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Resumen 

Los Sistemas Inteligentes de Transporte (SIT) son un sector emergente dentro del 

área de investigación del transporte urbano. Se espera que la mayor capacidad 

cognitiva de los SIT permita crear ciudades y entornos futuros en los que las 

personas estén más seguras y tengan una mejor calidad de vida, además de ofrecer 

un uso más eficiente de los recursos, y una mayor seguridad. 

La capacidad cognitiva de los SIT es la habilidad de estos sistemas para 

razonar, tomar decisiones, aprender y adaptarse, e interactuar con las personas, los 

vehículos y las infraestructuras en las que operan. Esta capacidad puede mejorarse 

mediante un uso adecuado de las tecnologías de la información y las 

comunicaciones, así como de algoritmos de Inteligencia Artificial (IA) centrados 

en la comprensión del mundo físico y social en el que actúan con el objetivo 

principal de optimizar los sistemas de transporte, reducir costes, mejorar la 

eficiencia y proporcionar una mayor calidad de vida a la sociedad. 

Esta tesis se centra en un requisito clave para lograr un alto nivel de capacidad 

cognitiva: el desarrollo y despliegue de agentes cognitivos que puedan 

comunicarse, cooperar y comprender el comportamiento dinámico del conjunto 

urbano y así poder aprender, adaptarse y actuar en este entorno dinámico. De este 

modo, el objetivo que persigue este trabajo es proporcionar una clara comprensión 

de los retos del área de investigación de los SIT y, en particular, su relación con el 

campo de la IA, para proporcionar una mejor comprensión del estado actual de la 

técnica y su potencial para el futuro. 

Para esto, en primer lugar, tras analizar las bondades que pueden ofrecer las 

redes ad-hoc voladoras formadas por vehículos aéreos no tripulados como drones, 

la tesis aborda la mejora de la capacidad cognitiva de los SIT centrada en las 

intersecciones de tráfico mediante técnicas de optimización basadas en IA. Es 

decir, cómo los SIT pueden contribuir a mejorar la comprensión de la dinámica 

física y social en intersecciones urbanas permitiendo optimizar la eficiencia de uso 

de estos sistemas. En segundo lugar, se discute la importancia de la interacción 

entre los SIT y los vehículos autónomos conectados (VACs), y cómo estos sistemas 

pueden beneficiarse mutuamente utilizando sistemas de comunicaciones móviles 

avanzados (5G - 6G) e inteligencia colectiva. Más concretamente, se explorará el 

uso de varios algoritmos de IA pertenecientes al campo del aprendizaje de refuerzo 

profundo multiagente (Multi Agent Deep Reinforcement Learning, MADRL). Todos 

estos avances se apoyan en el desarrollo de nuevos sistemas que aprovechan las 

bondades que ofrecen las redes ad-hoc voladoras, así como en técnicas de 

estimación de densidades de personas basadas en el estudio de los distintos canales 

de comunicación inalámbricos (Bluetooth, WiFi). 
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Los principales logros obtenidos durante el desarrollo de esta tesis son: i) la 

investigación sobre la interoperabilidad de los VACs y los SIT a través de sistemas 

de comunicación avanzados como el 5G y el 6G y los algoritmos MADRL para el 

desarrollo de varios algoritmos de control cooperativo descentralizado de 

vehículos autónomos. Estos algoritmos son capaces de encontrar una política de 

control cooperativa robusta que aprovecha las ventajas que ofrece la inteligencia 

colectiva y permite reducir el tiempo de espera en las intersecciones en más de un 

90%, entre otras mejoras. Además, con la integración de estos sistemas dentro de 

las redes de comunicaciones 5G/6G, se ha desarrollado un marco de trabajo para 

facilitar el despliegue real de estos sistemas, así como un algoritmo de control que 

consideraba la latencia que pueden ofrecer estos sistemas y era capaz de adaptar la 

política de control a las fluctuaciones de rendimiento ofreciendo un control 

robusto y seguro; ii) el desarrollo de un algoritmo que permite acelerar el 

entrenamiento de los sistemas basados en MADRL gracias al entrenamiento por 

demostración que ofrece un agente llamado Oráculo, entrenado mediante 

aprendizaje por imitación, permitiendo reducir el tiempo de entrenamiento de los 

nuevos sistemas basados en MADRL hasta en ×6; y iii) la implementación de un 

sistema avanzado de control de intersecciones de tráfico mediante el uso de 

diferentes técnicas de optimización basadas en IA (como los algoritmos genéticos). 

Este sistema reduce el tiempo de espera de los vehículos en las intersecciones hasta 

un 80%, y un 20% de las emisiones de gases contaminantes, entre otras mejoras. 

Los resultados de estos proyectos de investigación desarrollados durante la 

realización de esta tesis permitirán avanzar el camino de los desarrollos de SIT en 

el mundo real, permitiendo crear una movilidad urbana segura y sostenible con la 

integración de los VAC en su núcleo. 

 

Palabras Clave: 

Aprendizaje por refuerzo profundo multiagente; Gestión Cooperativa de Vehículos 

Autónomos; Inteligencia Artificial; Redes Ad-Hoc Voladoras; Sistemas de 

Comunicación Móvil; Sistemas Inteligentes de Transporte 
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Abstract 

Intelligent Transportation Systems (ITS) are an emerging sector of the urban 

transportation research area. The increased cognitive capability of ITS is expected 

to create future cities and environments in which people are safer and have a better 

quality of life, as well as offering more efficient use of resources and improved 

safety. 

The cognitive capability of ITS is the ability of these systems to reason, make 

decisions, learn and adapt, and interact with people, vehicles, and infrastructures 

in which they operate. This capability can be improved through better use of 

information and communication technologies, as well as Artificial Intelligence (AI) 

algorithms focused on understanding the physical and social world in which they 

interact with the main objective of optimizing transportation systems, reducing 

costs, improving efficiency, and providing a higher quality of life for society. 

This thesis focuses on a key requirement for achieving a high level of 

cognitive capability, i.e., the development and deployment of cognitive agents that 

can communicate, cooperate, and understand the dynamic behavior of the urban 

traffic system and thus be able to learn, adapt and act in this dynamic environment. 

Thus, the objective pursued by this thesis is to provide a clear understanding of the 

challenges of the ITS research area and, in particular, its relation to the field of AI, 

to provide a better understanding of the current state of the art and its potential 

for the future. 

To this end, firstly, after analyzing the benefits that ad-hoc aerial networks 

formed by unmanned aerial vehicles such as drones can offer, the thesis addresses 

the improvement of the cognitive capacity of ITS focused on traffic intersections 

by means of AI-based optimization techniques. That is, how ITS can contribute to 

improving the understanding of physical and social dynamics at urban 

intersections allowing to optimize the efficiency of use of these systems. Secondly, 

the importance of the interaction between ITS and Connected Autonomous 

Vehicles (CAVs) is discussed, and how these systems can benefit each other using 

advanced mobile communication systems (5G - 6G) and collective intelligence. 

More specifically, the use of various AI algorithms belonging to the field of Multi-

Agent Deep Reinforcement Learning (MADRL) will be explored. All these advances 

are supported by the development of new systems that take advantage of the 

benefits offered by ad-hoc aerial networks, as well as people density estimation 

techniques based on the study of different wireless communication channels 

(Bluetooth, WiFi). 

The main achievements obtained during the development of this thesis are: 

i) research on the interoperability of CAVs and ITS through advanced 

communication systems such as 5G and 6G and MADRL algorithms for the 
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development of several decentralized cooperative control algorithms for 

autonomous vehicles. These algorithms are able to find a robust cooperative 

control policy that takes advantage of the benefits offered by collective intelligence 

and allows reducing waiting time at intersections by more than 90%, among other 

improvements. Furthermore, with the integration of these systems within 5G/6G 

communication networks, a framework has been developed to facilitate the actual 

deployment of these systems, as well as a control algorithm that considered the 

latency that these systems can offer and was able to adapt the control policy to 

performance fluctuations offering robust and secure control; ii) the development 

of an algorithm that allows to speed up the training of MADRL-based systems 

thanks to Learning-from-Demonstrations (LfD) offered by an agent called Oracle, 

trained by imitation learning, allowing to reduce the training time of new MADRL-

based systems by up to ×6; and iii) the optimization of an advanced traffic 

intersection control system using different AI-based techniques (such as genetic 

algorithms). This system reduces vehicle waiting time at intersections by up to 

80%, and 20% of pollutant gas emissions, among other improvements. 

The results of these research projects developed during the realization of this 

thesis will advance the path of ITS developments in the real world, enabling the 

creation of safe and sustainable urban mobility with CAV integration at its core. 

Keywords: 

Artificial Intelligence; Autonomous Intersection Management; 

Communication Systems; Intelligent Transport Systems; Multi-Agent Deep 

Reinforcement Learning; Unmanned Aerial Vehicles; WiFi Crowd Counting; Flying 

Ad hoc Network; Reinforcement Learning 
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Chapter 1:  Introduction 

1.1 Thesis motivation 

Urban mobility is progressively becoming one of the main concerns of today's 

society, with traffic jams and accidents in urban areas as well as the pollution they 

generate increasingly common, having a major impact both socially and 

economically [1]. The United Nations estimates that more than two-thirds of the 

world's population will live in crowded cities by 2050 [2]. It is also evident that the 

rate of global urbanization is growing at an increasing rate, with 55% of the world's 

population residing in urban areas in 2018, increasing urbanization is expected to 

have a significant impact on the world's population, economy, and environment. 

Intelligent Transportation Systems (ITS) [3] have the potential to play a key 

role in helping to solve both the mobility problems already facing urban areas as 

well as future problems ahead. 

The goal of ITS is to create efficient and intelligent solutions that improve the 

transportation of people, goods, and services through the use of advanced 

technologies such as wireless communication systems, unmanned aerial vehicles, 

or artificial intelligence algorithms. Therefore, the use of ITS is expected to 

increase the speed, efficiency, and comfort of urban transportation, while reducing 

accidents caused by human error at the same time improving the quality of life of 

the urban population [3], [4]. Examples of ITS applications can be found in 

advanced traffic light control systems, applications for intelligent parking search, 

route optimization of public transport services, improving the efficiency of traffic 

flow through flow prediction algorithms that allow adapting urban routes, etc. 

The current state of the art shows a large gap between the theoretical 

potential and the reality of ITS. This is mainly because these ITS need 

breakthrough technology for proper and efficient operation, such as advanced 

artificial intelligence algorithms, ultra-reliable wireless communications, and 

sensors capable of making accurate and real-time data available to ITS applications 

on a wide spectrum of data sources such as traffic and environment, among others. 

Driven by recent advances in the field of Artificial Intelligence (AI), wireless 

communications systems such as 5G, low-cost embedded devices, and the 

development of technologies such as Unmanned Aerial Vehicles (UAVs), 

autonomous vehicles, and Big Data, most of the stringent requirements that ITS 

must meet are now met. Thanks to these advances, new opportunities are opening 

up for the development of a plethora of innovative applications within the ITS field, 

such as autonomous intersection management and the deployment of Multi-Agent 

Deep Reinforcement Learning (DRL) algorithms for urban traffic planning and 

control. 
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The main purpose of this thesis is to develop advanced ITS with high 

cognitive capabilities by using cutting-edge techniques and technologies such as 

5G, DRL, AI algorithms, and UAVs. Thus, the aim is to obtain ITS capable of 

adapting to a changing and unpredictable environment, learning and adapting in 

real-time, acting autonomously and proactively, and being able to communicate 

with other agents and humans. ITS will optimize the capabilities of the cities of the 

future, making them a more efficient, comfortable, and safe environment, as well 

as enabling a better quality of life for citizens through reduced congestion, better 

use of public resources, and less pollution. 

1.2 Thesis objectives 

The main objective of the thesis is to contribute to the improvement of ITS 

cognitive capabilities using cutting-edge technologies such as 5G/6G 

communication networks, UAVs, and connected autonomous vehicles, as well as 

through the use of breakthrough AI/DRL algorithms to achieve more efficient and 

simpler solutions that can be implemented using standards that allow for simple 

and scalable development. 

