, it follows that

R = ”:‘E(E'A}} < h(B), and henee |C] € 5K, 7], + CC[ K], by the induction hypothesis.

Therefore, |B] = [A||C] € S[K, 7, + CC[K ], as required. O

Motice that for p odd Proposition 6.11 is a stralghtforward consequence of the decom-
position of CO(K ], ghven in Theorem 6.9 and the Janusz Decomposition Theorem [Jand).

Examples

Mow we present several examples comparing STH) and COC[K) for various fields.

Example 6.12. K =(J.

It follows from the Hasse Braner MNoether Albert Theorem [see Rernark 1.95 (i) that
S0, ) is trivial for all primes ¢ and henee so is O, r). The cyelic cyclotomic algebra
Hy o = H[D) = [(P[a) /D, —1) is & rational quaternion algebra which lies in &, 12, ca}l.
When r is odd, the cyelic algebra H, o, = (0[5 )70, —1) has real completion B @ H, o =
M, (H(R)), for n = "E], 50 Pigm [Hr o) = 2. The extension (J, ()70, i unramified at
primnes other than v, so |H, o) & CC(Q, [roo}) (and m, (Hy o) must be 2). If r and g
are distinet finite primmes, then [H, wf|H, o] i5 an element of SO0, {1, ¢}), and it follows
from Remark 6.10 that this element cannot be represented by a cyclic cyclotomic algebra.
Mevertheless, it is easy to see at this point that S0 = CC(0).

The smallest example of an algebra representing an element in GO, {2, 3}) is the gen-

eralized quaternion algebra (;&;) The algebra of 2 x 2 matrices over [ﬁ%—z) 15 isomorphic

to a simple component of the rational group algebra of the group of order 48 that has the
following presentation (x,y,z: 2" =2 =% = L, z¥ = 25, 27 = 7 |y, 2] = =%). O

Exaraple 6.13. OC[K,ca) # 1.

It is also possible that CCTK, co) is non-trivial. For example, the quaternion algebra
Q{21 = [Q(ee)/Q[v2),—1) is homomaorphic to a simple component of the rational
group algebra of the generalized guaternion group of order 16, It has real completicn
isomorphic to H{E) at both infinite primes of Q[\,@]‘ 50 mm[ﬁ-[[[@[ﬁ]jj =2 Ifrisan
odd prime then m, [H[P[+/2)]) = 1. Since (J2[+/21/0)7 is ramified and the sum of the local
invariants at infinite primes is an integer, we deduce that mo[H[J[2)1) = 1, so it follows

that [H{Q(v2))| € CC(v2),c0). O
Example 6.14. Cyclofomic fields,
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Suppose K = (Q[(,,) for some positive integer m > 2. Assume that either s is odd or 4
divides st. The main theorem of |Jan2| shows that if p s a prime dividing m and m = p™mg
with mp coprime to p, then

STQEm e = LA @grepny QG| : 4] € STQGom 5}

When p™ = 2, we know by |BeS, Theorem 3| that S[0[(,-1), is generated by the Braner
classes of characters of certain metacyclic groups, which, in their most natural crossed
product presentation, take the form of cyclic cyclotomic algebras. Therefore, S{R(,-]1), =
CC(Q[Cpm ) ). Since it 15 easy to see that when K is an extension of a field £, {|[d @z K] :
4] & CC[E} © TC[K), we can conclude that S(E)[Cm)) = CC[Q[En]]) for all positive
integers m. O

Combining Proposition 6.11 with the results of |Jan3d| one can obtain examples with
S(K), # CCK),.

Exaraple 6.15. OC[K), # 5[K),, p odd.

By Theorem 8.9, 1f CC[K), = 5[K], then 5[K), = @,cp S[K 7]y However, Fropo-
sition 6.2 of |Jand| shows that for every odd prime p there are infinitely many abelian
extensions K of {J such that S[K), # @,ep S(K,7)p. Thus for such fields K one has
S(K), # CCIK),. O

Example 6.16. CC[K )2 # S[K)2 with {4 € K.

Let ¢ be a prime of the form 1 4+ 5-2% with (¢, 10) = 1. In the last section of [Jand|
one constructs a subfield K of (J[{z5.,) such that max{m,[4] : |4] € S[K)z} = 4 [in
particular 4 € K, and for every |A| € S[H)z with m,[4) = 4, one has m, [4) # 1,
for some prime + not dividing 10g. In the notation of Proposition 6.11 this means that
va S(#,a) ) = Blg) =4 (for p=2). Then 5[K )2 # B, cp S[H 712 and, as in Example 6.15,
this implies that OO 2 # S[H)a. O

Exaraple 6.17. CC[K)2 & 5[z with (q & K.

An example with S[K); # CC[K)s and g € & can be obtained using Theorem 5
of |[Janl|. This result gives necessary and sufficient conditions for S(&) to have order 2
when & is a cyclotomic extension of (. This is the maximal 2-local index for a Schur
algebra. If S[&) = 2 then g & & If, moreover, H = [&[{q)/%, —1] i not split then
OO k)a = 5(k)g, becanse H is a cyclic eyclotormic algebra. However, there are some fields
g for which S{&#) = 2 and H is split. In that case S&) is generated by the class of a
cyclotomic algebra A and we are going to show that OO (k) # 5[&). Then for any algebraic
nurnber field with K7 = & we will alse have OC[K)2 # 5K )a.

Indeed, if T (k) = 5(&) then 4 is equivalent to a cyelic eyclotomic algebra [R[Ca)/ 8 ().
Ore may assurme that § € W(kla Y {1} and hence { = —1, because (y; & &£ Write m =
2¥2 M’ with m' odd, Since &[Cm) /& Tust be ramified, va(m) = 2. If &[(m)/k has even
degree then this would contradict the fact that &[]/ % s eyelic. So &[] /& has odd degree
and therefore [k[(m])/k, —1) is equivalent to [&[Cuotms) /& —1] by Theorem 1.60. Then 4 is
aquivalent to [&((41/&, —1] by [Janl, Theorem 1|, ¥ielding & contradiction. O
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Finiteness of S{K),/CC(K),

The main idea of the proof of Theorem 6.8 is to compare v(r) and Fr) for odd primes » not
dividing re. We will use the notation introduced at the keginning of the section meluding
the Galels groups [, &, ¢, O, and B, the elements s o € &, and the decompositions
O=(p}» Band &= ("} x B.

We also use the following numerical notation for every odd prime r not dividing e

a+alr) = w[ WK
dir) = min{a,w(r - 11}
L= FIKE/Qr),

i) = welfel

and introduece 4 = [ and §, = & as follows:
i [£) =" for every root of unity e € £, and &, = -u';f’,

The order of i, modulo & is f,, and 4, and ¢, are Frobenius automorphisms at » in [

and & respectively. By the unigqueness of an unramified extension of a local field of given
degree, one has v, WHL) ) =w, W) ) + fr) = v (e[ K[ K + fr). Thus

vl =max{0a — f(r1}. (6.1)

This gives v[r] in terms of the numerical information associated to r. The value of #@[r)
was computed in Theorem 5.13. We will need the following lemma.

Lemma 6.18. v[r] end §[r) depend only on d(r) and the element ¢ T

Procf. v[r] is determined by f(r) [zee [6.10], and flr] by fr = . Sov(r] is determined
by ipy. On the other hand, 44 = @ o9y for uniquely determined mtegers 0 < j' < g,
0= 7« ol and 5 € B. Therefore, ¢ determines whether or not j = 7° mod 2, and also
the elernent 5 required in Theorem 5.13. 5o knowing if, and d[r) will allow cne to compute

Sl O

Y2 can now give a necessary and sufficlent condition, i local terms, for JCTH), to hawe
finite mdex in S[H,.

Theorem 6.19. CC[K), hos finite indexr @ S[K), of ond only if v(r) = J(r) for ol odd

primes T noi dividing .

Procf. The sufficiency 1s a conseguence of Proposition 6.11.
Suppose that there is an odd prime r not dividing m for which v[r) < @[r). By Dirichlet’s
Thearer on primes in arithmetic progression there are mfinitely many primes +° such that

# = r mod lom[m, pott, p¥e =141 For such an o one has i, = 4, and walr' = 1) =
ty(r — 1), Then 3 = 8[r) > ¢[r) = v[r") for infinitely many primes r', by Lemma 6.18,
and hence 5K, : OC[ K, = oo, by Propesition 6.11. O

Yher p is odd, this result can be interpreted in terms of the local subgroups of 57K,
and JC[K),.
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Theorem B6.20. Let K be o subfield of Q[C,], p an odd prime and 1 o positive integer.
Then the following condifions are eguivalent:

(1) CC[K), hos finife dnder in STK],,.
(2) OC[K,r), = S[H,r),, for almest ol r e P
(3) OC[K,r), = 5[H,r),, for every prime v not dividing .

Proof. By the Janusz Decomposition Theorern [Jan3|, we hawve

S[K)p = S(K.7) 65 (@ 5[k, rr]p) ;

riET

where @ iz the set of prime divisors of m, the smallest integer for which & C 00[(,]). This
shows that 8[r] = w,[ §[#,r] ,), whenever r is a prime that does not divide s and henee,
for such primes v(r] = #r) if and only if JO[K, r), = S[K,7),. Now the results follow
from Proposition 6.11 and Thecrem 6.18. O

An obvious conseguence of Theorem 6.20 15 the followmg:

Corollary 6.21. ff i is o subfield of (J(C.) and p 45 an odd prime then the order of the
group B, cp i S 1 OO 7, is either | or infinity,

We now proceed with the proof of the main theorem of the section.

PRCOF OF THEOREM G.8. For each g € Dwe put A{) =max{0 £ AL a4+0: () =
Cor b Clearly dfs#) = min{a, A[i)}. By Dirichlet’s Theorem on primes in arithmetic pro-
gression, for every i € [ there exists an odd prime r not dividing s such that i = 6. For
such a prime one has Afi) = min{a + b,v,[r — 11}. This prime r can be selected so that
Al) = v,[r — 1], because otherwise we would have 4] = a + b < v, (r — 1], and we could
replace r by a prime ¢ satisfying ' =+ mod moand ' =1 + p*+ med 2T For such
an r', one has d(r) = d{+"), and thus v{r) = v[r') and g[r) = #{r") by Lemma 6.18.

Let g = o, We now consider the case when &fC is cyclicc. Then 0= ' = B and
p=1 Wesett=mwlexp(B)). Ift =0, then T[] = B for every 4 € [',, 50 that (2] and
(3) obvicusly hold. Furthermore 'r;rBi"ﬂr] = 1| and so v[r) = (r) for all odd primes r not
dividing i, by Theorem 513. So [1) holds by Theorem 6.18. So to aveid trivialities we
assume that # = 0.

(1) implies [2). Suppose K does not satisfy condition [2) and let 4% € T, with 4 L
Uj’;é T[], Letr be an odd prime not dividing m for which 4 = 1, and a[w) = v,[r —1).
Then d(r) = d[4) and pf = f, = 90, s v[rl = w[#). The assumption w¥E g
Uj;[], ¢ T[], means that when we express H¥E as ofn with 0 £ § < ¢ and % € B, the

order of 'rer"ﬂm in B,-(de[m is strictly greater than p¥™¥ = p*"}, By Theorem 5.13, we
have @(r] = v(r) for this odd prime r not dividing 1, and so Theorem 6.19 implies that (1]
fails.

(2) implies [3]) iz obvious.

(3) implies [1). Assurne that [1] fails. Then, by Theorem 8.18, there exists a prime r not
dividing s for which @[r] = v[r). As above, we may select such an r so that v, [r—11 £ a+b.
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Let 4 = 4. Our choice of » implies that d[4) = d(r). We claim that one can assume
i & Oy i & Oy, then let £ be the least positive integer such that wf lies in [, Letr'
be a prime integer such that ' = »f mod lem{m, p* ). Since £ is coprime to p, we have
P [r = 1) =, (rf — 1) = w,(r— 1) and therefore d[if) = d[r) = d[r] = d[i). Since il = 46!
and £ is coprime to p, we also have f(r') = f(r) = f[4). 1t follows from Lemma 6.18 that
8ir) = 8ir') and v[r) = v[r'). So by replacing » by »' if necessary, one may assume that
i e Oy and d4) = d[r].

For this prime r and element 4 = 4, £ Iy, the assumption §(r) > v(r] and Theorem 5.13
imply that, when we write ¢, = - = ofn, with 0 < 7 < ¢ and i € B, the order of nB"’ﬁﬂ
in B,-"BF"#[F] is precisely p®7Y, Then 'rlri"vlrl g g, equivalently # & T[4 and hence
w9 ¢ Ui e Tiw).

Since the sxponent of B,ﬂ"B"’ﬁrJ is precisely p¥, where & = min{z, d[r]}, this can only
be possible if wil) = v(r) < & = min{# d[4)}. This shows that if condition [1) fails, then
condition (3) also fails. This completes the proof in the case that O/ is cyelie

Now suppose (/C is non-cyclic. In particular, $* = 2 and (4] = (4. Let o =
va[[B ML) : Q) + 2 and let ¢ be an integer such that () = (. Then v,(e — 1) = d and
di) = 1 for all 4 € o

(1) implies (2). Suppose (2] fails. Then there exists a4 & [y Y% & such that either
w¥S ¢ Cal(F/Q(Care)) or 9 V6 ¢ UL, 0 (0, T(w)),

A above, there exists an odd prime r not dividing m such that i = 4, 0 = f,, and
v(ih) = v[r)l. Since 6 € & we have f{r] > 0 and so v(r) =0, by [6.1]. Also from f[r) > 0
omne deduces that ¢, = &' fixes (y and so when we write f, = pjrtrjn with D= ' = g,
0=j=g 1< B, we have that j' is even.

If ¢, & Cal[F/[(aes )], then § iz odd, and we are in the case of Theorem 5.13, part
(1), with ¢[r) =0 and @) = 1. Otherwise, j is even and  ¥¢ & UL—[]}. et p, T[)). Then
n & T[i), or equivalently, ¥[r) < w[ 55? ) [observe that d[r) = 1). By Theorem 5.13, we
have () = vz( 7B? ) > v[r). Therefore, in all cases in which [2) fails, we have v(r) = S(7).
So (1] falls by Theorem 6.18.