To this end, the thesis is divided into three main sub-objectives:  

1. Review of research in the field of AI, mobile communication and wireless 

technologies, UAVs, Internet of Things (IoT), and IoT sensors in the context 

of urban mobility and ITS applications. 

2. Provide an overview of the state-of-the-art research in the field of traffic 

light control, intelligent intersection control, and traffic management, as 

well as the current challenges and limitations of the proposed systems, 

focusing on the main challenges of real-time performance, robustness, 

scalability, and communication capabilities. 

3. Explore the use of AI, particularly Multi-Agent DRL algorithms, for traffic 

planning and control in urban areas such as intersections, taking into 

account different aspects to be considered, such as integration in mobile 

communication networks like 5G or 6G, interaction with UAVs, multi-agent 

communication, and the use of connected autonomous vehicles. 

To achieve the proposed objectives, the following tasks were proposed: 

1. Review research in the field of AI, including recent advances in the area of 

Deep Learning (DL), as well as DRL and advanced techniques used to 

improve the training of these algorithms. 

2. Exploration of the use of the latest technologies such as 5G/6G, wireless 

networking technologies, IoT, and UAVs for integration in the context of 

urban mobility and ITS applications. 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 1:  Introduction 

 

Antonio Guillén Pérez 2022  Page 3 

3. Discussion of the state of the art of research in the area of intelligent 

intersection control, traffic signal control, and traffic management, focusing 

on the advantages and limitations of current systems and their main 

challenges. 

4. Investigation of the use of Multi-Agent DRL algorithms to perform real-

time traffic orchestration in urban areas such as intersections, with a focus 

on the main features to be considered, such as integration into 5G or 6G 

mobile communication networks, ultra-low latency communication, 

distributed intelligence, and the use of connected autonomous vehicles. 

1.3 Ph. D. dissertation structure 

This dissertation is organized as follows: 

Chapter 2: Theoretical background: 

Explores the theoretical background of the concepts and technologies used 

during the development of this dissertation, as well as the basic background of the 

main aspects discussed, such as ITS, AI, UAVs, and wireless communications 

technologies. The concepts and technologies presented in this chapter are detailed 

in-depth in each of the chapters of the thesis where they have been employed. 

Chapter 3: Unmanned Aerial Vehicles: 

Focuses on the field of UAVs, exploring their applications, advantages, and 

how they could be used to complement current technologies used in the 

development of new advanced ITS. 

Chapter 4: Smart Cities and Pedestrians: 

Addresses ongoing research related to the integration of IoT sensor networks 

and WiFi devices in urban areas, including AI-based pedestrian detection and 

identification for traffic optimization in urban areas. 

Chapter 5: Smart Traffic Light Control – AI approach: 

Discusses the basic approaches to the operation of the main intelligent 

algorithms for traffic control at intersections using traffic lights, as well as the use 

of AI algorithms to improve their performance. 

Chapter 6: Interoperability of Connected Autonomous Vehicles and 

Intelligent Transportation Systems: 

Analyzes the advantages and disadvantages offered by connected 

autonomous vehicles and advanced communication networks such as 5G and 6G 

in the development of new advanced intersection control systems that eliminate 

the need for traditional traffic lights. Thus, by using cutting-edge multi-agent DRL 

algorithms, this chapter proposes several autonomous vehicle control algorithms 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 1:  Introduction 

 

Antonio Guillén Pérez 2022  Page 4 

for intersections called Autonomous Intersection Management (AIM) that enable 

advanced centralized coordination of vehicles at intersections by leveraging 

collective intelligence offered by multi-agent systems. Thanks to this, the proposed 

AIMs allow minimizing the time lost at intersections by vehicles, as well as 

eliminating accidents at intersections due to human errors due to centralized 

coordination. Furthermore, this chapter studies a fully operational AIM over 5G 

considering the physical latency characteristics presented by this network 

architecture, maximizing the security offered, as well as analyzes the integration 

of these AIMs in the architectures of the future 6G communications network. 

Chapter 7: General Conclusions and Future Research: 

Summarizes the main conclusions and contributions obtained in the 

development of this dissertation and the possible lines of future research. 

1.4 Thesis contributions 

The main contributions of this dissertation are presented below: 

Chapter 2: Theoretical background: 

• Review the state of the art of the topics covered in this dissertation: ITS, AI, 

UAVs, and wireless communications technologies. 

Chapter 3: Unmanned Aerial Vehicles: 

• In-depth review of the state of the art of flying ad hoc networks (FANETs) 

composed of UAVs, focusing on mobility models, positioning protocols, 

propagation models, and routing protocols. 

• Detailed study of the impact the UAV had on the radiation pattern of the 

integrated WiFi communication module using a controlled environment 

such as an anechoic chamber. 

• Comparative study of the performance provided by different FANET 

routing protocols, in terms of throughput and packet loss, in a real 

deployment consisting of several UAV nodes using WiFi on 2.4 GHz and 5 

GHz bands. 

The articles related to this chapter that have been published in technical 

journals or international conferences are: 

Guillen‐Perez, A.; Cano, M.-D., “Flying ad hoc networks: A new domain for 

network communications,” Sensors, vol. 18, no. 10, p. 3571, Oct 2018, 

doi:10.3390/s18103571 

2018 Journal Impact Factor (JIF): 3.031. (Q1), Rank: 15/61 in Instrument & 

Instrumentation. 
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Guillen-Perez, A.; Montoya, A-M; Sanchez-Aarnoutse, J. C.; Cano, M.-D., “A 

comparative performance evaluation of routing protocols for flying ad-hoc 

networks in real conditions,” Appl. Sci., vol. 11, no. 10, p. 4363, May 2021, doi: 

10.3390/app11104363 

2020 Journal Impact Factor (JIF): 2.679. (Q2), Rank: 38/90 in Engineering 

Multidisciplinary. 

 

Guillen-Perez, A.; Sanchez-Iborra, R.; Cano, M.-D., Sanchez-Aarnoutse, J. C.; 

and Garcia-Haro, J., “WiFi networks on drones,” in 2016 ITU Kaleidoscope: ICTs for 

a Sustainable World (ITU WT), Nov. 2016, pp. 1–8, doi: 10.1109/ITU-

WT.2016.7805730. 

 

Guillen‐Perez, A.; Cano, M.-D., “Comunicaciones Inalámbricas con Vehículos 

Aéreos no Tripulados”, I Jornadas Doctorales UPCT, Universidad Politécnica de 

Cartagena. 2018. Oral communication. 

 

Chapter 4: Smart Cities and Pedestrians: 

• Development of a novel passive WiFi-based method to estimate the number 

of pedestrians at an intersection to improve the performance of traffic light 

ITS. 

• Real scenario deployment, to show the benefits that the previously 

proposed algorithm could offer, as well as the possible improvements that 

could be made. 

• By using AI algorithms, an algorithm based on the previous one was 

obtained, which allowed obtaining a superior performance in terms of 

accuracy and recall. Thus, by analyzing the WiFi messages sent passively by 

devices carried by pedestrians, the system was able to estimate the number 

of pedestrians at an intersection with high accuracy. 

The articles related to this chapter that have been published in technical 

journals or international conferences are: 

Guillen‐Perez, A.; Cano, M.-D., “Pedestrian Characterization in Urban 

Environments Combining WiFi and AI,” Int. J. Sens. Networks, vol. 37, no. 1, p. 48, 

2021, doi: 10.1504/IJSNET.2021.117964. 

2020 Journal Impact Factor (JIF): 1.302. (Q4), Rank: 80/91 in 

Telecommunications. 
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Guillen‐Perez, A.; Cano, M.-D., “A WiFi-based method to count and locate 

pedestrians in urban traffic scenarios,” in 2018 14th International Conference on 

Wireless and Mobile Computing, Networking and Communications (WiMob), Oct. 

2018, vol. 2018-Octob, pp. 123–130, doi: 10.1109/WiMOB.2018.8589170. 

 

Guillen‐Perez, A.; Cano, M.-D., “Counting and locating people in outdoor 

environments: a comparative experimental study using WiFi-based passive 

methods,” ITM Web Conf., vol. 24, pp. 1–10, Feb. 2019, doi: 

10.1051/itmconf/20192401010. 

 

Chapter 5: Smart Traffic Light Control – AI approach: 

• Detailed study of the principle of operation of the main adaptive traffic light 

control systems. 

• Development of an advanced adaptive traffic light control algorithm based 

on queuing theory. This system was optimized using genetic algorithms. 

The articles related to this chapter that have been published in technical 

journals or international conferences are: 

Guillen‐Perez, A.; Cano, M.-D., “Intelligent IoT systems for traffic 

management: A practical application,” IET Intell. Transp. Syst., vol. 15, no. 2, pp. 

273–285, Feb. 2021, doi: 10.1049/itr2.12021. 

2020 Journal Impact Factor (JIF): 2.496. (Q2), Rank: 135/273 in Engineering, 

Electrical & Electronic. 

 

Guillen‐Perez, A.; Cano, M.-D., “Optimización de un Sistema Inteligente de 

Control y Gestión de Transporte en Intersecciones por medio de un Algoritmo 

Genético”, V Jornadas Doctorales UPCT, Universidad Politécnica de Cartagena. 

2019. Oral communication. 

 

Guillen‐Perez, A.; Cano, M.-D., “Influencia del ciclo de trabajo de los 

semáforos en una intersección simple en múltiples parámetros ante una densidad 

de tráfico incremental,” in XIV Jornadas de Ingeniería Telemática (JITEL 2019), 2019, 

no. JITEL, pp. 22–24, [Online]. Available: http://jitel2019.i3a.es/. 

 

http://jitel2019.i3a.es/
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Chapter 6: Interoperability of Connected Autonomous Vehicles and 

Intelligent Transportation Systems: 

• Novel development of an Autonomous Intersection Management (AIM) 

system using Multi-Agent Deep Reinforcement Learning (MADRL). The 

proposed AIM was named RAIM. 

• RAIM enhancement through recurrent neural networks, as well as through 

other training acceleration methods such as curriculum learning for RL, 

Prioritized Experience Replay (PER). Thus, the proposed system called 

adv.RAIM, enabled much smarter vehicular control at intersections, 

reducing waiting time to a minimum. 

• Study of the current state-of-the-art in the field of imitation learning, 

learning from observation and learning from demonstration, proposing a 

new Learning from Demonstration (LfD) algorithm for environments where 

there is no (or there is a hidden expert agent) from which to extract new 

demonstrations. The proposed system is able to train an agent by imitation 

that mimics the behavior of the hidden expert agent. This trained agent is 

called an Oracle. This Oracle is the one used by the proposed algorithm to 

train an agent by demonstration, speeding up vastly the training of new 

agents by MADRL. 

• Development of a latency-aware AIM for 5G communication network. Thus, 

this proposed AIM was able to guarantee maximum security due to a latency 

forecaster module based on Transformers and to incorporate the temporal 

behavior of latency in the adv.RAIM control module based on MADRL. 

• Proposal of the necessary modules so that the new AIM systems can be 

natively integrated into the future 6G communications network. In this 

way, vehicle control via AIM and 6G will reduce development costs and 

improve the performance of both. 

The articles related to this chapter that have been published in technical 

journals (or currently under review) or international conferences are: 

Guillen‐Perez, A.; Cano, M.-D., “AIM5LA: A Latency-Aware Deep 

Reinforcement Learning-Based Autonomous Intersection Management system for 

5G Communication Networks,” Sensors, vol. Accepted, pp. 1–20, 2022. 

2020 Journal Impact Factor (JIF): 3.576. (Q2), Rank: 82/273 in Engineering, 

Electrical & Electronics. 
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Guillen‐Perez, A.; Cano, M.-D., “Multi-Agent Deep Reinforcement Learning 

to Manage Connected Autonomous Vehicles at Tomorrow’s Intersections,” IEEE 

Trans. Veh. Technol., vol. On review, pp. 1–12, 2022. 

2020 Journal Impact Factor (JIF): 5.978. (Q1), Rank: 15/91 in 

Telecommunications; (Q1), Rank: 32/273 in Engineering, Electrical & Electronic. 

 

Guillen‐Perez, A.; Cano, M.-D., “Learning from Oracle Demonstrations – A 

new approach to develop Autonomous Intersection Management control 

algorithms based on Multi-Agent Deep Reinforcement Learning,” IEEE Access, vol. 

On Review, pp. 1–12, 2022. 

2020 Journal Impact Factor (JIF): 3.367. (Q2), Rank: 65/161 in Computer 

Science & Information Systems. 

 

Guillen‐Perez, A.; Cano, M.-D., “6G Communications Network Framework in 

the context of Edge-Decentralized Cooperative Autonomous Driving,” Appl. Sci., 

vol. On Review, pp. 1–12, 2022. 

2020 Journal Impact Factor (JIF): 2.679. (Q2), Rank: 38/90 in Engineering 

Multidisciplinary. 

 

Guillen‐Perez, A.; Cano, M.-D., “Cómo la superresolución puede ayudar a los 

vehículos autónomos conectados”, VI Jornadas Doctorales UPCT, Universidad de 

Murcia. 2020. Oral communication. 

 

Guillen‐Perez, A.; Cano, M.-D., “RAIM: Reinforced Autonomous Intersection 

Management - AIM based on MADRL,” in NeurIPS 2020 - Workshop Challenges of 

Real-World RL, 2020, pp. 1–12, Accessed: Feb. 16, 2022. [Online]. Available: 

https://www.researchgate.net/publication/357957238_RAIM_Reinforced_Autono

mous_Intersection_Management_-_AIM_based_on_MADRL. 

 

https://www.researchgate.net/publication/357957238_RAIM_Reinforced_Autonomous_Intersection_Management_-_AIM_based_on_MADRL
https://www.researchgate.net/publication/357957238_RAIM_Reinforced_Autonomous_Intersection_Management_-_AIM_based_on_MADRL
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Chapter 2:  Conceptual background 

2.1 Introduction 

This chapter reviews the main concepts and technologies that have been used 

during the development of this thesis, such as Intelligent Transportation Systems 

(ITS), Artificial Intelligence (AI), Unmanned Aerial Vehicles (UAV), and wireless 

communication systems. 

2.2 Intelligent Transportation Systems 

ITS are advanced applications capable of recognizing, analyzing, and responding 

intelligently to dynamic, uncertain, and ambiguous conditions in order to ensure 

the efficient, safe and comfortable operation of all actors involved in transportation 

networks: cars, pedestrians, public transport, cyclists, etc. Its capabilities may 

include: monitoring and evaluation of road conditions, monitoring of road user 

behavior, accident detection and early warning to drivers, definition of road 

geometry and traffic rules based on traffic patterns, traffic light control, etc. 

The main benefits of ITS are: increased efficiency of the road network, 

through early detection of traffic jams, accidents, road conditions, or changes in 

road geometry; higher utilization of road space and early detection of roads in poor 

condition and therefore higher quality perceived by users and less pollution due to 

lower fuel consumption, as well as reduced noise and air pollution, as fewer 

vehicles drive on roads in good condition; improved road user behavior by 

providing drivers with safety messages and road conditions in real-time. 

Therefore, ITS is a transport-focused technology that tries to solve some of 

the problems that traditional methods, such as traffic signals or traffic lights, 

cannot. In this sense, ITS seeks to improve the efficiency and reliability of 

transportation by making it smarter. 

To achieve this, ITS typically have three main components, all of which 

contribute to achieving ITS functionality: (1) hardware; (2) software; and (3) data. 

1. Hardware refers to the physical aspects of the system, such as sensors, 

actuators, embedded devices, and other elements, such as intelligent traffic signals 

or wireless communication devices (WiFi, cellular, Bluetooth, etc.). 

2. Software refers to the logic, algorithms, and other instructions used to 

operate the system intelligently and proactively. 

3. Data refers to the information gathered from the environment that is 

processed and used to make decisions or adapt the system. 

As a result, the main challenges faced by the ITS field are focused on:  
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1. Integrating information from the environment, road users, and traffic to 

make the right decisions. Integrating information from multiple sensors, of 

different nature and different update periods is by no means trivial. 

2. Adapt the systems to the environment to avoid accidents, act proactively, 

as well as optimize travel times, improve traffic flow, etc. 

3. Ensure that these systems are able to integrate, communicate and act 

autonomously, and be able to adapt to the environment in real-time, and be 

proactive with users to optimize the use of resources. 

4. Develop ITS that are robust, scalable, and capable of making autonomous 

decisions, and provide intelligent and efficient solutions using different 

technologies in a scalable manner, enabling easy and cost-effective deployment. 

5. Develop ITS capable of working in real-time with information from all 

sensors, to provide top-quality services to road users. 

6. Ensure that ITS also operates in highly dynamic environments with 

constantly changing conditions, e.g., urban, suburban, rural, or industrial areas. 

The main communications technologies used in ITS are: 

WiFi 

WiFi is a Wireless Local Area Network (WLAN) protocol developed by the IEEE 

working group and is based on the IEEE 802.11 standard. WiFi uses a wide range of 

radio frequencies to communicate and can reach speeds of up to hundreds of 

megabits per second (Mbps). It operates in the 2.4 GHz and 5 GHz frequency bands 

and uses OFDM (Orthogonal Frequency Division Multiplexing) modulation. 

The protocol defines a shared medium and a Distributed Coordination 

Function (DCF) for multiple stations to share a common radio resource, with 

Carrier Sense Multiple Access and Collision Avoidance (CSMA/CA). This feature 

allows multiple wireless devices to communicate on a shared wireless medium in 

random order and at random time intervals. In addition, WiFi allows two modes 

of operation: Access Point and Ad hoc. The former mode is used for point-to-point 

communications, where one access point acts as a central control for all connected 

stations, while the latter can be used for ad hoc communications, where two or 

more stations communicate directly with each other without the intervention of a 

separate access point. 

The main advantages of WiFi are: its low cost, its easy deployment, and its 

ability to support high data throughput, thanks to its radio technology. The main 

challenge of this technology is that WiFi signals are sensitive to obstacles, so 

coverage areas must be strategically planned to ensure service coverage. In 
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addition, there is a high probability of interference when there is a high density of 

nodes, as well as some security flaws. 

Bluetooth 

Bluetooth is a wireless communication protocol defined by the IEEE 802.15.1 

standard, operating in the 2.4 GHz radio frequency band. Bluetooth uses a low-

power Frequency Hopping Spread Spectrum (FHSS) modulation with a CSMA/CA 

protocol to minimize interference between devices. 

Its main features are that it can be used as a Personal Area Network (PAN) 

connecting multiple devices to a single device, but it can also be used in peer-to-

peer ad hoc networks (piconets) that can be formed between a group of Bluetooth-

enabled devices. 

Its low power consumption, communication range of up to tens of meters, 

and low bit error rate are key features of Bluetooth technology. 

The main use of Bluetooth in ITS is to enable low-power, long-distance 

communication between ITS and its users. It can be used in ITS to connect user 

devices, such as a cell phone or tablet, to an ITS, providing real-time traffic and 

user status information in a bidirectional and interactive manner. Bluetooth also 

provides an ideal means of interconnecting devices, for example, cars and traffic 

lights, and enables the communication between two different ITS. 

Bluetooth Low Energy (BLE) 

BLE is a wireless personal area network technology that was standardized by the 

Bluetooth Special Interest Group (SIG) to provide more efficient communication 

in Bluetooth systems. 

BLE is designed for battery-powered devices with low power consumption. 

BLE is based on the classic Bluetooth protocol, but there are fundamental 

differences between BLE and the classic specification. 

The main changes are the reduction in packet size, which reduces traffic and 

power consumption, and the introduction of the connection interval, which allows 

for longer periods of inactivity. The result is that BLE devices can operate for years 

without the need to change the battery. 

The main use of BLE in ITS is to provide low power consumption and low 

deployment cost communication for sensors used in ITS, providing real-time 

information on numerous environmental parameters, such as the number of 

vehicles, vehicle direction, road conditions, pollution, noise, etc. 
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ZigBee 

ZigBee is a wireless technology based on the IEEE 802.15.4 wireless standard 

focused on creating Wireless Personal Area Networks (WPANs) with small, low-

power, low-cost devices. ZigBee operates in the 2.4 GHz and sub-GHz bands (784 

MHz in China, 868 MHz in Europe, and 915 MHz in the United States and 

Australia). Data rates range from 20 kbps (868 MHz band) to 250 kbps (2.4 GHz 

band). 

The main features of ZigBee are its low data rate and wide communication 

range, reaching up to 1KM in the sub-GHz band and about 10-100 meters in the 

2.4GHz band. 

ZigBee is therefore ideal for applications such as remote sensor networks, 

where many devices must communicate with each other in a low-power 

environment. However, due to the low data rates that ZigBee can achieve, its use 

may be limited for specific applications in ITS. 

Low Range (LoRa) 

LoRa is a proprietary modulation technique used for long-distance wireless 

communication with low power consumption and low bandwidth, creating Low 

Power Wide Area (LPWA) networks. It operates in the sub-GHz frequency band 

(433MHz to 868 MHz) and uses a spread spectrum technique, which means that 

the signal is spread over a wide frequency spectrum. It can achieve transmission 

speeds of between 0.3kbps and 27kbps, depending on the spreading factor used, 

and a range of up to 10km in urban areas and 15km in rural areas. 

Since LoRa only defines the physical layer of wireless communication, 

LoRaWAN implements the rest of the network capabilities. LoRaWAN defines two 

types of nodes in the network architecture: end nodes and gateways. Data from the 

end nodes must be sent to the gateway, acting as a centralized network. 

As such, it is a suitable technology for a diverse range of sensors and ITS 

applications. However, LoRaWAN also has serious limitations, such as the need to 

deploy gateways to enable the connection between the end nodes and the ITS, 

securing the connection between each end node and the gateway, and its low 

transmission speed. 

Cellular Communication Networks (4G, 5G & 6G) 

4G is the fourth generation of mobile wireless communications, developed by the 

3GPP (Third Generation Partnership Project) working group. LTE (Long Term 

Evolution) is one of the key components of 4G developed to provide users with 

enhanced services. It offers high data throughput, low latency, and high peak 

speeds compared to previous generation 3G. 
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It is a mobile wireless technology that has a wide coverage range (hundreds 

of kilometers) and fast data rates, with an average speed of about 100Mbps. It is 

designed for high-capacity, high-speed multimedia applications, such as video 

streaming, and is used in many applications, such as machine-to-machine (M2M) 

communication. 

To achieve this, 4G makes use of multiple technologies. For example, to 

achieve greater coverage, it uses orthogonal frequency division multiplexing 

(OFDM) in the downlink and single-carrier frequency division multiple access (SC-

FDMA) in the uplink. In addition, to achieve higher speeds, 4G technology employs 

multiple-input multiple-output (MIMO) technology to improve channel capacity 

and reduce the impact of interference. 

It is an ideal wireless technology for ITS and is capable of handling massive 

amounts of data, up to 100Gbps, with high reliability. Its biggest advantage is that 

it uses more stable and powerful signal frequencies, making it easier to deploy and 

less susceptible to interference. However, its biggest disadvantage is that it is an 

expensive deployment. 

5G is an evolutionary step in the development of 4G and will enable even 

higher performance and more services by enhancing the current LTE technology. 

5G offers even faster connections (up to 5Gbps) and higher capacity, a wider range 

of coverage, and greater reliability. 5G will support a wide range of applications. 

These include mobile broadband services, new applications in machine-type 

communications, augmented reality, vehicular communication, tactile-internet, 

and vehicular-assisted transportation. 5G enables the integration of various 

services, such as massive Machine Type Communications (mMTC), enhanced 

Mobile BroadBand (eMBB), and Ultra-Reliable Low-Latency Communications 

(URLLC). These services specialize in offering different performances, such as very 

low communication latency, high bandwidth, low power consumption, and high 

node density. A comparison of these services can be seen in Table 2-1. 