(21 implies [1). Suppese (1) fails. By Theorem 6.19, there exists an odd prime r not
dividing m such that 0 = v(r) = F(r) = 1. Sinee v(r) = 0, we must have f(r) > 0, 5o
i =i & (. As above, we may adjust o by an odd power and make a different choice of ¢
without changing v(r] or 8(r) in order to arrange that i € Ca. Write &, = 'tlf,:-ff = ¥E =
ploin, with0 £ ' < p, 0% j< gand 5 e B. As above, j' is even because f(r) = 0. If
7 s odd, then % ¥% & Gal[F/Q[{v.1)) and so (2) fails. Suppose now that j is even, so we
have 4 ¥< ¢ Cal(F/Q[(ae+1]). Then the fact that #(r) = | implies by Theorem 5.13 that
nBzﬂm = 2. Since d[r) < a = 1, we have d[¢) = d[r) = 2 and so i & 57 and o7 & T[4).
Then 1 ¥S & [1°2p ot (g, T(+)} and so (2) fails. O

Some obvious consequences of Theorem 6.8 are the following.

Clorollary 6.22. ff %% & (o, o, T[]}, for some i € Ty, then CC[K), does not haove
findte index in 5K,

Corollary 6.23. [f G/C 5 cyelie and v(i) = minfwv,(exp B), d[i)} for el 2 T, then
OO K, hos findte dnder in STH),.
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Corollary 6.24. [f (/0 dis cyelic and v,[exp B) + v, [exp(Gal[ /D)) £ a then CC[K),
has findte dnder dn STH),.

Proof. If 4 & [y then v, [ 90 ) = v,[exp(Gal[ /D)) £ a — w,[exp 5], by assumption.
Therefore v[¢) = max{0,a —v,[ ¥#C )} = v,(exp B) and Corollary 6.23 applies. O

Exaraple B8.25. A simple evample with |S[K), : OO[K),| = 0.

Let p and ¢ be odd primes with w,(g — 1] = 2. Let K be the subextension of L =
Qo) FQ[C) with index p in [Gg). Then F = Q[{2,]), &= (8 x C is elementary abelian
of order p?, and [, has an element 4 such that # generates . Then o = v,[ 0 ) =1
and so v[) =0 and d4) = 1. Therefore, T[) = 1 and henee (o, T[] = (). However,
(o) ¢ =1 and hence I = P (e, T[i)). Bo it follows from Corollary 6.22 that
UK, has infinite index in STK),. O

The reader may check using Thearem 6.8 that |5(K), : CC(K),| = co for the fields &
constructed by Janusz that were mentioned in Example 5.15. The same holds for the field
of Example 6.16. This can be werified using the arguments in the proofs of Lemras 4.2 and
6.4 and Proposition 6.5 in |Jand|, where it is proved that 0 = w,[ S[K,¢) ) < F(qg) for all
the primes ¢ such that g =1 mod 16 and r is not & sguare modulo g.

In all the examples shown so far, the index of CC(K), in 5(K), is either 1 or In-
finity. This, together with Corollary 4.5, may lead one to believe that the gquotient group
ST,/ OC[ K, 15 either trivial or infinite for every field & and every prime p. By Cerollary
2.3 and Thearem 4.3, 8K, /CC[ K], s both finite and non-trivial if and anly if »[r) = J(r)
for every odd prime not dividing m and v[r) # 8[r) for » either 2 or an odd prime dividing
mi. In the following example we show that for every odd prime p there exists a field £
satisfying these conditioms.

Example 6.26. An erample with CCOK), #£ S[K), and [S5[K), : CC[K),| < vo.

Let p be an arbitrary odd prime and let g and = be primes for which v,(g — 1] =
[ — 11 =2, v [r* - 11 =0, and w, [f.r‘i"! — 1) = 1. The existence of such primes ¢ and
r for each odd prime p is a consegquence of Dirichlet’s Theorem on primes m arithmetic
progression. Indeed, given p and ¢ primes with v,[g — 1) = 2, there is an integer &, coprime
to g such that the order of & madulo ¢® s p?. Choase a prime r for which » = £#4+¢ mod ¢*
and r =1 +4p% modp®. Thenp, g and r satisfy the given conditions.

Let K be the compositum of A7 and K, the unigue subextensions of mdex p in
[ Cor o) /(2] and [ Cpn ) D[, ) Tespectively. Then m = plrg, a =2 and L= Q(im] =
K[(y) @i K[G). Therefore, & = Q[ ), and & = Gal[F/ K [0 )] = Gal[Ff K [(a,)) =
Gal[F/K ()], We may choose o so that (o) = Gal[F/K((,)) = ¢/ C has order p?. The
inertia subgroup of r m & is Gal[FK (=), which is generated by an element & of order
p. Note that 5 = O and v, [exp[Gal[ K /)] = wlexp B) = | < a = 2. Hence K satisfies
the conditions of Corollary 6.24 and so CC( K, has finite index in 5(K],.

Since K = &' Dy K and K (C,2 ] s totally ramified at v, we have that K is the

maximal unramified extension of K, /)., [t follows from 'i.-',:,[':l“p! —l=landwv[r*-1)=0
that [(,(¢,) : ] = 9% and so K} : Q] = p = fIK/QQ,r). Therefore w,( W(K,)) =
o WD+ ) = w(r—11+1 =3, and so we have v(r) = max{l,a+v,(F) -
v WIH] I} =0
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Let 4 be the Frobenius antomorphism of » in Gal(£/(3). Then ¥ = oPn, where e B
generates Gal[F K [(a,]). Since (& N {5y = 1, there exists a skew pairing ¥ : 5= B —
W[ K], such that ¢([f, %) has order p. By Theorem 5.13, it follows that @(r) = 1, and so
8K # CCIK),. O

We finish with an example which shows that, when &/ is noncyelic, it is possible
for CC[K )2 to have mfinite index in 5[K)2 even when t = walexp B8) = 0. It alse is a
counterexample to |Penl, Theorem 2.2|.

Exarnple 6.27. An example with |5[K); : OC[H )z = o and &= 1.

Let g be an odd prime greater than & and set K = (J[¢,, V2], We compute |58z -
CO[H)g|. In the notation of this section, we have e =2, m=8r,so s =3 anda + b =
L4+ 3+w[[f N Q] - Q) +2 =6 Henee & = [[(gq,). Since P[] € K, we have
O = Gal(F/K[(sa]) = 1. For our generators of Gal(F/K), we may choose g, ¢ such that
o) = Coy pliea) = CE:‘], o (&) = Cqr and o(Caa) = (gy. Let » be any prime for which #? = 1
mod g and r =5 med 28, Then ., € G, but 52 = 8° mod 64 implies that 2 = % This
means that we are In the case of Theorem 5.13, where v[r) =0 and j is odd, so #[r) = 1.
So |S[K )2 : CC[K)zg) is infinite. O

Notes on Chapter 6

Ewven if the problem of the computation of the automorphism group of group algebras
and the [somorphism Problem for group algebras of metacyclic groups do not appear ex-
plicitly as a studied topic, we gathered the main ingredients, namely the computation of
the Wedderburn components of group algebras and a criterion to decide which components
are isomorphic as rimgs. MNote that the Wedderburn decomposition of a rational group alge-
bra of a metacyclic group has been computed in |OdRS2|, so the first part of the problem
has been solved for metacyelic groups. The second problem, that of decidmg which simple
components are ring isomorphic, can ke attacked using the results of the first section.

The computation of the index |5[K) : CC[K)| when this is finite is mere complicated
than the computation of @(r) and v[r) and depend on a more detailed analysis of the
position of K among the cyclotormic fields.
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Conclusions and perspectives

The present thesis was mamly concerned with the computational aspect of the Wedderburn
decomposition of group algebras and some of its applications, with the aim of giving explicit
presentations of the Wedderburn components.

The main idea in cur approach was the use of the Brauer- Witt Theorem, that gives a pre-
sentation of the simple components seen as Schur algebras over thelr centers as cyclotomic
algebras, up to Brauer egquivalence. This method led us to the necessity of inding a con-
structive proof of the Brauer-Witt Theorem and an algorithm to describe the Wedderburn
components using it, which was studied m Chapter 2.

This theoretical algorithm allowed us to elaborate a “working” algorithm which made
possible its implementation in a package called wedderga for the computer system GAP.
This is an improvement with respect to a previous version of wedderga, which was only
capable to compute the Wedderburn decomposition of some rational group algebras. Some
aspects of the mmplementation were presented m Chapter 3. The numerical description of
some Wedderburn components, given by the outputs of some functions of the wedderpa
package, has some limitations when identifymg the simple algebras as matrices cver precise
division algebras. This was illustrated by examples when presenting the functionality of
Wwedderga.

The main motivation for our search for an explicit computation of the Wedderburn
components of group algebras was given by its applications, mainly to the study of units of
group rings and automorphisms of algebras. The second part of the thesis presented some
applications to the classification of group algebras of Kleinian type with further applications
to groups of units, the characterization of ring automorphisms of simple components of
rational group algebras and the study of a special subgroup of the Schur group of an abelian
number field.

In Chapter 4 we presented an application of a good knowledge and description of the
Wedderburn components of group algebras of finite groups over number fields. A classifi-
cation of the group algebras of Kleinlan type over a number field was given, contimumg the
work from [JPARRZ|. Moreover, we characterized the group rings 2G, with £ an order in
a number fleld and & a finite group, such that the group of units of 2 is virtually a direct
product of free-by-free groups.

The mformation provided by our description of the Wedderbwrn components can be
completed with extra data given by the Schur mdex and the Hasse invariants of the simple
algebras. This requires computation of local Schur indices, a research direction followed in
Chapter 5, where we characterized the maximum p-local mdex of a Schur algebra over an
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abelian number field, for p an arbitrary prime number.

In Chapter 6 we defined the notion of cyelic cyclotomic algebra, a type of algekra which
was useful for cur purposes. These algebras arise naturally as simple components of rational
group algebras of metacyclic groups. Moreover, another reason that suggested us the study
of the algebras having this cyclic and cyelotomic presentation was the fact that methods for
the computation of the local Schur indices and the Hasse invariants are classically presented
for cyelic algebras. The first secticn of this chapter was dedicated to the study of these
algebras and their applications to the study of the ring isomorphism between them. In the
second section we presented the subgroup generated by the cycelic cyelotomic algebras mside
the Schur group and we gave a characterization of when O[] has finite index in 5[] in
terms of the relative position of £ n the lattice of eyclotomic extensions of the rationals.

Some further developments of this topic can be done in different directions. As we have
already mentioned above, the limitations of our description of the Wedderburn components
can be surpassed by a detailed study of the [local] Schur indices and the Hasse invariants.
Thus, as we have already started in Chapter 5, an option for future study on this topic s
to add Jocal information obtained by Jocal methods and which completes the previous data.
Mew methods using G-algebras can also be used in order to compute Schur indices.

Recently, a projective version of the Brauer-Witt Theorem was given in |[AdR|. Mare
precisely, it was proved that any projective Schur algebra over a field is Brauer equivalent to
a radical algebra. This can provide useful mformation that can be used to study a similar
problem in the case of twisting group algebras, that 1s to describe its simple components
given by projective characters of the group as radical algebras in the projective Schur group.

Another possible interesting idea to be studied is the generalization of some results from
Chapter 4 to semigroup algebras. This can be an interesting problem, since 1t seems that it
can be reduced to the knowledge of the YWedderburn components of some group algebras.

There are also other interesting problems that rely on the description of the Wedderburn
components of group algebras, such as the I[somorphism Problem or the study of error
correcting codes [in which case the group algebra is over a finite fleld).
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Abstract
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Chapter 1

Introduction

1.1 General aims of Wedderga package

The hile “Wedderga™ stands for "Wedderburn decomposibion of group algebras. This 15 a GAF pack-
age to compute the ssmple components of the Wedderburn decomposition of sermsimple group al-
gebras of finite groups over abelian number fields and over fimie fields. It also contains funchons
to compute the primitive central idempotents of the same kind of group algebras, and ko construct
crossed products over a group with coefficients 1in an associabive ring with 1dentity and the mulhphca-
tion determined by a given action and twisting.

1.2 Main functions of Wedderga package

The man  funchons of Wedderga are WedderburnDecempositicn (2.1.1)  and
Wedderburnlecompositicnlnfo (2.1.2).

WedderburnbDecompositicon (2,11 compuies a list of simple alzgebras such that their direct prod-
uct 15 1somorphic to the group algebra F&, miven as input. Thus the direct product of the enires of the
output 1s the Weddertnm decomposition (7.3)of FG.

If F 15 an abehan number field then the entnes of the output are given as matrix algebras over
cyclotomic algebras (see 7.11), thus, the eniries of ihe output of Wedderburnbecompesition (2.1.1)
are realizations of the Wedderbuwrn componenis (7.3) of F(G as algebras which are Brauer equivalent
(7.5} to cycletomic algebras (7.11). Recall that the Braver-Witt Theorem ensures that every simple
factor of a sermisimple group ring F& 1z Brauer equivalent (that 1s represents the same class in the
Brauver group of 1ts centre) to a cyelotomic algebra ([ Yarm74], [O1H07 ).

The Wedderburn components of Fi& are also mairix algebras over division nings which are finite
extensions of the field F. If F 1s finite, then by the Wedderburn theorem, these division rings are finite
fields. In this case the output of WedderburnbDecompositicn (2.1.1) represents the factors of F& as

matrix algebras over finite extensions of the field F.
Example

gap> DG := GroupPing[ Rakionals, SymmebteicGroup(4) ]

<algebra-with-cne ower Rakbiconals, with 2 generators®

gap> WeddecburnDecomposikion [DG)

| Rakicnals, BRaticnals, [ Baticnals™| 3, 3] ), [ Bationals™]| 3, 31 }.