5G will be key to the expansion of ITS, as it offers users a better service with 

reduced cost and high-reliability thanks to the eMBB service, enabling augmented 

reality (AR) applications. It will also enable the integration of more IoT devices and 

sensors by making use of the mMTC service. Finally, the URLLC will enable 

applications requiring ultra-reliable, low-latency control, such as cooperative 

centralized driving, connected autonomous vehicles, or the tactile Internet. 

6G is the next big thing and will be the foundation for the arrival of artificial 

intelligence (AI) at the core of communication systems. It will be able to support a 

future world in which a massive number of devices with different requirements 

and machines from different domains are connected on the same network, 

enabling a wide variety of applications and ultra-reliable, low-latency, high-
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bandwidth, real-time communications for a variety of devices. It will also support 

a wide range of human-oriented services, such as cooperative autonomous robots, 

the metaverse, and real-time services based on cloud and virtualization. In 

addition, 6G will be fully integrated with other technologies, enabling ultra-

reactive and ultra-responsive communication capabilities, bringing the sci-fi 

future we have all dreamed of within reach. 

6G will be a revolutionary leap for all technologies, enabling the vision of 5G 

to become a reality, increasing spectral efficiency, improving network flexibility, 

energy efficiency, and enabling a wide variety of services. The new network 

paradigms will enable new services, research, and innovation in a wide variety of 

fields, such as decentralized collective intelligence for robots and vehicles, ITS, 

smart buildings, or real-time e-Health, to name a few. The main idea of the 6G 

paradigm is the support of a massive amount of new services through low 

complexity network topologies. 

TABLE 2-1.  Comparison of different 5G scenarios with different important 
characteristics. 

 eMBB URLLC mMTC 

Data Rate High Medium Low 
Scalability High High Low 

User Experience Rate High Medium Low 
Mobility Medium High Low 

Reliability Medium High Low 
Latency Medium Low High 

Density node Medium Low High 
Energy Efficiency Medium Low High 

2.3 Artificial intelligence 

The concept of AI [5] refers to the set of computer and computational techniques 

focused on the creation of computer systems and devices capable of performing 

tasks that normally require human intelligence, such as reasoning, problem-

solving, decision making, prediction, and perception. 

Although there is no formal definition of AI [5], for a better understanding of 

what IA means for this dissertation the above definition is proposed. 

Even though AI has been around for many years (1956) [5] and has been 

capable of remarkable achievements, AI has experienced an explosion in recent 

years due to the growth of computing power, big data, and IoT sensors. 

In this section, we will briefly explore concepts and fundamentals of several 

areas into which AI can be divided, such as Machine Learning (ML) [6], [7], Deep 

Learning (DL) [8], [9], and Reinforcement Learning (RL) [10], [11]. For a better 

understanding of each of the topics discussed, we refer readers to the references 
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above. Each of the areas discussed and their relationship to each other can be seen 

in Figure 2-1. 

 
Figure 2-1.  Relationship between areas of Artificial Intelligence such as Machine Learning, 
Supervised Learning, Unsupervised Learning, Reinforcement Learning, Deep Learning, 
and Deep Reinforcement Learning. Deep learning and Deep Reinforcement Learning are 
the areas that are receiving the most attention from the scientific community, as they 
allow solving a vast majority of problems. 

2.3.1 Machine Learning 

Machine Learning (ML) [6], [7] is the subfield of AI that applies statistical methods 

to obtain insights from a dataset. A dataset is a large collection of data structured 

and organized in a matrix in rows and columns. Traditionally, each sample is 

placed in each row and the columns correspond to the features of the data in each 

sample. This means that our dataset will have as many rows as samples and as 

many columns as features in the dataset. Samples can be of any type: numerical, 

categorical, time series, graphs, and sequences, audio, images, etc. ML methods 

learn by exploiting the features of the dataset used during training. After 

successfully training an ML model, another separate but similar data set is used to 

evaluate the actual performance of the system on unseen data. In this way, it is 

possible to check whether the ML model is overfitted. 

The result of ML methods is an algorithm that has learned to answer specific 

questions, for example, predicting the price of a house based on characteristics 

such as its surface area, number of bedrooms, number of bathrooms, whether it 

has a garage, the distance to a large city, etc. 

ML can be grouped into several subfields, such as classification, regression, 

clustering, anomaly detection, recommender systems, and forecasting systems. 

Another way to classify ML algorithms into three broad categories: supervised, 

unsupervised, and reinforcement learning. 

Arti cial Intelligence
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Supervised learning is a set of ML techniques that uses labeled data to train 

a model that predicts or classifies new observations. The most commonly used 

learning algorithms are decision trees [12], Artificial Neural Networks (ANNs) [13], 

Support Vector Machines (SVMs) [14], and ensemble models [15], such as random 

forest [16] or XGBoost [17]. 

In unsupervised learning, the input data are not labeled, however, there is 

some structure inherently present in the data. For example, clustering [18] can 

group similar data or assign each input observation to a group or cluster, or 

dimensionality reduction [19], where an algorithm is responsible for decomposing 

a multivariate data set into a set of fewer dimensions with the least loss of 

information, thus being able to perform exploratory data analysis, information 

compression, data de-noising, etc. 

Reinforcement Learning (RL) [10], [11] is an area of AI that involves an 

intelligent agent learning to perform actions by trial and error through interaction 

with its environment. In this case, a reward signal is used to indicate to the agent 

how good its actions are. Like human learning, RL agents try to find the best 

actions that maximize the total reward. The main RL algorithms used are Q-

Learning [20], SARSA [21], and Temporal difference (TD) learning [22]. 

2.3.2 Deep learning 

Deep Learning (DL) [8], [9] is a subset of ML techniques that differentiates it from 

"shallow" learning in that the latter requires a process of feature extraction from a 

dataset, whereas DL focuses on learning features directly from the dataset using 

large models that allow them to extract these features. A comparative example of 

ML and DL in a classification task can be seen in Figure 2-2. In addition, another 

key feature of DL involves using layers of ANNs for model building. These ANNs 

have a hierarchical structure and several layers of nonlinear neurons and activation 

functions (or simply, layers) and it is what is known as a feedforward deep neural 

network or Multi-Layer Perceptron (MLP). An example of MLP architecture can be 

seen in Figure 2-3. 
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Figure 2-2.  Illustrative example for the comparison between ML and DL in a classification 
task. 

 
Figure 2-3.  Architecture of an MLP composed of n input features, 2 hidden layers, and 1 
output neuron. 

In ML algorithms, the models used have an input layer and an output layer; 

however, DL models have multiple intermediate layers (hidden layers). These 

hidden layers are in charge of learning which features are crucial for the task to be 

solved, as well as solving it. In each layer (except the input layer), the output of 

each neuron is calculated by weighting the output of the neurons in the previous 

layer. A nonlinear activation function such as a sigmoid, tanh, Rectified Linear Unit 

(ReLU), or its variants is applied to this value. This activation function is a key 

component for the correct operation of the model since it allows to create 

functions of approximation with a high degree of freedom. A representation of the 

output of a neuron can be seen in Figure 2-4. The output equation of a neuron can 

be seen in Equation 2-1. Where φ is the activation function, 𝑤𝑖 is the weight of 

neuron 𝑖, 𝑥𝑖 is the value of the input to neuron 𝑖 and 𝑛 is the number of neurons. 
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Figure 2-4.  The structure of an artificial neuron. 

 y =  φ(𝑏 +∑𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) (2-1) 

Once the information flows from the input layer to the output layer, the 

backpropagation algorithm is applied to gradually adjust the neuron link weights 

and optimize the loss function. This backpropagation algorithm [23] consists of 

calculating the partial derivative of the error in each neuron of the previous layer 

and using the stochastic gradient descent algorithm [24] to reduce the error 

produced by each neuron. 

In addition to MLP, there are other interesting types of deep feedforward 

neural networks, such as Convolutional Neural Networks (CNNs) [8], and 

Recurrent Neural Networks (RNNs) [23]. 

CNNs [8] are deep feed-forward neural networks that employ filters (or 

kernels) to apply different types of feature extraction. CNNs are composed of 

convolutional layers, pooling layers, and fully connected layers. CNNs are capable 

of handling input data of any size, such as images, audio, or time series. In fact, 

CNNs show great performance in various imaging tasks. 

An example of a simple CNN is shown in Figure 2-5, which consists of two 

convolutional layers, two pooling layers, a fully connected layer, and an output 

layer with 10 neurons. The first convolutional layer (Conv 1) applies a kernel of 3x3. 

The second convolutional layer (Conv 2) applies a kernel of 5x5. The pooling layers 

apply a filter 2x2. The input data to this layer is the activation of the previous 

convolutional layer. The pooling layer decreases the size of the input data by 

extracting the maximum value of the data when applying the 2x2 mask. The next 

layer is a fully connected layer, which connects the last layer with the output layer 

using a weight vector. This layer has the same number of neurons as the last max-

pooling layer. The final layer is the output layer, which predicts the output class of 

the data in this example. 
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Figure 2-5.  Architecture of a convolutional neural network (CNN) composed of 2 
convolutional layers, 2 max-pooling layers, and 1 fully-connected layer. It can notice the 
reduction in dimensionality due to the application of the filter and, especially, the max-
pooling layers. 

The main advantage of CNNs over MLPs is that CNNs have the ability to 

understand the spatial correlation between image pixels, which allows us to extract 

edge and shape features from images. Furthermore, CNNs also have a small 

number of trainable parameters, which allows for fast training. The main drawback 

of CNNs is the computational overhead in very deep networks. 

On the other hand, RNNs [23] are a type of neural network specialized in 

temporal data analysis. For this purpose, RNNs integrate short- and long-term 

memory units that make them capable of learning complex dependencies between 

data sequences. RNNs are used in a wide range of tasks, such as Natural Language 

Processing (NLP), speech recognition, time series analysis and prediction, stock 

market forecasting, early detection of faults in continuous monitoring systems, etc. 

In fact, Long-Short Term Memory Networks (LSTMs) have shown excellent results 

in the NLP field. The main advantages of RNNs are their ability to perform 

memory-based computations, the ability to handle inputs of any size, and the 

ability to capture long-term dependencies. The main drawback of RNNs is their 

higher computational complexity and that they tend to suffer from evanescent 

gradient and exploding gradient problems as well as forgetting long-term 

dependencies. 

Some of the most important RNNs extensions are: LSTMs [25], Gated 

Recurrent Units (GRUs) [26], and their variants (Bidirectional RNNs [27], etc.). 

In order to increase DL performance and handle complex inputs such as 

images, video, text, translation, or audio, researchers are developing ways to help 

models focus on the most important features of the data, e.g., in image 

classification problems, help identify those parts of images that are most 

representative. 
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To achieve this, researchers have developed a technique known as attention 

[28], [29], which is an internal mechanism that the DL model uses to learn how 

important each feature is and achieve higher performance. 

The attention mechanism is as follows. First, the input is encoded by layers 

(they can be recurrent or convolutional) until the information is compressed into 

a fixed-length vector. Then, the model learns to decode the fixed-length vector into 

the target output using different mechanisms. The attention mechanism allows 

focusing only on the parts that provide the most information and incorporate and 

extract them from the fixed-length vector (of a much smaller size than the input 

data). For a better understanding, see Figure 2-6, where it is possible to see the 

procedure of a transformer-based algorithm for the task of image caption [30]. 

 

 
Figure 2-6.  Example of an image caption task using an attention-based algorithm (the 
white indicates the attended regions, the predicted word is indicated in the upper left 
corner of each image, the input image is the first image). The complete predicted sentence 
is: "A woman is throwing a frisbee in a park.". (Figure 6-b, p. 11, [30]). 

In recent years the main model of attention is the Transformers model [31], 

which uses self-attention to eliminate the recurrent and convolutional layers that 

have traditionally been used by the various attention methods proposed. The 

transformer encodes the input as a set of key-value pairs. At the decoder, the 

previous output is compressed into a query and the next output is produced by 

mapping this query and the key-value pair using scaled dot-product attention. 