<crossed productk wibkh cenkber Raticnals over CF[31) of a geroup of size 2% ]
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Example
gap» FG = GroupPing| CF (3], SymmetricGeoup (4] );
<algebra-with-cne over CF(3), with 2 generabtors®
gap» WedderburnbDecompositicon([ FG ],
| CE(S), CELS), (CE(S)TL 3, 3] 0 [CE(SITL 3, 3] 0,
<crossed product wikh cenker CEF([3] over fsField ([ CF (3], CF|
13) |} of a group of size 23 ]
gap» FG = GroupPing| GF (3], SymmetbricGeoup (4] 1:
<algebra-with-cne over GF(3), with 2 generabtors®
gap» WedderburnbDecompositicon([ FG ],
| (GF(3)" 1L L V] b, [GF(3)°L L, LT ) [GE(S)TL 2, 210,
[ GE{5)"L 3 3] 0, [ GF[(3)71 3, 3] 1]

gap®» FG = GeoupPing| GF(3), SmallGroup(24,3] )
<algebra—-with-cne over GF(3), with 4 generabtors®
gap» WedderburnbDecompositicon([ FG ),
| (GF(3)"L L, 11 ), [ GF[372)7| L,
[ GF(3™2)7 1 2, 21 ), [GE(IITL 3

Ve TGEIS)TL 2, 210,

1]
3110

Instead of Wedderburnbecempositicn (2.1.2), that returns a hst of GAP  objects,
Wedderburnbecompositicnlnfe (2.1.2) returmns the numerncal description of these objects.
See Section 7.12 for theoretical background.

1.3 Installation and system requirements

Wedderga does not use extermnal binanes and, therefore, works without restrictions on the type of the
operating systern. It 18 designed for GAP4.4 and no compatibility with previous releases of GAP4 15
guaranteed.

To use the Wedderga online help 1t 15 necessary fo install the GAP4 package GAP-
Coc by Frank Lubeck and Max Neunhdffer, which 1s available from the GAP site or from
nttp:/ fwww.math. rwth-aachen. de/ Frank. Luebeck/GAFDoc /.

Wedderga 15 disttbuted n standard formats (zoo, tar.gz, tar.bzZ, -win.zip) and
can be obtained from http://www.um.es/adelric/wedderga.itm. To unpack the archive
wedderga-4.0. zco you need the program unzec, which can be obtained from the GAP homepage
http:/ fwww . gap-system. crg/ (see sechon ‘Dhstnbubion™). To install Wedderga, copy this archive
into the pkg subdirectory of your GAP4.4 installabion. The subdirectory wedderga will be created in
the pkg directory after the following command:

unzoo -x wedderga—-4.0. zco



Chapter 2

Wedderburn decomposition

2.1 Wedderburn decomposition

21.1 WedderburnDecomposition

{}Wedderburnﬂecampcsiticnt FG | [ LLri brocten)

Returns: alist of simple algebras.

The input E G should be a group algebra of a imte group G over the field F, where F 1s either an
abelian number field (.e. a subfield of a fimie cyclotomic extension of the rabionals) or a iimte field
of characterisitic coprime with the order of G.

The funchon returns the Tist of all Wedderbum components (7.3) of the group algebra G If F 15
an abelian number field then each Wedderburn component 1 given as a matrix algebra of a cycletomic
afgebra (7.11). 1T F is a fimie field then the Wedderburn components are mven as mattix algebras
over finite fields.

Example
gap» WedderburnbDecompositicon (| GroupRing( GF[3), DihedralGeoup(lE) ) )
| (G(3)"L L V] ), [GF(3)°L L, LT ) [GE(S)TL L, L]0,
[GE(3)"L L L1, [GF3VTL 2, 210, [GF(372)70 2, 2110 1
gap» WedderburnDecompositicon | GroupRing[ Bakicnals, DinedralGroup(lE) 1 )
| Rakticnals, Baticnals, Baticnals, Baticnals, [ Baticnals™] 2, 2 ] )
<crossed product wikh cenkter WE(E, | 1, 7 1) over AsField[ WF[Z,
| 1, 7 1), CF(8) ) of a group of size 2> |
gap» WedderburnbDecompositicon| GroupRing( CF[3), DihedralGeoup(lE) )
| CF[S), CFI[3), CF[2), CF(3), [ CF[O)7] 2, 2] ),
<ocrossed product with center WE(40, 1 1, 31 ]} over AsField[ WF[40,
| 1, 31 ]y, CE(40) ) of a group of size 2>

The previous examples show that 1f £ denotes the dihedral group of order 16 then the Weddertnem
decomposition (1.3) of Fs Dy, QD15 and 0(E5) D14 are respectively

FsDhg =4Fs B M3 [Fs) @b Ma[Fas),

Qihe =40 M, (L) & (K(Eg) /K 1)
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and
Q(Es)De = 4D Es ) b Ma(D(Es) ) B (F(Eap)/F 1),

where (K(£3)/K 1) is a cyclotomic algebra (7.11) with the centre K = NF(8,[1,7]) = Q[v2),
(F(Eag) /F,0) = Q[v2,E5) is a cyclotomic algebra with centre F = NF(40,[1,31]) and &, denotes
an rn-th root of umiy.

Two more examples:

Example

gap» WedderburnDecompositicon| GroupRing[ Bakicnals, SmallGeroup (48,137 1 )
| Rakticnals, Bakticnals, Baticnals, Baticnals, [ Baticonals™] 2, 2 ] )
<crossed product wikh cenker Raticnals over CF(3) of a group of size 23,
[ CF(3)7] &y 21 ), <crossed produckt with center Raticnals over COF [
1) of a group of size 2%, <crossed produckt with cenkter WE[3,
| 1, 7 1) over AsField([ wWF(2,] L, 7 ]}, CF[8) | of a group of size 2>,
<crossed product wikh cenker Rakicnals over CF[12) of a geoup of size 45 ]
gap>» WedderburnDecompositicon| GroupRing[ CF[3), SmallGroup(48,13) ) 1,

| CF[3), CF(3), CF(3), CF(I), [ CF(I)7L 2, 2 1 0, [CF[I)TL 2, 210,
[cer3)" L2, 21 3, (CEIIITL 2, 210, [CREII)TLEZ, 21 ),
<crossed product wibth cenker NE([24,| 1, 7 ]) owver AsField[ MF[24,

[ 1, 7 1), CF(24) ) of a group of size 23,

[ <crossed product with cenkter CF[3) ower AsField( CF(3), CF|
12) ) of a group of size 257 2, 2 1 ) 1

In some cases some entries of the output of WedderburnbDecomposition (2.1.1) do not provide full
matrix algebras over a cyclotomic algebra (7.11), but “fractional matrix algebras™. See 7.3 for a

theoretical explanation of this phenomenon. In this case a warmng message 15 displayed.
Example

gap®» RG:=GroupRing [Raticnals, SmallGroup (240,35 ),
“algebra-with-cne over Rakicnals, with 2 generators®
gap» WedderburnbDecompositicon [[G)

Wedderga: Warning!!!

Zome of the Wedderburn components displayed are FRACTIONAL MATRIXY ALGEBRAS!!!

| Raticnals, Raticnals, <crossed product wikbkh cenkter Raticnals ower CF [

3) of a group of size 4%, [ Raticnals™| 4, 4 ] ), [ Raticnals™| 4, 4] ],
[ Baticonals™|] 3, 3] ), [ Raticnals™| 5, 3] ), [ Raticmals™| &, & ] )
| 1#2, <crossed product wikbkh center WE(12,1 1, 11l ]) ower AsField( WF([lZ,

[ 1, 11 ]}, CE(ED) |} eof a group of size 3> ]
| 3f4, <crossed product wikbkh center WE(2,[ L, 7 1) ower AsField[ WF (3,
| 1, 7 1), CF[40) ) ef a group of size 8% ]

21.2 WedderburnDecompositionInfo

o Wedderburnlecempesiticnlnfe! FG )
Returns: alist of numencal deseripbions of cyclotomic algebras (7110

The input G should be a group algebra of a finite group & over the field F, where F 15 either an

abelian number field (.e. a subfield of a fimie cyclotomic extension of the rationals) or a fiimte field
of characterisbic coprime with the order of G.

[alLri bl
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This funchion 1s a numerical counterpart of Wedderburnlecompesiticon (2,110
It returns a Iist formed by hists of length 2, 4 or 5.
The hists of length 2 are of the form

[ F]

where r is a positive integer and F is a field. It represents the r x r matrix algebra M, [ F) over the
field F.
The hists of length 4 are of the form

[R|F|kl [dlalﬁ”l

where F 15 a field and n &, d, o, B are non negabive integers, satisfying condibons mentioned n the
gection 7.12. It represents the r x r matrx algebra M, (4} over the cyclic algebra

A=F( ultl =E0 & =&

where & 15 a primitive k-th root of unity.
The Tists of length 5 are of the form

[r, Fok, [ o By [V ki zie jom)

where F is a field and r, &, &; 0, i, 7.4 are non negative integers. 1t represents the r x rmatrix algebra
M4} over the cyclotomic algebra (7.11)

A=FEler .. gn | EF =%f“.3? =§E’.333:‘ =E.-Ej£'e£’j]

where & 15 a primitive &-th root of unity. (see 7.12).

Example

gap> WedderburnDecomposiktionInfo | GroupRing [ Raticnals, DihedcalGroup[LE) ) )

| | 1, Ratignals ], | 1, Baticnals ], | l, Batiocnals |, | 1, BRaticnals ]

| 2, Raticnals 1, | 1, we(d, [ L, * v, 2, [ 2, 7, 0111
gap> WedderburnPecompositionInfo| GrouwpRing [ CF(3), DibedralGeoup [lE] ) )
[ L L, BF(3) I, L L, CF(3) ], | 1, CEI3) ], L L, CF[3) I, | 2, CF[3] ]

| 1, we(40, | L, 31 ]y, 8, | 2, 7. 0] 11

The interpretabion of the previous example gives rise to the following Wedderburn decomposition
(7.3), where &s 15 a primitive 5-th root of unity.

006 = 40 @ M, (1) @M (D(v2)).

Q(Es)D1e =40 (Es) @M (Q(Es)) & M2(D(Es, v2)).

Example

gap> F:=FreeGroup("a", "b");;a:=F.1;;b:=F.2; ;cel:=|a"8,a 4*b™2, b7 -1%*a*b*a];;
gap> Dle:=Ffeel;; QOlE:=GroupRing | Raticonals, QL& |;;

gap> PS4 :=GroupRing | Raticnals, SymmebricGeoup(4]) |

gap> WedderburnDecomposikion [QOLE];

| Raticnals, Raticnals, Baticonals, Raticnals, [ Baticnals™] 2, 2 ] )
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<crossed produck wikh center WE([8,]| L, 7 ]) cver AsField[ NWF (3,
| 1, 7 1), CF(8) ) of a group of size 2> |
gap> WeddecburnDecomposikion| 0S4 ]
| Rakicnals, BRaticnals, [ Baticnals™| 3, 3] ), [ Bationals™]| 3, 31 }.
“crossed productk wibkh cenker Raticnals owver CF[1) of a group of size 2% ]

gap> WeddecrburnDecompositionInfo (QRLE);

| | 1, Rationals ], | 1, Baticnals ], | 1, Bationals |, | 1, BRaticnals ],
| 2, Baticnals 1, | 1, wE(a, | L, 7 1), 8, [ 2, 7, 4111

gap» WedderburnbDecompositiconInfo (54 ;

| | 1, Rationals ], | 1, Baticnals ], | 3, Batiocnals |, | 3, Baticnals ],
| 1, Rakicnals, 3, [ 2, 2, 01 ] ]

In the previous example we computed the Wedderburn decomposition of the rational group alge-
bra )16 of the quaternion group of order 16 and the rational group algebra {0854 of the symmetric
group on fourletters. For both group algebras we used both Wedde rburnbecomposition (2.1.1) and
WedderburnbDecompesiticnlafo (2.1.20

The output of Wedderburnlecompositicn (2.1.1) shows that

Qe =M DM () B A

(S =20 @20 (D)@ B

where 4 and B are crossed products (7.6) with coefficients in the cyclotomic fields ([Ez) and Q(E3)
respectively. This oulput can be used as a GAP object, but 1t does not give clear information on the
structure of algebras 4 and B.

The numencal information displayed by WedderburnDecompositicnlnfe (2.1.2) means that

A=QEE = )[glef=E" =E 1 g =E" = 1]

B=QEE =g =8=¢ &=

Both 4 and B are quatermnion algebras over their center which s Q£ 4 £ 1) and the former is equal to
0{+2) and 1 respectively.

In B,onehas (g+1)(g 1) =0, while gis neither 1 nor 1. This shows that B = M3 (). However
the relation g2 = 1in 4 shows that

A=0WV2lglf == lig= g

and so 4 is a division algebra with centre {1(+/2), which is a subalgebra of the algebra of Hamiltonian
quaternions. This could be deduced also uwsing well known methods on cyelic algebras (see ez,
[Feid3]).

The next example shows the output of WedderburnDecompositicnlnfe for G and §(E:)G,
where & = SmaliGroup (48 28). You can compare it with the output of WedderburnDecompeositicn
(2.1.1) for the same group 1n the previous secbon. Nobce that the last entry of the Wedderbum
decomposition (7.3) of G 15 not presented as a matrix algebra of a eyclic algebra but this is not the
case for the corresponding entry of Q[E3;)G.
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Example

gap®» WedderburnbDecompositiconInfo [ GroupRing[ Raticnals, SmallGroop (48,131 ) ],
| | 1, Ratignals ], | 1, Baticnals ], | 1, Ratiocnals |, | 1, Baticnals ]

| 2, Raticnals ], | 1, Rakicnals, 3, | 2, 2, 0 ] 1, [ 2, CF(3) 1.

| 1, Raticnals, &, | 2, 5, 01 ], | L, wE(8,1 1, 7 1), 8, | 2, 7,011,

| 1, Raticnals, 12, | [ 2, 3, %1, | 2, 7, 0] 1., 11 %171 1]
gap® WedderburnbDecompositiconInfo ( GeoupRing[ CF(3), SmallGroup (48,13) 1 1
[ L L, cF(3) I, L L, CF(3) ], | 1y CEO(3) I, L L, CF(3) 1, | 2, CF (3] ]

| 2, CF(3), 3, [ 1, 1, 0] 1, |2, CFI3Y ], | 2, CF[I) ]

| 2, CF(3), B, [ 1, 1, O] 1, |1, WE[24,1 L, 7 13, &, | 2, 7, O] ],

| 2, CF[3), 12, | 2, 7., 0] ] 1

In some cases some of the first entries of the oulput of Wedderburnbecempositicnlnfc (2.1.2) are
not integers and so the Wedderburn componenis (7.3) are given as “fractonal matnx algebras™ of
cyclotomic algebras (7.11). See 7.3 for a theoretical explanation of this phenomenon. In fhat case a
warning message will be displayed during the first call of WedderburnbDecompositionlnfo.

Example

gap» QG:=GroupRing [Raticnals, SmallGeoup (240,35,

<algebra—-with-cne ower Rakticnals, with 2 generators®

gap» WedderburnbDecompositiconInEc (QE);

Wedderga: Warning!!!

Some of the Wedderburn components displayed are FRACTIONAL MATRIY ALGEBRAS!!!

| | 1, Ratignals ], | 1, Baticnals ], | 1, Raticnals, 10, | 4, 3, 3] 1.
| 4, Raticnals 1, | 4, Baticonals ], | 5, Baticnals ], | 3, Raticnals ]
| B, Raticnals ]
| /2, we(l2, (1, LL ]y, RO, | | 4, L3, 3 ], [ 2, L, 00 1, L O] 11
| 34, we(d, | L, 710, 40, | |4 7 3 ) L2 3L, 0001, L LO]] 1]

The interpretation of the output 1n the previous example gmves nse to the following Weddertnrn de-
composition (7.3) of G for G the small group [240,89):

QG = 200 & 2M4 () & 2Ms (1) &M (D) DA BB EC

where
A=QEw0)ulEly =8 ' = 1],
Bisan algebra of degree (4 2)/2 =4 which 1s Brauer equivalent (7.5) to

8 =@[§60)[H|V|§20=§£.u4= gﬂ,ﬁzo=§éé,,u2= L v = wy],

and C is an algebra of degree [4+2)+ 3/4 =6 which is Brauer equivalent (7.5) to

Cr = 0Ea)[uvlby =8l u? =&, & =81 v =1 vu=uy].

The precise description of B and C requires the usage of “ad hoc™ arguments.
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2.2 Simple quotients

22.1 SimpleAlgebraBy Character

§) SimpledlgebraByCharacter | FG, chil | [@peralicn)

Returns: A simple algebra.

The first input £ G should be a semisimple group algebra (7.2) over a finite group & and the second
Input should be an irreducible character of G.

The output 15 a matrix algebra of a cyclotomic algebrras (7.11) which 15 isomorphic to the unigque
Wedderburn component (7.3) 4 of £G such that 3[4) # 0.

Example
gap» A5 = AlternatingGeoup[3);
BlE[ |1 .. 5311 )
gap» SimpleflgebraByCharacter | GeoupRing [ Raticnals , RS ), Ice[ &5 ) (3] 4.
(WE(S, [ L, 4 1071 3, 31
gap® SimpleflgebraByCharacters | GeoupBing [ GE(T) . &3 ) , Tew[ A3 ) 3] )

[ GFP72)7 L 4, 311
gap» G:=SmallGeoup (123,100,
<pc group of size 128 with 7 generators:

gap® SimpleflgebraByCharacters | GeoupRing [ Raticnals , G ) , Iec(G)[L%] )
<orossed produck with cenkter WF(2,] 1, 3 1) cowver AsField| wE(2,[ 1, 3 ]), CFI
2} 1 of a group of size 2>

222  SimpleAlgebraBy CharacterInto

§) SimpleblgebraByCharacterInfe | QG, chi | [@peralicn)
Returns: The numerical deseripbion of the output of SimpleAlgebraByCharacter:

The first input FG 15 a semisimple growp algebra (7.2) over a finite group & and the second input
18 an irreducible character of G.

The putput 15 the numerical description 7. 12 of the cyclotomic algefra (7.11) which is isomorphic
to the unique Wedderburm component (7.3) 4 of FG such that (4) £0.

See 7.12 for the interpretation of the numencal information given by the output.

Example

gap> G:=SmallGroup[l44,11);

<pc group of size 144 with kB generaktors>

gap>» QG:=GroupRing [Raticnals, G);

“algebra-with-one owver Raticnals, with B generakoes:

gap> SimpleflgebraByCharactec | QG , Lee[G) [48] )

<crossed produck with cenkber WF[3&, | 1, 17 1) cver AsField[ WF[3E,
[ 1, L7 1), CF(3E) | of a group of size 2>

gap> SimpleflgebraByCharacterInfe QG , Icc(G) 48] ]

| L, weef(3de, | L, 17 1), 36, | 2, 17, 13 ] ]
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22.3 SimpleAlgebraByStrongSP

{ SimpleAlgebraByStrongSe | QG, K, H ) [operation)
& SimpleAlgebraByStrongSe| FG, K, H, C ) [operalion)
{)SimpleAlgebraE-yStangSENCI: oG, B, H ) [operalion)
o SimpleAlgebraByStrongSENC] EG, H, H, C ) [ peralion)

Returns: A simple algebra.

In the three-argument version the Input must be formed by a semisimple rational group algebra
06 (see 7.2y and two subgroups K and H of & which form a strong Skoda pair (7.13) of G,

The three-argument version returns the Wedderburm component (7.3) of the rational group alzebra
QG redlized by the sirong Shoda pair (,H).

In the four-argument version the first argument 15 a semisimple finite group algebra FG, (K, H) 15
a strong Shoda pair of & and the fourth input data 15 elther a generating g-cyclotomic class modulo
[£.H] ora representative of a generating a-cyclotomic class modulo [K,H] (see 7.17).

The four-argument version returns the Wedderburn component (7.3) of the finite group algebra £G
redlized by the sirong Shoda pair (%,H) and the cyclotomic class C (or the cyclotomic class containing
Cl.

The versions ended 1n NC do not check if (K,H) 15 a strong Shoda pair of & and, 1n the four-
argument version, if C is either a generating g-cyclotomic ¢lass C modulo [K @ H] or an integer coprime
with [K : H].

Example
gap» Fi=FreeGroup("a”,"b");; a:=F.l;; b:=F.2;;
gap» G:=Ff| a"lk, b 2%a"3, b -l*a*b*a™% ];; a:=G.1;; b:=G.2;;
gap> K:=Subgroup (G, la]};; Hi=Subgroup (8, |1},

gap> PG:=GroupRing | Raticnals, G |;;

gap» FG:=GroupRing[ GF (7], G };;

gap> SimpleflgebraByStrongZP [ DG, B, H ]

<crossed produck over CE(lE) of a group of size 2>
gap> SimpleflgebraByStrongsP [ FG, K, H, [L,7] J;

[ GE[H 712, 21

gap> SimpleflgebraBySterongZP [ FG, B, H, 1 )

[ GE[ 7L 2, 21

224 SimpleAlgebraByStrongSPInko

v SimpledlgebraByStrongSeInfel 0OG, K, H ) [operation)
{}SimpleAlgebraByStangSElnEDI: FGG, ¥, H, o] [eperalicn)
O SimpleslgebraByStrongSeIlnfolC OG, K, H ) [operalion)
{ SimpledlgebraByStrongSeInfolC| FG, B, H, o ) [operation)

Returns: numerical descripbon of one simple algebra.

In the three-argument version the input must be formed by a semisimple rational group algebra
(7.2) 0G and two subgroups ¥ and H of & which form a strong Sheda pair (7.15)of G.

The three-argument version returns the numerical information describing the Wedderbum compo-
nent (7.12) of the rabonal group algebra 0G realized by the strong Shoda pair (,H).

In the four-argument version the first 1nput 15 a sermsimple finite group algebra FG, (K, H) 1s a
strong Shoda pair of & and the fourth input data 1s either a generabing g-cyeclotomic class modulo
[#.,H] ora representative of a generating a-cyclotomic class modulo [K,H] (7.17).
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The four-argurnent version retums a pair of positive integers [r, #] which represent the 1 x n matrix
algebra over the field of order » which 1s 1somorphic to the Wedderbum component of FG realized by
the strong Shoda pair (K.H) and the cyclotormne class C (or the cyclotommic class contaimng C).

The versions ended in NC do not check if (K,H) 18 a strong Shoda pair of & and, in the four-
argument version, if C Is either a generating g-cyclotomic ¢lass C modulo [K : H] or an integer coprime
with [K : H].

Example
gap» F:=FeeeGroup("a”,"b");; a:=F.l;; b:=F.2;;
gap» G:=Ff| a"lk, b™2%a"3, b -l*a*b*a”% ];; a:=G.l;; bi=G.2;
gap> K:i=Subgroup (G, |a]l);; H:i=Subgroup (G, (1)

gap>» QG:=GroupRing[ Raticnals, G |;;

gap> FG:=GeoupRing( GE(7), G J;;

gap» SimpleflgebraByStrongSP [ QG, ¥, H )

<crossed produck ower CF(LE) of a group of size 2%
gap> SimpleflgebraByStrongEPInfo( G, ¥, H |

| L, wE(ley 1 Lo 700, 160 | 120 70 81 10 1 11
gap>» SimpleflgebraByStrongsPInfo( FG, ¥, H, |L, 71 §;
[ 2, 71

gap> SimpleflgebraByStrongSPInfo( FG, K, H, L ]
L2, 71
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Strong Shoda pairs

3.1 Computing strong Shoda pairs

31.1 StrongShodaPairs

& StrongShedaPairs | G )
Returns: A listof pairs of subgroups of the Input group.

[allri bule)
The input should be a finite group .

Computes a 13st of representatives of the equivalence classes of strong Shoda pairs (7.15) of a
fimte group G.

Example

gap» StrongShodafairs| SymmebricGrooup (4] ),

[ | Sym{ [ L .. 41 ), Geoup(| [1,4702,3), (1,3 02,4), [(2,4,3), [3.4)
L 8ym{ | L .. 41 1, Groupll (1,4 (2, 3y, (1,31 (2,4), [Z,4,3) 1) I,

(3.4), (1, 3,2,4) 11, (L, 3,2,40, [L.2) (340 10 14

(L,3,2,4), (3.4) 1), Geeupll [3.4), (1,2703. 47 1) 1.

(2.4,3), (1, 4)02,31 1], (Led4y (2,31, (1,30 (2,40 1) 11

gap» StrongShodaFfairs| DihedralGeoup [B4)

11,

| Groupll Group[ |

| Groupll
Group (|
i

| | ¢pc group of size B4 wikth B genecakbors>,
Geoup (| EE, E£5, E4, E3, El, E£2 1) 1,

| <pc group of size B4 wikh & generakors>,

1.

| <pc group of size B4 with b generakoes>,

| Groupl|

Group[| £6, ES, E4, E3, EL*E2 ]}

Ed,
E4,

E3,
£3,

£2 11
L]}

]f
1

Group[| EB, E9,
Group[| EB, E3,
£3 10,

| <pc group of size B4 wikh & generakors>,
| Group[| El*E£2, E4*ES*EER, E3*ER, EER, E13,

Group[| ER, ES, £4, EL*E2 ]}
| Geoupl| E6, E5, E2, E3, E4 1,
| Geoupl| £6, £2, E3, E4, E5 11,
| Geowp(| £2, £3, E4, E3, £B ]},

]F
Group[| EE, E3 ])
Group (| £B ] 1,

11

I

Group [ |

161
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3.2 Properties related with Shoda pairs

321 IsStrongShodaPair
& IsStrongShodaPair| G, K, H ) [ peralion)
The first argument should be a fimte group G, the second one a subgroup & of G and the third one

a subgroup of K
Returns true if (K.H) 15 a streng Shoda pair (7.153) of G, and fal se otherwise.

Example

gap®» G:=SymmetricGroup (3);; B:i=Group[|[1,2,3)]);; Hi=Groupl( [) ):;
gap®» IsStrongShodafaic| G, %, H )

Erue

gap» IsStrongShodafaic| G, G, H )

fFalse

gap® IsStrongShodafaic| G, &, & )

false

gap» IsStrongShodafaic| G, G, K )

Erue

322 I1sShodaPair

O lashodaPair! o, ¥, H ) [eperalion)

The first argument should be a finite group G, the second a subgroup ¥ of G and the third a subgroup
of K.

Returns true if (H.HY 15 a Sheda pair (7. 140 of G

MNote that every strong Shoda pair 1s a Shoda pair, but the converse 1s not true.

Example

gap» G:=AlternatingGroup (3], ;

gap» B:=AlternatingGroup (4],

gap®» H = Group [ (1,20 (3,4), (L, 3)(2,4) )
gap®» IsStrongShodaFaic| G, %, H )

fFalse

gap» IsShodaPair( G, B, H |

Erue

32.3 IsStronglyMonomial

& 1s5tronglyMoncmial | G ) [operation)

The input G should be a finite group.
Returns true if & 1s a strongly monomial (7. 16) finite group.
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Example

gap® S4:=SymmetricGroup (4],
gap®» IsStronglyMonomial (547,
Erue

gap®» G:=SmallGroup (24, 3);;
gap® IsStronglyMeoncomial (G)
false

gap» IsMonomial (G)

fFalse

gap® G:=imallGeoup (LOOO, 3E];;
gap» IsMonomial (G)

Erue

gap® IsStronglyMeoncmial (G)
false
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Chapter 4

Idempotents

4.1 Computing idempotents from character table

4.1.1 PrimitiveCentralldempotentsByCharacterTable

o PrimitiveCentral IdempotentsByCharacterTable| FG ) [ peralion)
Returns: alist of group algebra elements.
The input FG should be a sermisimple group algebra.
Returns the 115t of primitive central idempotents of FG using the character table of & (7.4).

Example

gap>» Q53 = GroupRing| Raticnals, SymmetricGeoup (3] i

gap> PrimibtiveCentralldempokbentsByCharactecTable [ Q53 ),

[ [LAE)* [+ [-LAE)* (2, 30+ [-LFE)*[L, 2]+ ([LAR)* (1,2, Ip+[LFR*[L, 3, 20+ [-LFR)*[1, 3},
(2/30+ 0+ (=143 (1,2, 30+ (=130 + (1, 3,20, [L/B)*[D+([LFRI* (2, 30+ (LFB)*[L, 2] +[1/

BI* (1,2, 3+ (LA * (L, 3, 2)+(1/R)*[L,3) ]

gap® PG:=GroupRing | Raticnals , SmallGroup(24,3) )

<algebra-with-cne ower Rakbiconals, with 4 generators®

gap> FG:=GroupRing [ CF(3) , SmallGroup(24,3] };

<algebra-with-one owver CF(3), with 4 generakors>

gap® pcifi = PrimitivelentralldempobtentsByCharackerTable (RG]

gap> pcifi = PrimitivelenktralldempobtentsByCharackerTable (FGE);;

gap> Length [pcilGE]

3

gap® Lengkth [pocif()

2

4.2 Testing lists of idempotents for completeness

42.1 IsCompleteSetOfOrthogonalldempotents

§) IzCompleteSet0iOrthegonal Idempotents | B, ) [@peralicn)
The input should be formed by a nng & and a list r of elements of &

165
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Returns t rue if the 1ist r 15 a complete list of orthogonal dempotents of &, that 13 if the surn of the
glements of r is the identity of & and for every e, f € r one has &* = e and e* f = 0if e and f occupy
different positons in r. No claim 1s made on the idempotents being central or primibive.