Furthermore, Transformer uses a multi-head self-attention mechanism to execute 

the scaled dot-product attention multiple times in parallel. The results are then 

concatenated and transformed into the expected shape. 
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Comparing RNNs with Transformers, the advantages offered by 

Transformers are numerous, as they completely eliminate recursion and process 

sentences as a whole. This gives a huge efficiency during training by being able to 

parallelize the data input. However, it should be noted that the original 

Transformers could only deal with fixed input size data. To solve this, new variants 

of Transformers are being proposed, such as Transformer-XL [32] (2019), 

Compressive Transformers [33] (2019), Reformer [34] (2020), or Longformer [35] 

(2021). 

2.3.3 Reinforcement learning 

Reinforcement Learning (RL) [11] is an area of artificial intelligence dedicated to 

training an agent that is able to perform actions that interact with its environment 

it is in and receives a reward signal that tells it how good/bad the action performed 

was based on the state of its environment it was in. The agent's objective is to find 

out the actions that maximize the total cumulative reward obtained from the task 

to be performed through interaction with its environment, using a trial-and-error 

approach. 

The general RL problem is formulated as a discrete-time stochastic control 

process in which an agent interacts with its environment. Every time interval 𝑡, the 

agent receives the state 𝑠𝑡 ∈ 𝑆 and performs an action 𝑎𝑡 ∈ 𝐴 following its policy 

𝜋(𝑎𝑡|𝑠𝑡), which allows the agent to map each possible state with the action to be 

performed. After interacting with its environment through the action 𝑎𝑡, the agent 

receives a reward value 𝑟𝑡 ∈ 𝑅 and the next state 𝑠𝑡+1 ∈ 𝑆 according to the 

dynamics of the environment or model. In an episodic task, the procedure is 

repeated until a terminal state is reached. The sequence of states, actions, and 

rewards in an episode constitutes a trajectory or rollout of the policy. This 

perception-action-reward loop is illustrated in Figure 2-7. 

 

 
 

Figure 2-7.  Schematic representation of the perception-action-reward loop of a generic 
RL model. At each time step (𝑡), the agent receives the state (𝑠𝑡) and the reward (𝑟𝑡), and 
accordingly performs an action (𝑎𝑡) that affects its environment. The environment then 
generates the new state (𝑠𝑡+1) and reward signal (𝑟𝑡+1) and forwards them to the agent to 
continue the loop. 
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The return is the discounted, accumulated reward with the discount factor 

𝛾 ∈  (0, 1], shown in Equation 2-2. 

 𝑅𝑡  =  ∑ 𝛾𝑘 𝑟𝑡+𝑘

∞

𝑘 = 0

 (2-2) 

When an RL problem meets the Markov property [36], i.e., the future state 

depends only on the current state and current actions, but not on the past, it can 

be formulated as a Markov Decision Process (MDP) and can be defined by the 5-

tuple 〈𝑆, 𝐴, 𝑅, 𝑇, 𝛾〉, where 𝑆 represents a set of states of an environment, 𝐴 

represents the set of actions that the agent can take, 𝑇 is the transition function 

𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] that determines the transition probability from any state 𝑠 ∈ 𝑆 

to any state 𝑠′ ∈ 𝑆 when the action 𝑎 ∈ 𝐴 is taken. 𝑅 is the reward function 

𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ and 𝛾 ∈ (0,1] represents the discount factor that adjusts the 

trade-off between immediate and future rewards. 

Resolving an MDP generates a policy 𝜋 ∶  𝑆 → 𝐴, which maps the states 𝑠 ∈ 𝑆 

to the actions 𝑎 ∈ 𝐴. An optimal policy 𝜋∗ maximizes the expected discounted total 

reward for all states. 

To solve an MDP, multiple methods can be used, but within the field of RL, 

there are two main approaches: value function methods and policy search methods. 

In addition, there are hybrid methods that are able to leverage the advantages of 

both methods, such as the actor-critic approach, showing remarkable performance 

compared to simple methods. 

Value Functions 

A value function is a prediction of cumulative, discounted, expected future reward 

and estimates how good each state, or each state-action pair, is. 

The state value function (𝑉𝜋(𝑠)) estimates the expected return when the 

agent starts in state 𝑠 and follows the policy 𝜋 to perform actions. The state value 

function (𝑉𝜋(𝑠)) is as shown in Equation 2-3. 

 𝑉𝜋(𝑠) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠],where, 𝑅𝑡 = ∑ 𝛾𝑘 𝑟𝑡+𝑘

∞

𝑘 = 0

  (2-3) 

Another interesting value function is the state-action value function. The 

state-action value function (also denoted as quality function, Q-function, 𝑄𝜋(𝑠, 𝑎)) 

estimates the expected return when the agent starts in state 𝑠, perform the action 

𝑎 (which may not have come from the policy 𝜋), and then follows the policy 𝜋 to 

perform actions in the next actions. The state-action value function (𝑄𝜋(𝑠, 𝑎)) is as 

shown in Equation 2-4. 
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 𝑄𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡|𝑠𝑡 = 𝑠|𝑎𝑡 = 𝑎]  (2-4) 

Finally, the best policy (optimal policy, 𝜋∗) can be obtained simply by greedily 

selecting in each state the optimal Q-value, 𝑄∗(𝑠, 𝑎), following the rule shown in 

Equation 2-5: 

 𝜋∗ = max
𝑎
𝑄∗(𝑠, 𝑎), ∀ 𝑠 ∈ 𝑆  (2-5) 

Where the optimal state-action value function (𝑄∗(𝑠, 𝑎)) is defined as shown 

in Equation 2-6: 

 𝑄∗(𝑠, 𝑎) = max
𝜋
𝑄𝜋(𝑠, 𝑎)  (2-6) 

To obtain 𝑄𝜋, the Markov property is used to obtain it as a Bellman equation 

[37], which has the recursive form shown in Equation 2-7. 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝔼𝑠𝑡+1[𝑟𝑡+1 + 𝛾 𝑄
𝜋(𝑠𝑡+1, 𝜋(𝑠𝑡+1))]  (2-7) 

This means that 𝑄𝜋 can be improved by bootstrapping, i.e., the current values 

of the estimate 𝑄𝜋 can be used to improve the estimate 𝑄𝜋. This is the basis of Q-

learning [38] and the state-action-reward-state-action (s-a-r-s-a, SARSA) 

algorithm [21], and can be seen summarized in Equation 2-8: 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) ← 𝑄𝜋(𝑠𝑡, 𝑎𝑡) + 𝛼𝛿 (2-8) 

Where 𝛼 is the learning rate (LR), and 𝛿 = 𝑦𝑡 − 𝑄
𝜋(𝑠𝑡, 𝑎𝑡) is the temporal 

difference (TD) error. Also 𝑦𝑡 is a value used as a TD target to approximate the real 

𝑄𝜋 function and this is where RL methods differ. 

Q-learning is an off-policy model-free method that learns the 𝑄𝜋 function, 

following the rule shown in Equation 2-9. Another representation of this update 

can be seen in Equation 2-10. 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) ← 𝑄𝜋(𝑠𝑡, 𝑎𝑡) + 𝛼 ((𝑟𝑡 + 𝛾max
𝑎
𝑄𝜋(𝑠𝑡+1, 𝑎)) − 𝑄

𝜋(𝑠𝑡, 𝑎𝑡)) (2-9) 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) ← (1 − 𝛼)𝑄𝜋(𝑠𝑡, 𝑎𝑡)⏟      
𝑜𝑙𝑑 𝑣𝑎𝑙𝑢𝑒

+ 𝛼⏟
𝐿𝑅

( 𝑟𝑡⏟
𝑟𝑒𝑤𝑎𝑟𝑑

+ 𝛾 max
𝑎
𝑄𝜋(𝑠𝑡+1, 𝑎)⏟          

𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

) (2-10) 

SARSA is an on-policy model-free method that learns the 𝑄𝜋 function, 

following the rule shown in Equation 2-11. 

 𝑄𝜋(𝑠𝑡, 𝑎𝑡) ← 𝑄𝜋(𝑠𝑡, 𝑎𝑡) + 𝛼 ((𝑟𝑡 + 𝛾𝑄
𝜋(𝑠𝑡+1, 𝑎𝑡+1)) − 𝑄

𝜋(𝑠𝑡, 𝑎𝑡)) (2-11) 

Algorithm 2-1 and Algorithm 2-2 present the pseudocode for Q-learning (0) 

and for SARSA(0), where "0" indicates that it is based on one-step returns. 
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 Algorithm 2-1:  Q-learning, adapted from [11] 

 Output: state-action value function 𝑄𝜋 . 
 Initialize 𝑄𝜋 arbitrarily, e.g., to 0 for all state-actions. 
  
1 for each episode do: 
2  Initialize state 𝑠 
3  for each step do: 
4   if 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 then: 
5    Choose 𝑎 using policy derived from 𝑄(e.g., 𝜀-greedy) 
6    Perform action 𝑎, observe 𝑟, 𝑠′ 

7    𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ((𝑟 + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)) 

8    𝑠 = 𝑠′  
9   end if 
10  end for 
11 end for 

 

 Algorithm 2-2:  SARSA, adapted from [11] 

 Output: state-action value function 𝑄𝜋 . 
 Initialize 𝑄𝜋 arbitrarily, e.g., to 0 for all state-actions. 
  
1 for each episode do: 
2  Initialize state 𝑠 
  Choose 𝑎 using policy derived from 𝑄(e.g., 𝜀-greedy) 
3  for each step do: 
4   if 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙_𝑠𝑡𝑎𝑡𝑒 then: 
5    Perform action 𝑎, observe 𝑟, 𝑠′ 
6    Choose 𝑎′ using policy derived from 𝑄(e.g., 𝜀-greedy) 
7    𝑎𝑡 = 𝜋𝜃(𝑠𝑡) 

8    𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ((𝑟 + 𝛾𝑄(𝑠′, 𝑎′)) − 𝑄(𝑠, 𝑎)) 

9    𝑠 = 𝑠′, 𝑎 = 𝑎′ 
10   end if 
11  end for 
12 end for 

Policy Search 

Another approach to obtain an optimal policy (𝜋∗) is using policy search methods. 

These methods use parameterized policies 𝜋(𝑎|𝑠; 𝜃) to which optimization 

techniques (such as gradient ascent) are applied to parameters 𝜃 to maximize the 

expected return 𝔼[𝑅|𝜃]. Note that gradient ascent is applied in these methods since 

the aim is to maximize the expected returns. This optimization is almost always 

performed in on-policy methods, which means that each update only takes into 

account experiences gathered when acting according to the most recent version of 

the policy. 

The main advantages of policy search methods over value-based methods are 

that they are more efficient in continuous action spaces or problems with high 
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dimensionality, as well as being able to learn stochastic policies. However, these 

methods tend to converge to local optima, are inefficient to evaluate, and suffer 

from high variance [39]. Within this group, the actor-critic methods stand out. 

Actor-critic methods combine the value functions with an explicit 

representation of the policy. To achieve this, these algorithms use two 

architectures, one to learn the policy (actor) and one to learn the value function 

(critic . The “critic” updates action-value function parameters, and the actor 

updates policy parameters, in the direction suggested by the critic. In doing so, 

these methods trade-off the reduction of the variance of the policy gradients 

against the introduction of the bias of the value function methods [40], [41]. 

One of the most relevant developments within actor-critical algorithms is 

Deterministic Policy Gradient (DPG) [42]. DPG extends the fundamentals of policy 

gradients for use with deterministic policies. The main advantage of DPG is that 

they only need to integrate into state space, requiring fewer samples in problems 

with large action spaces, unlike stochastic policy gradients that integrate into both 

state and action space. 

Other basic concepts 

On-policy vs off-policy: 

On-policy learning, the optimal value functions/policy is learned from the 

actions performed using the current policy 𝜋(𝑎|𝑠) For example, SARSA evaluates 

the policy based on samples obtained following the same policy and then refines 

the policy with respect to the action values. 