MNote that if a non-zero element ¢ of & appears 1n two different posibons of r then the output 15
false, and that the list r must not contain zeros,

Example
gap® [55 := GroupRing( Raticnals, SymmetricGeoup (3] )
gap» idemp := PrimitiveCentralldempotentsByCharacterTable [ 055 1
gap» IsCompleteSet0f0cthogonalldempotents [ 553, idemp );
Erue
gap» IsCompleteSet0Ef0rthogonalldempotents ( 55, | One [ DQS3 ) ] g
Erue
gap» IsCompleteSet0f0cthogonalldempotents ( 553, | One[ 0S5 ), One[ QS5 ) 1
false

4.3 Idempotents from Shoda pairs

4.3.1 PrimitiveCentralldempotentsByStrongSP

G PrimitiveCentral IdempotentsByStrongSe] EG ) [aLLri bule)

Returns: alist of group algebra elements.

The 1nput EG should be semisimple group algebra of a fimte group & whose coetficient field F 1s
either a finite field or the field ) of rabionals.

If F =1} then the output is the list of primitive central idempotents of the group algebra FG
redlizable by strong Shoda pairs (7,15} of G,

If F 15 afinite field then the output 15 the list of primitive central 1dempotents of F & realizable by
sirong Shoda pairs (K, /) of & and gcyclotomic classes modulo the index of A in K (7.17).

If the Tist of primifive central idempotents given by the output iz not complete (1.e. 1f the group &
1s not strongly monomial (7.16)) then a warning 1s displayed.

Example

gap> PG:=GroupRing| Raticonals, AlternatingGroup (4] ]

gap> PrimikiveCentralldempokentsBySkrongsP[ QG )

[ (LA 2y * [+ (L 2y %2, 3,40+ [LFAL2) % (2,4, 30+ (L2 % (L, 2) (3, 4)+([LAL2)* (1,2, 3)+][1f
L2y * (1, 2,4+ [L/12)* (L, 3, 2+ (L0221, 3, 4)+[LFL2) % (1, 3y (2, 4)+[1F12)*
L4, 2)+ L2y %L, 4, I+ ([LAL2y* (1, 4)(2,3),

[LABT* I+ [-LAL2) % (2, 3,40+ (L1120 % (2,4, 33+ (LFE* (L, 20 (3, 40+ [-LFL20% (1,2, 31 +]
=LAL2)y (L, 2, 40+ (-LAL2) (L, 3, 2+ (-LAL2) (L, 3, 4+ (L FR (L, 3 (2,404 [-LFL2 )
(L4, 27+ [-1/12)* (L, 4,3)+[LFR)*([L,4)([2,3],

34+ D+ [-1/4)* (1,27 (3, 40+ [-LA4 Y 1, 3) (2, 40+ 2174 % (1, 4 (2, 3) ]

gap>» QG := GeroupPing| Raticnals, SmallGeoup(24,3) ).

gap> PrimibiveCentralldempokbentsBySbcongSP ([ QG )

Wedderga: Warning!!!

The cutput 15 a WON-COMPLETE lisk of prim. cenktral idemp.s cf tEhe inpuk!

gap> FG = GeroupPing| GF (2], Group([L,2,3)) )::

gap> PrimikiveCentralldempokentsBySkrongsP [ FG )

Lo[2(2) " m >+ (2 2) 700 * (1,2, 33+ [2[2) 703 * (1, 3, 2),
(ZEy"op*l,2, 3+ 22)"0)+(1,3,2) ]
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gap® FG := GroupRing[ GF (3], SmallGroup(24,3) J;;

gap> PrimibiveCentralldempokbentsBySkcongSP( FG )

Wedderga: Warning!!!

The cutpuk 15 a WON-COMPLETE lisk of prim. cenktral idemp.s cf Ehe inpuk!

432 PrimitiveCentralldempotentsBySP

§) Primitivelentral ldempoctent=By3E( QG ) [Funclicn)

Returns: alist of group algebra elements.

The input should be a rational group algebra of a finite group G,

Returns a list containing all the primntive central 1dempotents ¢ of the rabional group algebra OG
such that ¥ (e} # O for some irreducible monomial character y, of G.

The output 18 the Tist of all primibive central 1dempotents of 0G 1f and only 11 G 15 monomal,
otherwise a warmng message 1s displayed.

Example

gap» QG = GroupPing | Raticnals, SymmeteicGroup(4) )1,

<algebra-with-cne over Rakicnals, with 2 generators®

gap» poli=PrimitiveCentralldempotentsBysP [ QG )

[ [Lfgdy*+(Li24)y* (3, 40+ (L7244 * (2, Jp+ (L1724 % (2,3, 4)+ (1724 % (2,4, 3)+[L7z24)*
(2o 40+ (L2440 [L, 20+ [LA24) %L, 2) (3, 40+ (17240 % (1,2, 30+ (17240 %(1,2,3,41+(1/
d4y* (L, 2,4, I+ (L2002, 0+ (1 24 (1, 3,20+ (15240 (1, 3,4, 2) + (14524
[Ly3y+(Lli2ay* (1, 3,40+ (L2440 % (L, 3y (2, 40+ (L7240 * (L, 3,2, 4)+[L/24) %1, 4,3,2)+]
LAzay* (L4, 20+ (1240 * (1,4, )+ (LF24) * (1, 4)+(1724) * (1, 4,2, 31 +[LF24) % [1, 4)
(2,37, [Lf24)* [ +(-1724) (3, 40+ (-2 (2, I+ (L7240 % (2,3, 41+ (L/24) %

[2ed, 3V H[-1724) %2, 40+ [-L/ 24 % (L, 2)+[LA24 (L, 2) (3, 40+ (17240 % (1,2, 31+ L/
24rH (L, 2, 3,40+ 240 (L, 2, 4, 3L 240 (L, 2, 40+ (024 (L, 3, 2 +[-Lf24) +
(1,3, 4,20+ (-L/200 Y [L, 3)+(1F24) % (1, 3, 4+ (L2 * (L, D) (2. 4+ [-1724) *

(1,3, 2,40+ (-L724)% (1,4, 3,20+ (1724 % (1, 4,20+ ([L/24)%[L,4,3)+[-1/724) *[1,4) +]
“l24) x4, 2, I +LA24) (1,40 (2,30, (A8 A+ (-LfE (340 H (-8 R 2,00+
SR P B o el =0 T R I o o O N A Y S S T (O T A= W S I = I

[Le2, 4, 30+ (L3 (L, 3,4, 2 +[-1/8) %L, 20+ [-L7/8y* (L, 3) (2, 40+ [Lf8)*[L,3,2,4)+]
LAgy*(L,. 4,3, 2)+[-L/a)*[L, 4+ (L7 *[l. 4,2, 71+ ([-Lsa >l 4)(2,3),

(380 O+ 8+ (3, 0+ (L) * (2, 3)+ (L8 + (2, 40+ (178) F (1, 20 +(-1/8) * (L, 2) (3. 4)+]
-l/g)* (L, 2, 3,4 )+ (L8 F (1,2, 4,30+ (-8 (L, 3,4, 2+ (L8 Y (L, 3+ [-Lf8) % (1, 0)
[2e4)+[-1/8)* (1, 3, 2,40+ [-1/8)* (L, 4, 3,20+ [L/a8)* (L, 40+ [-L/8) %1, 4,2, 31+ [-L/
grr (L 402,30, (LARY*[)+([-LAL 2y * (2, 3,40+ [-LfL12)* (2,4, 3)+[L/B)*[1,2) 13, 4)+]
“LAL2)y (L, 2, I+ (L2 AL 2, 40+ (-LAL2) (L, 3, 20+ (-LAL2) (L, 3,4+ [LFRY (L, D)
(2, 4)+[-1F12)* (L 4, 20+ [-LAL2) % (L, 4, 3)+(LFe)* (1,4 (2,3) 1]

gap» IsCompleteSetDEPCIs (DG, pol);

Lrue

gap> P53 = GroupRing| Raticnals, SymmetricGeoup 3] );;

gap> pcil:=Primitivelentral IdempobenksBySP [ Q23 )

Wedderga: Warning!'!

The output 1s a WON-COMPLETE lisk of prim. cenktral idemp.s of the inpuk!

gap> IsComplekeletDEPCIs [ Q53 , pol |

false
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The output of PrimitiveCentralldempotentsBySE  (4.3.2) contains  the output  of
PrimitiveCentral IdempotentsByStrongsSe (4h3.1), possibly properly.

Example

gap>» QG := GeroupPing| Raticnals, SmallGeoup[48,28) )1

gap» poli=PrimitiveCentralIdempotentsBys0( QG ).

Wedderga: Warning!!

The outpukb is a NON-COMPLETE list of prim. cenktral idemp.s of the inpub!
gap» Length [pei);

E

gap» spci:=PrimitivelentralIdempotentsByStrongsSP [ OG )

Wedderga: Warning!!!

The outpukb is a WOWN-COMPLETE list of prim. cenktral idemp.s of the inpub!
gap> Length [spci);

]

gap> IsSubsek [pci,speol] ;g

Lrue

gap> DG:=GroupRing [Rationals, SmallGeoup (1000, 86));

<algebra-with-one over Raticnals, with B generakoes:

gap® IsComplebeSetDEPCIs | QG , PrimitiveClentral IdempobentsBySP (QG) )
Lrue

gap> IsComplebeletDEPCIs | QG , PrimitivelenbtralIdempobentsBySbrongsl [QG) )
Wedderga: Warning!!!

The outpukb is a NON-COMPLETE list of prim. cenktral idemp.s of the inpub!
Ealse
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Crossed products

The package Wedderga provides functions to construct crossed products over a group with coefficients
n an associative nng with deniity, and with the mulbiphcabon determined by a given achon and
twishing (see 7.6 for definibons). This can be done using the funchion CrossedProduct (5,110

Note that this funchion does not check the associabivity conditions, so in fact 1t 15 the NC-version
of itself, and its output will be always assumed to be associative, For all crossed products that appear
n Wedderga algonthms their associativity follows from theoretical arguments, so the usage of NC-
method 1n the package 1s safe. 1f the user will try to construct a crossed product with his own action
and twisting, hefshe should check the associabvity condibions himself/herself to make it sure that the
result 18 correct.

5.1 Construction of crossed products

51.1 CrossedProduct

O CrossedProdact | B, G, act, twist ) [ LLri Buules)
Returns: Ringin the category IsCrossedProduct.
The input should be formed by:
¥ an associative ring &,
*a group G,
* a funchion act (RG, g}, on two arguments: the crossed product BG and an element g in . 1t must
returm a mapping from & to & which can be applied via the "7 operabion, and

* a funchon twist (RG, g, h) on three arguments: the crossed product R and a pair of elermnenis
of &. 1t must return an invertible element of 8.

Returns the crossed product of  over the ring & with action act and twisting twist.

The resulting crossed product belongs to the category 1sCrossedProduct, which is defined as a
subcategory of IsFLMLORWithlne.

An example of the trivial achion:
Example

ack := funcktion (B3, a)
return IdentityMapping [ LeftActingDomain( RG ) ),
end;

and the trivial twisbing:

169
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Example
Ewistk := funckien| RG , g, 0 ]

retuirn One [ LeftActingDomain( BRG | ]
end;

Let n be a positive integer and &, a complex primitive root of unity. The natural action of the group of
units of Z,,, the ring of integers modulo r, on (5, ) can be defined as follows:

Example

ack := funckticn (B3, a)
return ANFRAutomorhism( Leftfctingfomain| BG ) , Ink[ a ) };
end;

In the following example one constructs the Harmltonian quaiemion algebra over the rabionals as a
crossed products of the group of units of the cyclic group of order 2 over ()[i) = GaussianRationals.
One realizes the cyclic group of order 2 as the group of units of Z/4Z and uses the natural 1somorphism
Z/AT — Gal (0() /1) to describe the action.

Example
gap> R := (GaussianPakticonals;
GaussianRaticnals
gap> 3 := Uniks [ ZmodnZ (4] ]
<group wikh 1l generakors:
gap*
gap> ack := funckien[RG,q)
» return ANFAutomorphism| LeftActkingDomain(BG), Ink(g) };
> end;
funckion|[ RG, g | ... end
gap>
gap* btwiskl := functicn( BG, g, 0 )
* 1E IsOne[g) cr IsOne([h) then
E reburn One [LefbActingDomain (BG) ) ;
> else
E return -One [LeftActingDomain (RG] );
» Fi;
> end;
functicon| RG, g, 0 ] ... end
gap®» RG := CrossedPreoduckt( B, G, ack, btwiskl )

“crossed produck over GaussianRakicnals of a group of size 23
gap» i := E[4) * One[G) "Embedding (G, BG) ;
(ZmodnzZ0bi( 1, 4 )] *[(E(4])])

gap®» j := ZmodnZ0bi (3, 4] "Embedding (G, RG],
(ZmodnzZObi ([ 3, 4 ))* (1)

gap> 172

(ZmednZOby[ L, 4 ))* (-1}

gap* J°2;

(ZmodnzZObi [ 1, 4 ))*([-1)

gap* 1*3+1%i;

“reror of ...

One can construct the following generalized gquaternion algebra with the same action and a different
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twishng
Qi il = L 2= 3ji= &)
Example

gap®» twiskZ2:=functicn[RG,qg,h)

» 1F IsOne(g] cr IsOne(h] then

E return One [LeftActingDomain| BG )]

» else

E return -3*0ne [LefthctingDomain RG ]}

» Fi;

> end;

functicon| RG, g, 0 ] ... end

gap®» RG = CrossedPreoduckt( B, G, ack, bwisk2 ),

<orossed produck over GaussianRaticnals of a geoup of size 2%
gap» 1 := E[4) * One[G) "Embedding (G, BG) ;
(ZmodnzZObi( 1, 4 J)*(E(4))

gap®» j := ZmodnZChbi(3,4) "Embedding (G, RG)
(ZmodnZibi( 3, 4 1)+ (L]

gap> 1°2;

(ZmodnzZibi( 1, 4 1)+ (-1

gap> j-2;

(ZmodnzZlbi( 1, 4 1)+ (-3

gap> i*j+j*i;

<zeror of ...