Off-policy, the optimal value functions/policy, is learned from different 

actions (e.g., random actions). For example, Q-learning finds the state-action 

values of the optimal policy, without necessarily fitting the policy that generates 

the data. 

The notion of on-policy and off-policy can be understood as same-policy and 

different-policy. 

Model-based vs model-free: 

In model-based algorithms, the RL method makes use of a model of the 

environment (dynamics), i.e., the transition function (and the reward function), to 

estimate the optimal policy. The models may be given (e.g., the game of chess, 

where the valid moves and the probability that the opponent executes a move are 

known) or learned during training. Model-based algorithms have great advantages 

in domains where interaction is costly, however, an error in the learned model may 

generate an incorrect control policy. 
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Alternately, there are model-free algorithms, in which RL agents learn an 

optimal policy from interactions with their environments through trial and error. 

Exploration-Exploitation dilemma: 

The exploration-exploitation dilemma is a trade-off widely analyzed in game 

theory and in the field of RL (e.g. [43]). Exploration consists of gaining information 

about the environment by executing non-optimal actions, while exploitation 

consists of optimizing the expected return given current information. 

When an agent has gained some knowledge about its environment, it has to 

make a trade-off between learning more about its environment (exploration of new 

actions) or doing more investigation (exploitation) on the strategy that seems to 

be the most promising in order to secure the experience accumulated so far. 

The most common strategies for dealing with this dilemma are 𝜀-greedy [11], 

adaptive 𝜀-greedy [44], Upper Confidence Bound [45], and Thompson Sampling 

[46]. 

2.3.4 Deep Reinforcement learning 

Due to the problems presented by RL algorithms to deal with problems with high 

dimensionality, and the advancement of artificial intelligence, advanced methods 

and algorithms were developed to leverage the advantages offered by neural 

networks when acting as function approximators. In general, Deep Reinforcement 

Learning (DRL) is based on training deep neural networks to approximate the 

optimal policy 𝜋∗, and/or the optimal value functions 𝑉∗, 𝑄∗ to solve a task. In this 

case, the generic perception-action-reward loop for a DRL agent would be as 

shown in Figure 2-8. 

 
Figure 2-8.  Schematic representation of the perception-action-reward loop of a generic 
DRL model. 
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One of the main methods of DRL was Deep Q-Network (DQN) [47]. DQN 

uses several techniques to stabilize training, such as experience replay [48] and 

target networks. DQN employs a deep CNN to approximate the optimal state-

action value function (𝑄∗). 

Experience replay stores in a replay buffer the transitions tuples 

(𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) and randomly sampling transitions to remove data correlations and 

maximize the i.i.d. (independent and identically distributed) in the dataset. 

On the other hand, the use of target networks (𝑄′) makes it possible to reduce 

the correlation between the state-action value function 𝑄 and the objective (𝑟 +

𝛾max
𝑎
𝑄(𝑠′, 𝑎′)). This is achieved by slowly updating this target network 𝑄′, 

keeping the parameters of this network (𝜃−) in a separate network and updating it 

periodically only (each 𝐶 ∈ ℕ  iterations) Equation 2-12 is the one that uses Q-

learning as a loss function to update the network parameters at iteration 𝑖. 

 (𝑟 + 𝛾max
𝑎′
𝑄(𝑠′, 𝑎′; 𝜃𝑖

−)  −  𝑄(𝑠, 𝑎; 𝜃𝑖))

2

 (2-12) 

Where 𝜃𝑖 are the Q-network parameters at iteration 𝑖, 𝜃𝑖
− are the targe Q-

network parameters at iteration 𝑖 

In addition to the target Q-network and the replay memory, DQN uses 

another interesting tool to stabilize training. In order to keep the target values in 

a reasonable range and guarantee smoothed training, the rewards are clipped 

between −1 and +1. DQN has a preprocessing step to reduce the 216x160x3 input 

image to 84×84×1 gray-scale image. 

The DQN pseudo code is presented in Algorithm 2-4. 

Many DQN-based architectures have emerged to try to solve the problems 

presented by DQN such as the overestimation problem in Q-values [49], including 

Double DQN [50] Dueling DQN [51], or Rainbow [52], which employ different 

techniques such as the use of dueling networks [51], prioritized experience replay 

[53], multi-step learning [54], and noisy nets [55]. 

The main limitation of DQN is that it can only handle low-dimensional, 

discrete action spaces. As an alternative to DQN, more advanced algorithms 

capable of adapting to high-dimensional continuous action spaces were suggested, 

such as Trust Region Policy Optimization (TRPO) [56], Proximal Policy 

Optimization (PPO) [57], and Deep Deterministic Policy Gradient (DDPG) [39]. 
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 Algorithm 2-4:  Deep Q-Network (DQN), adapted from [47] 

 Initialize replay buffer ℬ to capacity N 
 Initialize state-action value function 𝑄 with random weights 𝜃. 
 Initialize target state-action value function 𝑄′ with weights 𝜃− = 𝜃  
  
1 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 1,𝑀 do: 
2  Initialize sequence 𝑠𝑡 = {𝑥1} and preprocessed sequenced 𝜙1 = 𝜙(𝑠1) 
3  for 𝑡 = 1, 𝑇 do: 
4   With probability 𝜀 select a random action 𝑎𝑡 

5   otherwise select 𝑎𝑡 = max
𝑎
𝑄(𝜙(𝑠𝑡), 𝑎; 𝜃) 

6   Perform action 𝑎𝑡 and obtain reward 𝑟𝑡 and image 𝑥𝑡+1 
7   Set 𝑠𝑡+1 = 𝑠𝑡 , 𝑎𝑡 , 𝑥𝑡+1 and preprocess 𝜙𝑡+1 = 𝜙(𝑠𝑡+1) 
8   Store transition (𝜙𝑡, 𝑎𝑡 , 𝑟𝑡 , 𝜙𝑡+1) in 𝒟 

9   Sample random minibatch of transitions (𝜙𝑗, 𝑎𝑗, 𝑟𝑗, 𝜙𝑗+1) from ℬ 

10   Set 𝑦𝑗 = {
𝑟𝑗

𝑟𝑗 + 𝛾max
𝑎′
𝑄(𝜙𝑗+1, 𝑎

′; 𝜃)
𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝜙𝑗+1

        𝑓𝑜𝑟 𝑛𝑜𝑛 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝜙𝑗+1
 

11   Perform a gradient descent step on (𝑦𝑗 −  𝑄(𝜙𝑗 , 𝑎𝑗; 𝜃))
2
 

12   Every C iterations, set 𝑄′ = 𝑄, i.e. 𝜃− = 𝜃  
13  end for 
14 end for 

DDPG is a model-free, off-policy, actor-critical algorithm that addresses the 

problem of continuous, high-dimensional action spaces extending DQN and DPG 

[42]. DDPG employs a similar idea to DQN with target networks. In this case, 

DDPG employs a soft-copy technique so that, instead of copying the weights 

directly, it updates the weights of the target network (𝜃′) in a smoothed fashion 

following the equation shown in Equation 2-13. In addition, DDPG adds a small 

amount of noise to the exploration actions. 

 𝜃′ ← 𝜏𝜃 + (1 − 𝜏)𝜃′  𝑤𝑖𝑡ℎ  0 < 𝜏 < 1 (2-13) 

Where 𝜏 is the parameter responsible for controlling the smoothness of the 

soft-copy. The pseudocode of the DDPG can be seen in Algorithm 2-5. 

2.3.5 The emergence of AI in ITS 

One of the most exciting and promising application areas of AI is Intelligent 

Transportation Systems (ITS). This field has attracted a great deal of research 

interest as a source of innovation and inspiration for the design and development 

of innovative and cognitive transportation systems. 

This challenging interdisciplinary research area integrates the interaction of 

transportation systems with computer systems such as sensors, 

telecommunication networks, database systems, big data analysis techniques, and 

other technologies, like AI. 
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 Algorithm 2-5:  Deep Deterministic Policy Gradient (DDPG) 

 Initialize critic network 𝑄𝜃 and actor-network 𝜋𝜙 with random parameters;  𝜃, 𝜙. 

 Initialize target network 𝜃′ ← 𝜃, 𝜙′ ← 𝜙  
 Initialize replay buffer ℬ 
1 for timestep 𝑡 ∈ {1,… , 𝑇} do: 

2  Observe state 𝑠 and select action 𝑎 = 𝑐𝑙𝑖𝑝(𝜋𝜙(𝑠) + 𝜀, 𝑎𝐿𝑜𝑤 , 𝑎ℎ𝑖𝑔ℎ),𝑤ℎ𝑒𝑟𝑒 𝜀 ~ 𝒩 

3  Perform 𝑎 in the environment 
4  Observe reward 𝑟, new state 𝑠′ and done signal 𝑑 that indicates if 𝑠′ is terminal 
5  Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in ℬ 
6  Sample mini-batch of N transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) from ℬ 
7  Compute targets 

  𝑦𝑖 = 𝑟𝑖 +  𝛾(1 − 𝑑)𝑄′ (𝑠𝑖+1, 𝜋𝜙′(𝑠𝑖+1)) 

8  Update Q-function by one step of gradient descent using 

  ∇𝜙
1

|𝑁|
 ∑(𝑦𝑖  − (𝑄𝜙(𝑠, 𝑎))

2
 

9  Update policy by one step of gradient ascent using 

  ∇𝜃
1

|𝑁|
 ∑𝑄𝜙 (𝑠, 𝜋𝜙(𝑠)) 

10  Update target networks using 
  𝜃′ ← 𝜏𝜃 + (1 −  𝜏)𝜃′ 
  𝜙′ ← 𝜏𝜙 + (1 −  𝜏)𝜙′ 
11 end for 

In the mid-2000s, innovative developments in ML, DL, RL, and other AI 

techniques such as multi-agent systems (MAS) and DRL began to significantly 

improve the cognitive capabilities of ITS [58]–[63]. 

AI and ITS research are helping to create more adaptive and intelligent 

systems. For example, autonomous vehicle driving technologies such as adaptive 

cruise control, intelligent lane control, and traffic jam assist, as well as full 

intelligent autonomous vehicle control, are already commonly used in intelligent 

vehicles [64]–[69]. 

In addition, in recent years, the use of DL and RL algorithms have been 

employed for the planning of intelligent transportation systems, such as advanced 

traffic light control algorithms [70]–[72], traffic signal coordination [73]–[76], 

trajectory prediction [77]–[81], traffic demand prediction algorithms [82]–[85] to 

optimize public transportation routes or car-sharing [86]–[91], congestion 

monitoring and incipient detection [92]–[95], incident detection, forecasting, and 

severity prediction [96]–[105], predictive road maintenance [106]–[110], etc. 

The continuous development of these algorithms has posed new challenges 

and limitations in the areas of real-time performance, robustness, scalability, 

security, privacy, and data optimization [111]–[116]. Nevertheless, we can say that AI 

research has played an important role in improving the cognitive capabilities of 

ITS [117]–[121]. 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 2:  Literature review 

 

Antonio Guillén Pérez 2022  Page 30 

The challenges of the future are now the combination of ongoing advances 

in AI with the use of next-generation 5G/6G communication networks, low-cost 

embedded devices, and IoT sensors. Here, artificial intelligence must be combined 

with wireless communications, sensors, computing, and processing power to 

achieve a system capable of adapting to a changing and unpredictable 

environment, learning, and adapting in real-time, acting autonomously and 

proactively, and being able to communicate with other actors, in order to achieve 

deep collaborative and cognitive intelligence. 

2.4 Conclusion to this chapter 

Communication technologies and artificial intelligence are playing an increasingly 

important role in the creation of new systems and products. Communication 

systems and new artificial intelligence algorithms could play a key role in 

improving the quality of life, as well as in the development of new, safer, smarter, 

and more efficient transportation systems and services, improving urban mobility 

and bringing us closer to a truly ITS. 