In the following example one shows how to construct the Harmltonian quaternion algebra over the
rabionals using the rabionals as coefficient nng and the Klein group as the underlyving group.

Example

gap» C2 = CyclicGroup([2);
<pc group of size 2 with 1 generators®
gap> 5 := DiececkProduckt (C2,C2];

<pc group of size 4 with 2 generakors®

gap®» ack := functicn [RG,a)

E reburn I[dentibtyMapping [ Leftbfctingfomain [RG));
> end;

funcbion| BG, a ) ... end

gap> twisk = Eunckion| BG, g, b ]

» local ene,gl,g2,hl,n2, G
3 := UndeclyingMagmal| B3 )
one := One| C2 )

gl := Image| Projecticon(G, 1), .
g2

nl

Image| Projeckicon(G,2),

=]

=

= 7]
= ol
= Image| Projection(G,1l), b
» h2 := Image| Projection(G,2), b )
*» 1Eg=0ne[ G| crh = One[ G ) then cekurn L;
E elif IsOne(gl) and not IsOne (g2] and nok IsOne[hl) and not IsOne[n2)
E Lhen retuirn L;

E elif not IsOne[gl] and IsOne(g2] and IsOne[hl] and nok IsOne[h2)

E then return L;

=

elif not IsOne[gl) and not IsOne[g2] and not IsOne [hl) and IsOne[h2)
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E then return L;

e else rekburn -1,

» Fi;

> end;

funckion[ BRG, g, b} ... end

gap> HR := CrossedProduck | Rationals, G, ack, kwisk |
<crossed produck over Rakionals of a group of size 4>

Changing the rationals by the integers as coefficient nng one can consiruct the Harmiltonan quatermon
rnng.

Example

gap» HZ = CrossedProduckt( Inkegers, G, ack, bwisk )
<orossed produck ower Inktegers of a group of size 4>
gap>» 1 := Generaktocrs0EGeoup [G) |1] "Embedding [G,HZ) ;
(ELi* (1)

gap» j := GeneratocrsDEGeoup [G) 2] "Embedding [G,HZ) ;
(E23+ 1)

gaps 12,

[¢identiky> of ...])*[-1)

gap> 372,

[¢identity> of ...)*%[-1]

gap>® i*3+31*%i;

<rzerox of ...

One can extract the arguments used for the construction of the crossed product using the following
attributes:

* LeftActingDomain for the coetficient nng.

* UnderlyingMagma for the underlying group.

¥ ActicnForCrossedfroduct forthe achon.

* TwistingForCrossedProduct forthe twishng.
Example

gap>» LeftActinglDomalin[HZ);

Inkteqgecs

gap» G:=UndeclyingMagma (HZ);

<pc group of size 4 with 2 generaktors®
gap> ac := AckionForCrossedProduck (HI);
funckion[ BG, a ) ... end

gap» Lisk[ G, = —-> ac| HI, x 1 ],

| IdentityMapping( Integers |, IdentityMapping( Inkegers |
IdentityMapping[ Inkegecs |, IdenbtityMapping| Inkegers | ]

gap®» btw = TwistingForCrossedProduck [ HI ),

funckion| BG, g, b} ... end

gap> List[ G, x —» List[ G, y —> bw[ HZ, %, v | ) ]}
(L 1 1, L -1, -1, 1] [l 1 - -1], |1, -1, L, -1 ]]

Some more examples of crossed products coming from the Wedderbum decomposition (7.3) of group
algebras.
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Example

gap®» G := SmallGrowp(32,307);

<pc group of size 32 with 3 generators®

gap* A := SimpleflgebraByCharacter( GroupBing [Raticnals, G), Icc(G) [LT7]) ¢
[ “crossed product with center Rakicnals cwver GaussianBaticnals of a group of 4
size 227 2, 2 1)

gap® SimpleflgebraByCharactesInfo | GroupRing [Raticnals,G), Ice(G) [17])
| 2, Raticnals, 4, | 2, 3, 211

gap®» B := LeftActingDomain (&),

“orossed produck with cenker Baticnals over GaussianBaticonals of a group of 51
e 2

gap®* L := LeftActingDomain (B];

GaussianRakticnals

gap» H := UndeclyingMagmal 2 );

<group of size 2 with 2 generatoes>

gap* Elements[H];

| ZmzdnZiby( 1, 4 ), ZmodnZCbjy( 3, 4 ) 1]

gap» 1 := E[4) * One[H) Embedding(Hd,2);

(ZmodnZOby [ 1, 4 )Y [E(4])

gap*» j := ZmodnZChi(3,4) "Embedding(d, B);

[(ZmodnZOby( 3, 4 )% (L)

gap» 172,

(ZmodnZOby [ 1, 4 1) *[-1)

gap* 17,

(ZmodnZOby( 1, 4 1) *[-1)

gap> i*3+1*i;

<zero» of ...

gap» ac = ActionforCrossedProduckt| B ),
function| BG, a ) ... end

gap®» btw = TwistingForCrossedProduck [ B )
function| BG, a, b} ... end

gap® List[ H , = -» ac[ B, % ) ]}

| IdentityMapping( GaussianRaticnals ), AWFAukbomorphism| Gaussianfaticnals,
1]
gap» List[ H , = —> List[ #H , y —-» bw[ By, %, ¥ | 1 1
[ 1 171y 1, =L 11
Example

gap>® PG:=GroupRing | Raticnals, SmallGroup(24,3) ).,
gap>» WedderburnDecompositicon [G);
| Rakiconals, CF(3), [ Baticnals"] 3, 31 1,

“crossed produck wikh cenkter Rakionals ower GaussianBaticnals of a group of &
size 2>, “crossed produck wikh cenker CF (1) owver AsField| CF([3), CF(

12) ) of a group of size 23 ]

gap> R:=WedderburnPecomposition | QG | |4];
<crossed produck with cenbker Rationals cwer GaussianRaticonals of a group of 514
e 2»
gap> IsCrossedProduck [R);
Lrue
gap> IsAlgebra [R];
Erue
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gap> IsRing [R);

Lrue

gap> LeftfActinglomain| B )

GaussianPakicnals

gap> AsLiskt [ UnderlyingMagmal B ) )

| ZmodnZ0by[ 1, 4 ), ZmodnZCbil 3, 4
[

Il
B

gap® Print [ ActionForCrossedProduckt 1 Peink ["Wo");
funckion [ BG, a )

lozal cond, redu

cond := OperaticnRecord| BG ) .cond

redu := OperaticnRecord| BG ) .redu

return

AWrAuktomorphism| CF[ cond ), Ink [ PrelmagesBRepresentative| redw, a | ) ),
end
gap®» Prink [ IwisktingForCrossedProduck [ R ) ), Prink ["4n");
function [ BG, a, b )

lozal crderrook, cocycole;

orderroct = OperaticnBecord | RG | .crdecrook;

cooycle = OperakticnPecord| RG | .cocycle;

return B crdecroct ) 7 Ink [ cocycle( a, b))y

end

gap®» IsAssociatiwve [R);

Erue

gap*» IsFinite[R];

fFalse

gap*» IsFinitelimensicnal (B];

Erue

gap» AsList [Basis(R));

| [ZmodnZ0bji( 1, 4 J)*(1l), [ZmeodnZ0bj[ 3, 4 J1*[Ll) ]
gap» Generatcors0fLeftOperatocrBingWithOne (B);

| [ZmodnZ0bil( 1, 4 j1*(l), [ZmodnZlbi( 3, 4 J1%(Ll) 1]
gap> One[R);

(ZmednZ0by [ 1, 4 1) *[L)

gap» Zerocl[R);

<rzerox of ...

gap» Characteristic([R];

I

gap» CenterDECeossedProduct [R);

Paticnals

The next exarmple shows how one can use CrossedProduct (5.1.1) to produce generalized quatermon
algebras.

Example
gap> Quat := functicon(R,a,b)
=
» local G, ackt, twisk;
=
» if nokfa in B and b in B and a <> Zero[B) and b <> Zero(R) ) kthen
» Brror("¢a» and <b>® must be non zero elemenks of <R=!'!'!");
» Fi;
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G := ZmallGroup(4,2];

ack := functicon[BG,a)
rebturn IdentibyMapping [ LeftfctkingDomain[RG));

end;

Ewist := funckien| RG, g, 0O ]
local cne,gl,g2;

one := DOne[G);

gl = G.1;

g2 = G.2;

if g = one or b = one then
return One [R);
elif g = gl then

if h = g2 then
return One [B) ;
else
reburn a;
Ei;
elif g = g2 then
if h = gl then

return —-0One[R) ;
elif h=g2 then
return b;
else
retuirn -b;
Ei;
else
if h = gl then
retuirn -b;
elif h=g2 then
retuirn b;
else
return —a*hb;
Ei;
Ei;
end;
retuin CrossedProduct (B, G, ack,bwisk);

R T T L T T T L T T T T T T T T T T L C O T T

end;
function( B, a3, b ) ... end
gap» HQ := Quat [Ratienals, 2, 3);

<orossed produck over Raticnals of a group of size 4>

gap» G := UnderlyingMagma (HO);

<pc group of size 4 with 2 generators®
gap» btw = TwistingForCrossedProduck [ HD )
functicon| BG, g, b} ... end

gap» Lisk[ G, % -» Lisc[ G, y -» bew[ HOQ, =, ¥ | ) )i
[+t L 1 L, 11, L 3, -1, -31, [l 1 & 21, 11 3, -3, -&] ]
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5.2 Crossed product elements and their properties

52.1 ElementOICrossedProduct

O Element OfCrossedProduct | Fam, zerccoceff, coeffs, elts ) [properly)

Returns  the element of the crossed product ml = cl + .. 4+ mr * cn, where
elts = [ ml, m2, ..., ma ] 1% a hist of magma elements, coeffs = [ cl, c2, ..., co ]11s
a list of coefhicients. The output belongs to the crossed product whose elements Tie n the farmly Fam.
The zero element of the coethoient ring containing ci must be given as zerccoeff, and later can be
obtained using ZercCoefficient.

The output will be in the category IsElementOfCrossedProduct, which 15 a subcategory of
IzRingElementWithlnverse. It will have the presentafion IsCrossedProductChjl0efaultRep.

Sirmilarly to magma rings, you can obtain the hist of coefficients and elements with .

Also note from the example below and several other examples in this chapter that instead of
ElementCfCrossedProductyou can use Enkbedding ko embed into the crossed product elements of
the coefficient ring and of the underlying magma.

Example

gap> PG := GroupRing[ Rakicnals, SmallGroup(24,3) §;
“algebra-with-one over Raticnals, with 4 generakoes:

gap> R := WedderburnDecomposition| QG | [4];

<crossed produck with center Rationals cover GaussianRaticonals of a group of 514
e 2>

gap> H := UnderlyingMagmal B J;;

gap® fam := ElementsFamily [ FamilyOby[ B ) |,

gap®» g := ElementDfCrossedProduct [ fam, O, | 1, E(4) ], AsList [H] };
(ZmodnZObi [ 1, 4 ) *[L)+[2modnZ0bi[ 3, 4 )1 *[E(4)])

gap> CoefficientsAndMagmaElements | g );

| ZmednZOby( L, 4 ), 1, Zmedn20bi( 3, 4 ), E(4) ]

gap> t = List[ H, x -» x Embedding( H, R ] |:

| [ZmodnZlbji( 1, 4 ))*(1l), [EmodnZ0bi( 3, 4 JI*(L) ]

gap> £ [1] + E|2]*E[4);

(ZmodnZObi [ 1, 4 ) *[L)+[2modnZ0bi[ 3, 4 )1 *[E(4)])

gap> g = £[1] + E[4)* 2],

False

gap> g = E|1] + E[2]*E (4],

Erue

gap» h := ElementDfCrossedProduct [ fam, O, | E(4), 1 ], AsList [H)] });
(ZmodnZObi( 1, 4 ))*(E(4))+[ZmodnZ0b]( 3, 4 )1 (1)

gap> g+i;

[(ZmednZObi[ L, 4 1) *[L+E (4] )+ (ZmednZ0bi( 3, 4 ) )% [L+E[4)]
gap® g*El4];

[(ZmednZDbi[ 1, 4 1) *[E[4))+[ZmodnZ0b]( 3, 4 )1+ [-1)

gap® G[4)*q;

(ZmodnZObi( 1, 4 J))*(E(4))+[ZmodnZ0b]( 3, 4 J)* (1)

gap> g*hy

(ZmodnZ0by( 1, 4 )] *[2*E(4)]




Chapter 6

Useful properties and functions

6.1 Semisimple group algebras of finite groups

6.1.1 IsSemisimpleZeroCharacteristicGroupAlgebra

§) I=SemizimplefercCharacteristicGrouphlgebra | HG )

The input must be a group ring.

[properly)

Returns t rue if the input KG 15 a semisimple group algebra (7.2) over a field of characteristic zero

(that1s if & 1s fimte), and false otherwise.

Example

gap» CG:=GroupRing [ GaussianRaticnals, DihedralGecup [LE) )3
gap» IsSemisimpleZercCharacteristicGroupilgebral CG )
Lrue

gap» FG:=GroupRing[ GF (2], SymmetbricGroup(3) §;:

gap» IsSemisimpleZercCharacteristicGroupilgebral FG )
false

gap» £ := FreeGroup("a");

<free group con bthe generakcrs | a 1@

gap» FL:=GroupRing [Raticnals, £);

<algebra-with-cne ower Rakbiconals, with 2 generators®
gap» IsSemisimpleZercCharacteristicGrouphlgebira [FE);
false

1.2 IsSemisimpleRationalGroupAlgebra

§) IzSemizimpleRaticnal Groupilgebra | BG )

The input must be a group ring.

Returns true if K18 a semisimple rational group algebra (7.2) and false otherwise.

Example

[properly)

gap> DG:=GroupRing | Raticnals, SymmebricGroup(4) );;
gap> IsSemisimpleRaticnalGroupdlgebral QG )
Erue

177
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gap® CG:=GroupRing | GaussianRaticnals, DihedralGroup[LE) ) ;;
gap> IsSemisimpleRationalGroupAlgebral CG )

Ealse

gap> FG:=GroupRing [ GF (2], SymmebricGroup (3] );;

gap> IsSemisimpleRaticnalGroupdlgebral FG )

falze

6.1.3 IsSemisimple ANFGroupAlgebra

& IsSemizimpleANEGrouphlgebral KG )

The input must be a group rng.