In this section, we have presented a brief introduction to ITS, as well as the 

fundamentals of AI and a series of terms of great importance for the development 

of this dissertation on ITS, communication networks, and AI. In the following 

chapters, we will see the advances proposed in this dissertation based on this 

theoretical background. 
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Chapter 3:  Unmanned Aerial Vehicles 

3.1 Introduction 

In this chapter, we will focus our attention on the study of Unmanned Aerial 

Vehicles (UAVs). 

UAVs are flying devices designed to perform tasks autonomously and 

remotely. In both military and civilian domains, UAVs have been adopted in many 

tasks in sectors such as agriculture, forest fire control, border surveillance, 

photography, surveying, mapping, inspection, or telecommunications, to name a 

few [122], [123]. Even more, UAVs are considered to be one of the most promising 

technological developments of the 21st century mainly due to their autonomy, 

flexibility, and mobility. 

Thanks to the great versatility that these UAVs can offer, there are different 

simple taxonomies to classify UAVs, for example, depending on the way they can 

fly (autonomously or remotely), size (large or light), wings type, or communication 

capabilities. In terms of wing types, two principal categories exist: Fixed-Wing 

UAVs (FW-UAVs) and Rotary-Wing UAVs (RW-UAVs). FW-UAVs are 

characterized by higher flight time, speed, and more aerodynamic design, while 

RW-UAVs can conduct Vertical TakeOffs and Landings (VTOL), present higher 

dynamics and control (they can control yaw, pitch, roll, and throttle), and can glide 

over static points. 

Table 3-1 provides a quick comparative overview of FW-UAVs and RW-UAVs 

by size. 

TABLE 3-1.  Classification of UAVs by size. (Table 1, p. 2, [124]). 

Type of UAV Speed 
Energy 

Autonomy 
Mobility 
Degree 

Static 
Hover 

Altitude 

Large-
UAV 

FW High High Low No High 
RW Low-Med Low-Med Med-High Yes Med-High 

Small-
UAV 

FW Med-High Med-High Low-Med No Low-Med 
RW Low Low High Yes Low 

 

In terms of communication capabilities, a distinction is made between 

individual UAVs, generally deploying star topologies to establish communication 

with a base station (BS) or satellite [125], and multi-UAV systems [126]. Nowadays, 

the majority of deployments are carried out using multi-UAV systems, commonly 

referred to as Flying Ad-hoc NETwork (FANET), which are a swarm or formation 

of multiple small UAVs connected through an ad-hoc network. Using this 

approach yields multiple benefits, such as reduced task execution times, reduced 

costs, increased scalability, and higher reliability, among others [127]–[129]. 
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FANETs belong to the group of Mobile Ad-hoc NETworks (MANETs). 

MANETs are a special type of ad hoc network created by mobile devices such as 

notebooks, smartphones, sensors, etc., which have a degree of mobility that gives 

them a series of characteristics that the network must adapt for their correct 

operation. MANET nodes have several characteristics that make them unique 

(mobility, energy consumption, etc.), which imposes several conditions and 

restrictions on the network that must be met for it to function properly. 

Traditionally, Vehicular Ad hoc Networks (VANETs), composed of cars, 

bicycles, buses,, emergency vehicles, etc., have been placed within MANETs. These 

nodes present a series of characteristics that differentiate them from MANETs, 

such as a higher travel speed and a mobility pattern strongly marked by traffic 

routes. 

Following the nomenclature used by MANETs and VANETs, ad-hoc networks 

created by UAVs can be classified as a special type of ad-hoc network. This type of 

network is called FANETs, and while FANETs share some properties with MANETs 

and VANETs, they also have several distinguishing traits, such as: mobility of their 

nodes, network topology changes, radio propagation, and computational power 

and energy limitations. Thus, FANETs have high requirements, especially when 

they are intended for different applications. FANETs can be used for a variety of 

tasks, such as photography, surveying, tracking, and surveillance, among others, 

providing numerous advantages in terms of cost, security, mobility, durability, etc., 

in contrast to MANETs and VANETs. The key distinctions between MANETs, 

VANETs, and FANETs are shown in Table 3-2. 

 

TABLE 3-2.  Comparison of MANETs, VANETs, and FANETs. (Table 2, p. 3, [124]). 

Characteristics MANETs VANETs FANETs 

Node Mobility 
Lower 
(2D) 

Low (2D) 
RW-UAV: High (3D) 

FW-UAV: Medium (3D) 

Node Speed 
Lower 

(6 Km/h) 
Medium - High 
(20-120Km/h) 

RW-UAV: Medium (40 Km/h) 
FW-UAV: High (150 Km/h) 

Mobility Model Random 
Manhattan 

models 

RW-UAV: RWP [130] 
FW-UAV: PPRZM [131] / ST 

[132] 
Topology Change Low Medium High 

Energy 
Constraints 

Medium Low 
RW-UAV: High (15-60 min) 

FW-UAV: Medium (to 5 hours) 

 

Due to the characteristics that make FANETs unique, in the state of the art, 

we find different works that obtain models and protocols that adapt to the unique 

characteristics of the nodes. Mobility models, as well as positioning protocols, 

propagation models, and proposed routing protocols are shown below. 
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3.1.1 Mobility models 

The mobility of a FANET node is much higher than that of a MANET and a VANET, 

mainly due to its 3 degrees of freedom corresponding to the 3 spatial dimensions. 

In addition, the motion of these nodes obeys a series of rules that consider inertia, 

wind friction, etc. Mobility models describe the physical behavior of the nodes of 

a network in a real environment. In addition, they allow characterizing networks 

allowing them to be anticipated, offering high dynamism and increased 

performance. By choosing the right mobility model, researchers can simulate 

FANETs with significantly greater realism and accuracy, and performance results 

can be provided in advance, guaranteeing a baseline performance [133]. This 

subsection shows the different mobility models proposed and classifies them into 

five different groups: pure randomized, time-dependent, path planned, swarm, 

and hybrid. 

Pure Randomized mobility models 

Pure randomized mobility models are based on randomness. Thus, using the 

lowest computational load, they are able to perform tasks where the time required 

to complete them is not important. Within this group, the mobility models 

Random Walk (RW) [134], Random Waypoint (RWP) [130], Random Direction 

(RD) [135], and Manhattan Grid (MG) [136] stand out. Figure 3-1 shows the behavior 

of a node using these mobility models. It is worth mentioning the MG, specially 

designed for cities and large metropolitan areas. In Figure 3-1 d it can be seen how 

the node adapts to the characteristics of the situated environment, however, the 

physics (velocity, mass, uncertainty, thrust, etc.) of the node is not modeled, so the 

turns are performed abruptly. This neglect of physics is intrinsic in all pure random 

mobility models. 

Time-Dependent mobility models 

To model the environment and the physics of the nodes, time-dependent mobility 

models were developed. For this purpose, the movement of the nodes is based on 

mathematical expressions that take into account the time instant of the simulation 

as well as the state of each node (position, velocity, distance to the edges, mass, 

etc.). In this way, the mobility model obtained avoids abrupt changes in velocity 

and direction. Within this category, the following stand out: Boundless Simulation 

Area (BSA) [137], Gauss-Markov (GM) [138], Enhanced Gauss-Markov (EGM) [139], 

3D-Gauss-Markov (3D-GM) [140] and Smooth Turn (ST) [130]. The GM mobility 

model (see Figure 3-2b) allows for much more realistic modeling of a RW-UAV 

node's behavior than the RW, RWP, and RD models, but it does not provide high 

accuracy when modeling the behavior of FW-UAVs, particularly turns. The EGM 

mobility model for FW-UAVs permits generating results that are highly 

comparable to the behavior of an FW-UAV in flight, avoiding sudden pauses and 
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quick turns from the simulation. Moreover, one of the features of the EGM is a 

progressive boundary avoidance mechanism, resulting in smooth boundary curves. 

Furthermore, the 3D-GM is a variation of the GM model created for FANETs, with 

the major characteristic of including mobility in all three dimensions. The behavior 

of some of these models can be seen in Figure 3-2. 

Path-Planned mobility models 

As can be seen, in previous mobility models the movement of nodes was 

completely random within a delimited region. However, for situations where one 

wants to focus a task on a specific location, they are very inefficient, for example in 

traffic and city surveillance. This is the reason for the emergence of planned path 

MM. These models are distinguished by the fact that nodes select from a set of pre-

calculated routes and only make decisions around the different routes and 

movement patterns that each model owns. This group includes the Semi-Random 

Circular Motion (SRCM) [141] and Paparazzi (PPRZM) models [131] stand out. 

SRCM is perfectly suited to tasks where a UAV must fly over a point, with different 

radii, to collect information. PPRZM, on the other hand, is a stochastic mobility 

model based on a state machine, with each state representing one of the possible 

movements of a UAV [142]. The PPRZM models are: Stay-At, Eight, Idle, Way-

Point, Scan and Oval (depicted in Figure 3-3). A representation of the described 

models can be seen in Figure 3-3. 

Swarm mobility models 

Swarm mobility models are based on the coordinated movement of network nodes 

around a common element. Such characteristic is highly desired for a set of tasks 

within FANETs, such as search and rescue. Within this group, we highlight: 

Exponential Correlated Random (ECR) [143], Particle Swarm Mobility Model 

(PSMM) [144], and Reference Point Group Mobility (RPGM) [145]. PSMM is based 

on the Particle Swarm Optimization approach (PSO) [146]. This model determines 

the velocity and direction of each node based on the previous velocity/direction 

and the position of the nodes with respect to the reference point. Figure 3-4 depicts 

the PSMM's operational principle. Nodes in RPGM are organized into groupings 

known as clusters. There is a center in each cluster, which can be either a logical 

center or a leader node. The center moves according to a RWP mobility model, 

while the nodes move around it (Figure 3-4). There are numerous variants of this 

mobility model, among which the following stand out: Column (CLMN) [134] 

(Figure 3-5), Nomadic Community (NC) [134] (Figure 3-6), and Purse (PRS) [134] 

(Figure 3-7). 
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Hybrid mobility models 

Finally, models created from the union of two or more mobility models in the 

previous classes are called hybrid models. This set of hybrid models combines the 

advantages offered by the separate models and reinforces the disadvantages by 

using other models. For instance, the hybrid pheromone Markov mobility model 

(H3MP) [147] relies on Markov chains and Distributed Pheromone Repel models 

[148]. While Markov chains promote better UAV behavior, the pheromone 

technique enables for knowledge sharing across UAVs. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-1.  Pure Randomized mobility model:. (a) Random Walk (RW); (b) Random 
Waypoint (RWP); (c) Random Direction (RD); (d) Manhattan Grid (MG). (Figure 3, p. 6, 
[124]). 

 
(a) 

 
(b) 

 
(c) 

Figure 3-2.  Time-Dependent mobility trajectories: (a) Boundless Simulation Area (BSA); 
(b) Gauss-Markov (GM); (c) Smooth Turn (ST). (Figure 5, p. 7, [124]). 
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(a) 

 
(b) 

 
(c) 

Figure 3-3.  Path-Planned mobility trajectories: (a) Semi-Random circular mobility model 
(SRCM); (b) Paparazzi (PPRZM) autopilot UAV Movements (Stay-At, Eight, Idle, Way-
Point, Scan, and Oval); (c) PPRZM state machine. (Figure 2, p. 6, [124]). 

 
 
 

(a) 
 

(b) 
Figure 3-4.  Swarm mobility models: (a) Single-step example in PSMM; (b) RPGM 
trajectory simulation. (Figure 4, p. 7, [124]). 

 
 

(a) 
 

(b) 
Figure 3-5.  Column mobility models: (a) Single-step example in CLMN, each node has its 
own reference point, and the reference points are placed on a reference line that moves a 
distance d and rotates an angle θ; (b) CLMN three-node trajectory simulation, the 
reference points move arbitrarily, and each node moves randomly around its own 
reference point. (Figure 6, p. 7, [124]). 
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(a) 
 

(b) 
Figure 3-6.  Column mobility models: (a) Single-step example in NC with five nodes, nodes 
have a maximum rmax to move away from the reference point, and the reference point 
moves through the simulation area a random distance d following a random pattern; (b) 
NC three-node trajectory simulation. (Figure 7, p. 8, [124]). 