[properly)

Returns true if KG 1s the group algebra of a finite group over a subfield of a cyclotormc extension

of the rationals and false otherwise.

Example
gap» IsSemisimpleANFGrouphlgebra [ GroupRing [ WE (S, [4]) , CyclicGroup (23]
Erue
gap> IsSemisimpleANFGrouphlgebra( GroupRing [ GF(L1] , CyclicGroup [23)
fFalse

6.1.4 IsSemisimpleFiniteGroupAlgebra

(& IsSemisimpleFinitebroapalgebral KG )

The input must be a group rng.

[properly)

Returns true if K& 1s a semisimple finite group algebra (7.2), that 1s a group algebra of a finite

rroup G over a field K of order coprime with the order of &, and £alze otherwise.

Example

gap» FG:=GroupRing[ GF (3], SymmetbricGroup(3) ;.
gap®» IsSemisimpleFiniteGrouphlgebral FG )

Erue

gap» KG:=GroupRing[ GF (2], SymmetricGroup(3) ;.
gap®» IsSemisimpleFiniteGrouphlgebral BG ),

false

gap®» QG:=GroupRing[ Baticnals, SymmetricGroup (4] ];;
gap® IsSemisimpleFiniteGrouphlgebral QG )

false

6.2 Operations over group rings elements

62.1 Centralizer

O Centralizer| G, = |
Returns: asubgroup of a group 6.

[&peralicon)
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The input should be formed by a finite group G and an element x of a group nng FH whose
underlying group H contains G as a subgroup.
Returns the centralizer of x 1n G.

This operation adds the new method to the operation that already exists in GAP.

Example

gap>» DlE := DihedralGroup(lE);

<pc group of size 16 with 4 generators>

gap> QCLE := GroupPing| Rakicnals, DLE ]
<algebra-with-one over Raticnals, with 4 generakoes:
gap>» a:=Q0lE.l;b:=0Dle.2;

[L)*El

[L)*E2

gap® e := PrimitiveCentral IdempotentsByStrongSP [ QOLE) (3]
gap> Cenktralizec| DLE, a;

Group (| EL, E4 1)

gap> Centralizer| DLE, b);

Group (| E2 1]

gap> Centralizes | DLE, ath];

Group (| £4 1)

gap> Centralizer| DLE, =];

Geoup | EL, £2 1)

622 OnPoints

o 0nPeoints) %, g ) [eperalion)

C’ Vo, gl [@peralicn)
Returns: an element of a group ring.

The input should be formed by anelement = of a group ring F G and an element g in the underlying
croup & of FG.

Returns the conjugate x¥ = g 'xg of x by g. Usage of a” g produces the same output.

This operation adds the new method to the operation that already exists in GAP.

The following example 1s a continuation of the example from the deseripbion of Centralizer
(6.2.1)

Example

gap>» List[DlE, x—>a"x=a);

| true, tiruwe, false, false, tiue, false, false, true, false, false, false,
false, false, false, false, false |

gap>» List[DlE, x—>e"x=e];

| true, btruwe, truwe, kbrfue, btrue, tiue, btrue, Lrue, true, Lrue, btrue, Liue
tLrue, btrue, true, true ]

gap>» ForAll [DlE,x—>2a"x=a);

Ealse

gap> ForfAll [DlE, x—>e"x=8];

Lrue




150

62.3 AverageSum

O hverageSum| BG, X ) [ peralion)

Returns: an element of a group ring.

The input must be composed of a group ring BG and a iinlke subset X of the undedyving group & of
RG. The order of ¥ must be invertible in the coefficient ring & of REG.

Returns the element of the group ring BG that 15 equal to the sum of all elements of X divided by
the order of X

If ¥ 15 a subgroup of & then the output 1s an 1dempotent of KRG which 1s central 1f and only if ¥ 15
normal 1n G,

Example

gap» G:=CDihedralGroup(lE];;

gap®» QG:=GroupRing[ Raticnals, G |;,

gap» FG:=GroupRing[ GF (3], G };;

gap» e:=fverageSum[ 0G5, CDerivedSubgroup [G) )

[Lid) *<identity> of ...+ (L4 *ES+ (L) E4+[L/4) *ET*EL
gap» E:=fwverageSum[ FG, CDerivedSubgroup (G) )
[Z[3)"2)*<idenkiky> of ...+ [Z[3)72)*EI+[Z(3) "2)*E4+ (2 [5)"2)*EI*E4
gap®» G=Centralizer(G,e];

Erue

gap®» H:i:=Subgeoup (G, [G.1]);

Group (| EL 1)

gap» e:=fverageSum[ 0G5, H |

(L2 *<identity> of ...+ [Lf2)*%E1

gap» G=Centralizer(G,e};

false

gap» IsWormal (G, H)

false

0.3 Cyclotomic classes

6.3.1 CyclotomicClasses

§) CyclotomicClas=ses| g, o ) [eperalicn)
Returns: aparttonof [0 n].
The input should be formed by two relatively prime positive integers,
Returns the g-cycletomic class (7.17) modulo .

Example
gap> CyclobtomicClasses| 2, 21 )y
| 1o}, 1| 1L, 2, 4, 8, 1l&, 1L ], | 3, &, 12 ], | 5, LlO, 20, 1%, 17, 13 ]
| 7 14 1, | % 12, 13 ] ]
gap> CyclobomicClasses | 10, 21 )
| to}], 111, 10, l&, 13, 4, 1% ], | 2, 20, L1, 5, &, 17 1],
| 3, % &, L8, 12, 1571, [ 71, | 141711
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632 IsCyclotomicClass

§) I=CyclotemicClass| g, n, C ) [eperalicn)

The input should be formed by two relabively prime positive integers g and n and a sublist C of
[0..5].
Returns true if Cis a g-cycletomic class (7. 17) modulo o and £alse otherwise,

Example

gap> IsCyclotomicClass|( 2, 7, |1.2,4] 1
Erue

gap» IsCyclotomicClass|( 2, 21, [l,2,4] )
false

gap» IsCyclotomicClass|( 2, 21, [3,E,12] 1
Erue

6.4 Other commands

6.4.1 InfoWedderga

(& InfoWedderga finFo ¢l ass)

InfowWedderga 1s a special Info class for Wedderga algorithms. 1t has 3 levels: 0, 1 (default) and
2. To change info level to k, use command Set Infolevel { InfoWedderga, k).

In the example below we use this mechamsm to see more details about the Wedderburn compo-
nents each bme when we call Wedderburnbecompos it ic.

Example

gap*» SebInfolevel (InfoWedderga, 2);
gap®» WedderburnbDecompositicon [ GroupRing[ CF[5), DihedralGroup( LB ) ) I

$I Infe wersion : | | L, CF(3) 1, L L, CE(S) 1, | 1, CcF(a) 1, | 1, CFIT) 1,
| 2, CF(3) 1, | L, we(d4o, L, 3L 1), 8, | 2, 7, 01 11
| CF[(S), CFI[3), CF(3), CE(3), [ CF(O)7] 2, 2] ),
<crossed product with cenkter WE(40, 1 1, 31 ]) over AsField[ WF[40,
| 1, 31 ]y, CE(40) ) of a group of size 2%

642 WEDDERGABuildManual

O WEDDERGABUildManuall ) [Funclion]

This function 13 used to build the manual 1n the following formats: DV], PDE, PS, HTML and
text for online help. We recommend that the user should have a recent and fairly complete TEX
distribubion. Since Wedderga 1s distributed together with its manual, it 1s not necessary for the user to
use this function. Normally 1t 1s inkended to be used by the developers only. This s the only function
of Wedderga which requires UNIX/Linux environment.
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643 WEDDERGABuildManualHTML

O WEDDERGABU1ldManualHTML] | [Funclion]

This function 1s used to build the manual only 1n HTML format. This does not depend on the
availabihity of the TEX installation and works under Windows and MacQO5 as well. Since Wedderga 1s
distributed together with its manual, 1t 15 not necessary for the user to use this function. Normally 115
ntended to be used by the developers only.



Chapter 7

The basic theory behind Wedderga

In this chapter we describe the theory that 13 behind the algorithms used by Wedderga. All the nngs
considered 1n this chapter are associabive and have an 1dentity.

7.1 Group rings and group algebras

Given a group & and a ring K, the group ring KG over the group & with coefficients in & 13 the ring
whose underlying additive group is a right & module with basis G such that the product 1s defined by
the following rule

(gr)lhs) = (gh)(rs)

forrsc Rand gk € G, and exitended to R by linearity.
A proup algebra 15 a group ring in which the coefhicient rng 1s a field.

7.2 Semisimple group algebras

A ring & 1s semisimple artinian 11 1118 a direct sum of simple left (altermnatively right) 1deals or equiv-
alenfly 1f & 18 1somorphic to a direct product of simple algebras each one 1somorphic ko a matrx fng
over a division rng.

By Maschke’s Theorem the group algebra FG 1s sermsimple arfinan if and only 1f the group G 15
finite and the characteristic of the coefficient field F does not divide the order of G,

7.3 Wedderburn decomposition

If & 1s a semisimple ring (7.2) then the Wedderburn decomposition of R 13 the decomposibion of R
as a direct product of simple algebras. The factors of this Wedderburmn decomposition are called
Wedderburn componenis of £ Each Wedderbum component of £ 1s of the form Re for £ a primitive
central idempotent (7.4 of R

Let F(& be a semisinple group algebra (7.2). 1f F has positive characterishic then the Wedderbum
components of FG are matrix algebras over finte extensions of F. 11 F has zero characteristic then by
the Brawer-Witt Theorem [Yam74 ], the Wedderbum components of FG are Brauver equivalent (7.5) o
cyclotomic algebras (7.1 1

The main funchons of Wedderga compute the Wedderbum components of a semisimple group
algebra F (G, such that the coefficient field 1s elther an abelian number field (i.e. a subfield of a finite

183
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cyclotomic extension of the rationals) or a fimie field. In the finite case the Wedderburn componenis
are matrix algebras over finite fields and so can be described by the size of the matrices and the s1ze
of the finite hield.

In the zero characteristic case each Wedderburn componenis 4 18 Brauwer equivalent (7.5) to a
cyclotomic algebra (7. 11) and therefore 4 15 a (possibly frachonaly matrix algebras over cyclotomic
algebrras and can be described numerically 1n one of the following three forms:

[ K]

[ K £ [ 0 B

[H’I Xlkl [dfl i ﬁi]?—] 1 [Tj.-‘:](j.k}l‘_—'-rﬂ]

where # 15 the matrix size, K is the centre of 4 (a finite field extension of F) and the remaining data
are integers whose interpretation 1s explained in 7,12,

In some cases (for the zero characterisbic coefficient field) the size n of the matrix algebras is not
a positive integer but a posiive rational number. This 1s a consequence of the fact that the Brauer-
Wizt Theorem [Yam74] only ensures that each Wedderburn component (7.3) of a semisimple group
algebra 15 Brauer equivalent (7.3) to a cyclotomic algebra (7.11), but not necessanly 1somorphic
to a full matrix algebra of a cyclotomic algebra. For example a Wedderburn component £¥ of a
group algebra can be a division algebra but not a cycloiomic algebra. 1n this case My (D) 15 a cy-
clotomic algebra C' for some n and therefore D can be described as My, (C) (see last Example in
WedderburnDecompositicn (2.1.1).

The main algorithm of Wedderga on based 1n a2 computational orented proof of the Braver-Witt
Theorem due to Clieanu [C1t07 ] which uses previous work by Oliviers, del Rio and 5imon [OdR504]
for rational group algebras of strongly monomial groups (7.16).

7.4 Characters and primitive central idempotents

A primitive central idempotent of a ing K 15 a non-zero central idempotent e which cannot be written
as the surn of two non-zero central Wdempotents of Re, or equivalently such that Re 15 indecomposable
as a direct product of two non-trivial hwo-sided 1deals,

The Wedderburn components (7.3) of a sermsimple nng & are the rings of the form Re for e
running over the set of prmibive central idempotents of K.

Let F & be semisimple group algebra (7.2) and ¥ an irreducible character of & (1n an algebraic
closure of F). Then there is a unique Wedderburm component 4 = 47(x) of FG such that x[4) £ 0.
Let e (3 ) denote the unigue primitive central idempotent of F G in A (%), that 1s the identity of 4 (%),
Le

Arlx) = FGer(y)

The centre of 47(3) 18 Fyx) = Flxlg) : g € ), the field of character values of y over F.

The map % — 4 ¢(¥) defines a surjective map from the set of ireducible characters of & (In an
algebraic closure of F) onto the set of Wedderburn components of F G,

Equivalently, the map ¥ — er (%) defines a surjective map from the set of ireducible characters of
G (in an algebraic closure of F)onto the set of primibve central idempontents of FG.
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If the irreducible character ¥ of & takes valuesin F then

er () = e(z) = A

= W Z'XJ[S ];',E'-

gl

In general one has

er(x) = E e(ooy).
ceGallFlxh/Fi

7.5 Central simple algebras and Brauer equivalence

Let K be a field.

A rentral simple K-algefra 15 a finite dimensional K-algebra with center & which does not have
non-trivial proper ideals. Every central simple K-glgebra is isomorphic to a matrix algebra M, (D)
where [ 13 a divizion algebra (which 15 finite dimensional over K and has centre ). The division
algebra D 1s unique up to K-1somorphisms.

Two central simple K-algebras 4 and & are said to be Brauer equivalent, or simple equivalent, if
there is a division algebra D and two positive Integers m and r such that 4 s jsomorphic to M, (D)
and & is isomorphic to M, (D).

7.6 Crossed Products

Let K beanng and G a group.
INTRINSECAL DEFINITION. A cressed product [Pasi?)] of & over R (or with coefficients n R is
aring K =G with a decomposition into a direct sum of addifive subgroups

R+G=(DA4,

gels

such that foreach g, 10 & one has:

* 41 = R there | denotes the 1dennity of &),

# :43.4,5[ = Ag,sl and

* A has aumtof RG.

EXTRINSECAL DEFINITION. Let Auf(R) denote the group of automorphisms of & and let R*
denote the group of units of K.

Let a1 & — Aut(R) and ¢ : G x G — R be the mappings satisfying the following conditions for
every g, hand &£ 1n G-

(1) algh) 'a[gla(h) is the inner automorphism of & induced by ¢(g, &) (i.e. the automorphism
xs (g k) Yxi(g, R))and

(2 t(gh &)t (g, h)* = t(g, Ak)t [k k), where for g € G and x € R we denote a(g)(x) by x¥.

The crossed product [Pas8Y] of & over & (or with coefficients 1n &), achon a and twisbiing ¢ 15 the
rng

R, G = uR
g

where {u, : g € G} 15 a set of symbols in one-to-one correspondence with G, with the addition and
multiplication defined by

IIMEF:J—F(LEE.S'):E{E[!’—I-S:JI [ugr)(uh5)= ghz[3|h)rh5
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forg e G and r,s € R, and extended to R+ G by linearity, where

The associativity of the product defined 15 a consequence of conditions (1) and (2) [Pas&2].

EQUIVALENCE OF THE TWO DEFINITIONS. Obwviously the crossed product of & over R defined
using the extrinzecal definition 13 a crossed product of & over u R 1n the sense of the first definition.
Moreover, there 15 rg in R* such that wyrp s the identity of LG and the map r — wjrpr 15 2 fing
somorphism B — R,

Conversely, let R# G = (B ,-gA4g be an (intrinsecal) crossed product and select for each g € G a
unit u, € A, of R+ (. Thisis called a basis of units for the crossed product R+ (. Then the maps
a:G—Aut(R)and G x G — R® given by

r‘g:ug]mg, i[g,h):ugh]uguh (g.hEG reR)

sahsfy conditions (1) and (2)and R+ G = R G.

The election of a basis of umits u, € 4, deterrmines the action @ and twisting ¢, If {u, € 4, : g € G}
and {v; € Az 1 g € G} are two sets of units of R = G then vy = ugr; for some units »; of R, Changing
the basis of umts results in a change of acton and twisting and so changes the exirinsecal definibon
of the crossed product but it does not change the intrinsecal crossed product.

It 15 customary to select w; = 1. In that case a(1) is the identity map of Rand (], g) =t(g 1) =1
foreach g in .

7.7  Cyclic Crossed Products
Let R+ G =P, Ag be a crossed product (7.6) and assume that G =< g > 1s cyclic. Then the crossed
product can be given using a particulary nice descriphion.

1

Select a unit « in Az, and let a be the automorphism of R given by 2 =u “ru.
If &isinfimie then set wy = «* forevery integer k. Then

R+ G = Rlu|ru = urf],
a skew polynormial nng. Therefore 1n this case A= & 1s determined by
[R.a].
If G is finite of order d then set wp = o For 0 < k< d Then b= W e Rand
R+ G = Rlu|lru = ur™ o = ]
Therefore, K= & 15 completely determined by the following data:

R, [d,a,8]]

7.8 Abelian Crossed Products

Let R+ G =D Az be a crossed product (7.6) and assume that G is abelian. Then the crossed
product can be given using a simple description.
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Express & as a direct sumn of cyelic groups:
G=< =X o< g, =

and foreachi=1,... nselect aunit u; ind,.
Each element g of & has a umqgue expression
&
=g g
where q; 15 an arbitrary integer, 1f g; has an infimie order, and 0 < k; < d;, if g has fimie order ;. Then
one selects a basis for the crossed product by taking
'k n
Uy =t o = TANY wﬁ
* Foreach i=1,.. .m, let g; be the antomorphism of R given by v =, .
“Foreach | < i< j<nlett;=u;'u; 'upr €R.
% 1f g; has finte order &; let b, = u‘f‘ = R
Then

Rtﬂz.’?[ul,...,unkuf:ufr““,uiufziiljuiui,uf‘ =#(l<i< j<n)

where the last relation vamshes if g; has infimite order.
Therefore &+ & 15 completely determined by the following data:

(R, [de@i ilioy [t ] 2ic jon]

7.9 C(lassical crossed products

A classical crossed product is a crossed product L+ G, where L/K 15 a finile Galois extension,
G = Gal[L/K) 15 the Galois group of F/E and a is the natural action of G on F. Then ¢ s a 2-
cocycle and the crossed product (7.6) L+ G 13 denoted by [L/K 1), The crossed product [L/K 1) 15
known to be a central simple K-algebra [Rei03].

7.10  Cyclic Algebras

A cyclic algebra 1s a classical crossed product (7.9) (L/K ) where LK 15 a finite cyclic field exten-
sion. The cyche algebras have a very simple form.

Assume that Gal[L/K) is generated by g and has order 4. Let 4 = u, be the basis unit (7.6) of
the crossed product corresponding to g and take the remaining basis umis for the crossed product
by sefting u, = W, i=0/1,...d 1) Then a= «* € K. The cyclic algebra is usually denoted by
(L/K a) and one has the following description of [(L/K 1)

(LK, 0 = (L/K, @) = L]u|ru = ur®, o = a

7.11 Cyclotomic algebras

A cyclotomic algebra over F 18 a classical crossed product (7.9) (F(E)/F 1), where Fisa field, Eisa
root of unity on an extension of F and £(g #)1s a root of unity for every gand & in Gal(F(E)/F).

The Brawer-Witt Theorem [Yam74] asserts that every Wedderburm component (7.3) of a group
algebra 1s Brauer equivalent (7.5) (over its centre) to a cyclotomic algebra.
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7.12 Numerical description of cyclotomic algebras

Let 4 = [F[&)/F,t) be a cyclotomic algebra (7.11), where & = & 18 a &-th root of umty. Then the
Galois group G = Gal(F[&)/F) is abelian and therefore one can obtain a simplified form for the
description of cyclotormic algebras as for any abetian crossed product (71.8).
Then the r-by-r matrix algebra M, (4 ) can be described numercally 1n one of the following forms:
“NUFE)=F,(l.e. G=1)then 4 = M, [F) and thus the only data needed to describe 4 are the
mattix s1ze 7 and the field F:
a2

* 1f & 15 cyclic (but not trivialy of order & then 4 1s a cyclic cyclotomic algebra
A = F(E)ulbu = ut™, o =)
and so M, (4} can be described with the following data
[ F k[ e B
where the integers &, d, o and [ satisfy the following conditions:
o= 1modk, PBle 1)=0modk
*1f & 1s abelian but not cyelic then M, (A4) can be described with the following data (see 7.8):
[y Foke, [de o B [V k)12 jom]
representing the r-by-n matrix ring over the following algebra:
A=FEuy, ... | Su; = ul™, uf‘ =§E", ugh, = EP o, =1, m 0<r<s<m

where
“{g1,... &m} 18 an independent set of generators of G,
* d; 18 the order of g,
* oy, [ and v, are Integers, and

e =g

7.13 ldempotents given by subgroups
Let & be a finite group and F a field whose charactenstic does not divide the orderof . 1f H 15 a
subgroup of & then set
H=|H| 'Y x
el

The element H s an 1dempotent of Fi& which 1s central in F G if and only 1 H 18 normal in G
If & 15 a proper normal subgroup of a subgroup X of & then set

ek H) =T]I¥N I

L
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where L runs over the minimal normal subgroups of K contaiming ¥ properly. By convention,
(K K)= K. The element £(K, H)1s an idempoient of FG.

If # and K are subgroups of G such that A 15 normal in K then e(G K H) denoles the sum of
all different Gconjugates of £[K H). The element (G K, A s central in FG. In general 1t 15 not
an idempotent but if the different conjugates of (&, H) are orthogonal then (G K A} s a central
Wempotent of FG.

If (K H) is a Shoda Pair (7.14) of & then there is a non-zero rational number a such that
ae(G K H)) 1s a primitive central idempotent (7.4) of the rational group algebra G, 1f (K H) 1s
a strong Shoda pair (7.15) of G then e[G K| H ) 15 a primitive central idempotent of (G,

Assume now that F is a finite field of order g, (K, H) is a strong Shoda pair of G and C is a
cyclotormic class of K/H containing a generator of K/H. Then e-(G K, H) is a pnimitive central
Wdempotent of F (see 717

7.14 Shoda pairs

Let G be a fimte group. A Shoda pair of G is a pair (K, H) of subgroups of G for which there 1s
a linear character ¥ of K with kernel & such that the induced character ¥% in G is irreducible. By
[Sho33] or [OARS0L], (K, A )15 a Shoda pair if and only 1f the following conditions hold:

* H 15 normal 1n K,

* K /H s cyclic and

UK gINKCHorsomege Gthengc &

If (K, H) s a Shoda pair and % 15 a linear character of K < & with kemel H then the primitive
central idempotent (7.4) of G associated to the irreducible character ¥ is of the form e = £Q (%% =
ae(G K H) for some a € () [OARS04] (see 7.13 for the definition of (G K, H)). In that case we say
that e is the primitive central idempetent realized by the Shoda pair (K H) of G.

A group G 1s monormial, that 18 every irreducible character of G 1s monormial, 1f and only if every
primitive central idempoient of (I 1s realizable by a Shoda pair of G,

7.15 Strong Shoda pairs

A strong Shoda pair of G1s apair (K H) of subgroups of & satisfying the following conditions:

* H 15 normal 1n K and & 1s normal in the normalizer ¥V of H 1n G,

* K/H s cyclic and a maximal abelian subgroup of N/H and

*forevery g€ G\ N, g[K H)e(K H)f =0. (See 7.13 for the definition of [ K H)).

Let (K, A} be a strong Shoda pairof G. Then (K, H )1s a Shoda pair (7.13) of G. Thus thereis alin-
ear character 8 of K with kemel H such that the induced charactery, =% [G K, H) = 8% s irreducible.
Moreover the primitive central idempotent (7.4) eg(x) of QG realized by (K H) is e[ G K H), see
[OARSO4].

Two strong Shoda pairs (7.15) (K7, Hy ) and (K7, Hy) of G are said to be equivalent if the characters
%G, Ky Hy) and x[ G K3, H,) are Galols conjugate, or equivalently if e[ G Ky H) = e(G K3, Ha).

The advantage of strong Shoda pairs with respect to Shoda pairs 1s that one can describe the
simple algebra FGer(%) as 2 matrix algebra of a cyclotomic algebra (7.11, see [CARS04] for F = ()
and [O1t07 ] for the general case).

More precisely QGe( G K H) 15 somorphic to M, [(0(E) = N/K), where & 15 a [K : H]-th root of
unity, ¥ is the normalizer of H in G, rn =[G : N] and Q(&) =, N/ K is a cressed product (see 7.6) with
action a and twisting ¢ given as follows:
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Let x be a fixed generator of K/H and @ : ¥/K — N/H a fixed left inverse of the canonical
projection ¥/H — N/K. Then
‘t;al:n} — g:l _]fxt'p[:a} — i
and _ _
tlab) =& if plab) 'gla)p(t) =/
fora b € N/K and integers i and j, see [OdRS04]. Notice that the cocycle 1s the one given by the

natural extension
| = K/H - N/HSN/K—= |

where K/ H s identified with the multiplicative group generated by £, Furthermore the centre of the
dlgebra 18 (0%, the field of character values over ), and N /K is isomorphic to Gal[Q[E) /[,

If the rational field is changed by an aritrary ring F of characterisiic O then the Wedderbum
component A (%), where ¥ = x(G, K, H) 1s 1somorphic to (%) ®gpyy Ag ). Using the description
given above of Ag(x) = QGe(G K, H) one can easily describe Az(x) as M, (FIE)/ F(x) t'), where
d=[E) Q)] [FIE): Flx)] and ¢’ is the restrichion to Gal[FE)/F(x)) of t (a coeyde of N/K =

Gal (QUS)/ Q)N

7.16 Strongly monomial characters and strongly monomial groups

Let & be a finite group an ¥, an irreducible character of G.

One says that ¥ is strongly monemial if there is a strong Shoda pair (7.15) (K H) of G and a linear
character 8 of K of G with kemel A such that y = 8%,

The group G 15 sirorgly monomial 1f every 1rreducible character of & 15 strongly monomial.

Strong Shoda pairs were first introduced by Olivien, del Rio and Simdn [OdRS04] who proved
that every abelian-by-supersolvable group 1s strongly monomial [QdR504]. The algorithm to com-
pute the Wedderburn decomposition of rabonal group algebras for strongly monomial groups was
explained 1in [CARO3]. This method was extended for sermsimple finite group algebras by Broche
Cristo and del Rio in [BCARDY] (see Sechion 7.17). Finally Olieanu [C1H7] shows how to compute
the Wedderbnrm decomposition (7.3) of an arbitrary sermisimple group ring by making use not only of
the strong Shoda pairs of & but also of the strong Shoda pairs of the subgroups of .

7.17 Cyclotomic Classes and Strong Shoda Pairs

Let & be a finite group and F a fimte field of order g, coprime with the order of G,

Given a positive integer r, coprime with g, the g-cyclotomic classes modulo r are the sets of
residue classes module r of the form

liig ig’ig’ ...}

The g-cyclotorme classes modulo n form a partibon of the set of residue classes modulo R

A pererating cyclotomic class modulo s/ 15 a cyclotomic class containing a generator of the
additive group of residue classes modulo r, or equivalently formed by integers coprime with s,

Let (A, H) be a strong Shoda pair (7.15) of G and set rn = [K: H]. Fix a primitive r-th root of the
unity £ in some extension of F and an element g of K such that gH is a generator of K/H. Let Che a
generating g-cyclotomic class modulo = Then set

nl
ec (K, H) = (K :H] ' L (g <",
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where ¢ 18 an arbitrary element of C and ¢r is the trace map of the field extension F(E)/F. Then
£r (K, H) does not depend on the election of c € C and it 1s a primitive central idempotent (7.4 of FK.

Finally let e~ (G K H) denote the sum of the different G-conjugates of =-(A H).  Then
ec(G K H) 18 a primitive central idempotent (7.4) of FG [BCAROT]. We say that e-[G K H) 15
the primitive central idempotent realized by the strong Shoda pair (K, H) of the group & and the
cyclotomic ¢lass C.

If & is strongly monomial (7.16) then every prmitive central idempotent of F G 1s realizable by
some sireng Shedo pair (7.13) of & and some cyclotornic class O [BCARDY]. As in the zero char-
acterishic case, this explains how to compute the Wedderbum decomposition (7.3) of FG for a finite
semisimple algebra of a strongly monomial group (see [BCARO7] for details). For non strongly mono-
rmial groups the algorthm to compute the Wedderburm decomposibion just uses the Brauer characters.
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