 
 
 
 

(a) 
 

(b) 
Figure 3-7.  Column mobility models: (a) One-step example in PRS with a target node 
(black) moving a distance d and being pursued by 5 pursuer nodes (white); (b) PRS of a 
target node and three pursuer nodes trajectory simulation. (Figure 8, p. 8, [124]). 

Table 3-3 summarizes the mobility models discussed in this chapter, 

highlighting the most suitable type of UAV for each model and its typical use case. 
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TABLE 3-3.  Taxonomy of mobility models, the most suitable type of UAV and 
application scenarios. (Table 3, p. 8, [124]). 

Class Ref. 
Mobility 
Model 

RW/FW 
UAV 

Applications 

Pure 
Randomized 

[134] RW RW 
Environmental sensing 

Traffic and urban 
Monitoring 

[130] RWP RW 
[135] RD RW 
[136] MG RW 

Time-Dependent 

[137] BSA RW 

Environmental sensing 
Search and rescue 

[138] GM RW 
[139] EGM RW/FW 
[140] 3D-GM RW/FW 
[132] ST RW/FW 

Path-Planned 
[141] SRCM RW Agricultural management 

Traffic and urban 
Monitoring 

[131] PPRZM RW/FW 

Group 

[148] ECR RW 

Environmental sensing 
Search and rescue 

[144] PSMM RW/FW 
[145] RPGM RW 
[134] CLMN RW 
[134] NC RW 
[134] PRS RW/FW 

Hybrid [147] H3MP RW 
Surveillance 

Search and rescue 
 

3.1.2 Positioning protocols 

In this section, we will see the different algorithms proposed for the positioning of 

UAV nodes in FANETs. Traditional positioning algorithms try to obtain the 

optimal position of base stations/relays in order to reduce the number of nodes 

used, maximizing the network deployment. The positioning problem has been 

widely studied in the telecommunications domain, either by evolutionary 

algorithms [149], mixed linear programming [150], or greedy algorithms [151]. 

However, due to the unique characteristics of FANETs (high UAV mobility, 3D, 

limited UAV lifetime, etc.), the node positioning problem causes the proposed 

traditional solutions to provide suboptimal results. Hence, novel methods for the 

optimal positioning of UAV nodes in FANETs have been presented. The objective 

of UAV nodes in FANETs is to provide ground-level coverage or to extend the 

capacity of traditional mobile networks [152], [153], or MANETs [154]. 

Consequently, we can divide the proposed taxonomy into two classes: height-

based positioning and network-based positioning. 

Height-based positioning 

Height-based positioning consists of analyzing the impact of the height of the UAV 

nodes to obtain a spatial position that maximizes the full performance of the 

network. Several works analyze the coverage as a function of the height of the UAV 
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nodes. In the work [155] using a mathematical model that considers transmission 

losses, they obtained the optimal height for a UAV node to maximize coverage. 

Following this work, a later work [156] obtained the optimal height of a UAV to 

minimize the transmitted power and maximize the coverage area offered by the 

UAV. However, these works used a theoretical channel model, which has a 

negative impact on the reliability of the obtained models. Analogously, the authors 

of reference [157] investigated the best height of a UAV for coverage. Here, the 

channel was considered to have propagation and scattering losses. They 

demonstrated that there exists an ideal position that increases coverage area with 

the lowest transmit power. 

Network-based positioning 

Another approach to deploying FANETs is based on the capabilities/requirements 

of the network to be deployed. Many works focus on this approach, such as in [158], 

where the deployment of a FANET composed of FW-UAV is evaluated. Because 

these FW-UAVs cannot remain stationary over a place, the authors' algorithm 

constantly modifies the position of the nodes and the coverage radius of each FW-

UAV based on the demand. The results obtained improved the coverage offered, 

compared to a traditional deployment of fixed nodes, as well as a reduction of the 

delay experienced and an increase in QoS. A different path within this approach 

was proposed by Gruber et al. in [159]. In this work they looked at the attraction 

and repulsion movements of bacteria against attractants and repellents (known as 

chemotaxis [160]) to obtain a positioning algorithm, fixing the height of each 

FANET. While this bacterial-based procedure has already been used for node 

deployment, this is one of the few works that employ it for UAV nodes [161]. The 

results demonstrated an increase in the offered performance of the deployed 

FANET. Based on the coverage probability offered by a UAV, the authors in [152] 

analyzed the optimal positioning of UAVs in a FANET. For this, based on the circle 

packing theory [162] and taking into account the number of available UAVs as well 

as the gain/beamwidth of their directional antennas, they obtained the optimal 

position for each UAV in order to obtain an best deployment. Adopting a divergent 

approach, Lyu et al. [163] analyzed the lowest number of UAVs required to cover 

an area by guaranteeing that each ground node was connected to at least one UAV. 

In [164] Self-Deployable Point Coverage (SDPC) algorithm for RW-UAV nodes was 

proposed. SDPC investigated the optimal location for disaster coverage extension 

duties by determining the best position for each UAV to cover the greatest number 

of people while keeping a link between each UAV. However, SDPC does not 

consider its implementation with FW-UAV since it does not contemplate smooth 

trajectories, restricting the application of this algorithm. Finally, other UAV 

positioning algorithms for FANETs can be found in [165]–[167]. 
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3.1.3 Propagation models 

Wireless channel characteristics over which electromagnetic waves are 

transmitted are critical for any communications system's planning and design. In 

particular, in order to use acceptable transmit power, obtaining a channel model 

(or propagation model) that predicts transmission losses is crucial to ensure proper 

reception at all nodes. There are many propagation models in the literature, 

however, the most widely used in communication network deployments due to its 

simplicity is the Friis free space propagation model [168]. This model calculates 

propagation losses only as a function of the distance between transmitter and 

receiver, and the frequency used for communication. Although this model adjusts 

propagation losses quite well, its use is very limited to situations where there is a 

line-of-sight (LoS) between transmitter and receiver. 

The unique characteristics of FANETs require that the characteristics of the 

radio channel be known in advance, which allows for their correct planning and 

deployment. Traditionally, two different models have been used to model the radio 

channel in FANETs, one to model the channel for communications between UAVs 

(usually with direct vision, but with a high variation in the distance between UAVs) 

and another for communications between UAVs and ground nodes (with the effect 

of reflection on the ground, diffraction by objects, etc.). Thus, for the calculation 

of propagation losses between two UAVs or between a UAV and a ground node, 

the most appropriate model for each case will be used. Due to the imperative need 

to model transmission losses in order to plan the network and obtain adequate 

performance, many theoretical, empirical, and semi-empirical models have been 

developed by the scientific community to approximate a channel loss model for 

each usage scenario (UAV-to-UAV, U2U, or UAV-to-ground, U2G) through which 

electromagnetic waves are attenuated. In the specialized literature, most of the 

works on channel modeling in FANETs focus on the U2G channel (see [169]–[175]), 

nevertheless, a series of works focusing on the U2U channel can also be found (see 

[176], [177]). 

Having seen this, in this section we will divide the propagation models that 

can be found in the literature focused on FANETs for both the U2U and U2G 

channels. Our categorization divides the models that can be found into four 

categories: theoretical models, empirical models, hybrid models, and well-known 

models. The final class investigates the tunability of well-known models, whereas 

the previous three classes focus on obtaining novel models. TABLE 3-4 provides a 

full assessment of the channel models covered. 

Theoretical models 

With respect to theoretical models, Pokkunuru et al. proposed in [175], the authors 

proposed a series of equations modeling the U2G communication channel in the 
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2.4GHz band. This model considers several important features that other 

theoretical models do not consider, such as gaseous absorption, Doppler spread, 

attitude-dependent shadowing, weather, different types of urban areas, and 

multipath fading. However, this model did not consider the influence that the UAV 

may cause on the radiation pattern of the embedded communication device, in 

addition to the fact that the model was limited to airborne small cells. In almost 

all similar studies we can observe that they avoid considering the impact that the 

UAV can have on the radiation pattern and, consequently, on the propagation 

losses. Another theoretical propagation loss model for the U2G channel can be 

found in the work of Holis et al. [169]. The proposed model considered different 

types of urban areas, the heights of UAVs, as well as the possibility of LoS, for the 

frequency band between 2-6 GHz. These frequency bands were specifically chosen 

as they are the most used in mobile communication systems. Finally, the proposed 

propagation model was tested against a set of real-world observations, proving its 

practicality. 

Empirical models 

Another way to obtain transmission loss models is to derive them based on 

measurements made in different urban/rural scenarios. Although these models 

will be limited to the set of measurements made, they can obtain adequate results 

depending on the network to be deployed. Specifically, there are several papers 

concerned with obtaining a propagation loss model empirically. An example of 

these models can be found in [170], [171]. The U2G channel was modeled in these 

studies using observations acquired in the 800MHz frequency. In addition, in [172], 

the authors also obtained the theoretical model of the U2G channel for the L (960-

977 MHz) and C (5030-5091 MHz) bands. For this, they used a medium-sized 

aircraft, flying at a nearly constant altitude (~500 m - 2 km). Khawaja et al. [173] 

analyzed the 3.1–5.3 GHz Ultra-WideBand (UWB) propagation models for U2G 

channels using an RW-UAV. For this, they performed a set of measurements in 

both time and frequency domains. Based on the captured data, a stochastic 

propagation loss model was obtained, capable of characterizing the UWB 

propagation channels for the U2G band, considering large scale fading, multipath 

propagation, and small scale fading in various scenarios. 

Hybrid models 

Hybrid models start from a set of theoretical expressions modeling the most 

common propagation losses (free space attenuation losses, multipath fading, 

scattering, atmospheric absorption, etc.), and then perform a fine-tuning from a 

set of measurements taken in a real scenario. In this way, the models obtained fit 

very well to the scenarios analyzed and, beyond the scenarios used in the 

measurements, the results obtained are usually also quite close to the prediction. 
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Furthermore, using this hybrid approach, a set of models can be obtained from the 

same basic theoretical model, which simplifies the development of new models. 

Nevertheless, the set of models obtained based on this approach usually presents 

a high complexity, due to the fitting process of the base model to the set of samples 

taken. An example of these models can be found in [174], which performed a 

measurement campaign of the U2G channel in an urban area. After this, they chose 

the theoretical model that best matched the measurements. This model was the 

Rice + Log- ormal (Loo’s model [178]). Finally, they made the necessary 

adjustments to the theoretical model to reduce the error of the model predictions 

with the measurements taken. Goddemeier et al. [177] obtained another hybrid 

model, but in this case, they focused their work on the U2U channel. They chose 

the Rice theoretical model, so they could consider the multipath effect of the 

signals produced by UAVs when they are located at low altitude. The results 

concluded with the hybrid model. However, the UAV antennas were placed 

vertically, making reflections on the ground less frequent and with less power than 

the direct beam. Finally, they did not consider the impact of the UAV on the 

diffractions of the radiated power, and only the horizontal radiation plane was 

studied, leaving the vertical plane unstudied. 

Well-known models 

Finally, in this section, we will look at works that focus on determining the most 

appropriate channel models to be used in FANETs depending on their application, 

scenario, requirements, etc. An example of this work can be found in the study 

done by Jung et al. in [61]. In that paper, they proposed an algorithm that allowed 

selecting the most appropriate U2G channel model depending on the type of 

environment in which the FANET would be deployed (urban, suburban, rural, 

mountainous, near the sea, etc.). In this way, the U2G channel model chosen 

allowed modeling propagation losses with high accuracy, as well as allowing to 

adapt to a multitude of environments and scenarios. Another analysis of the 

adaptation of traditional propagation loss models to FANETs was performed by 

Daniel et al. [179]. The authors compared different propagation models widely 

analyzed and used for traditional mobile communication systems (e.g., Cost 231-

Hata, Walfish-Ikegami, Erceg, Har, WINNER II B1, C1, C2, and D2) with a ray-

tracing model, which allowed almost perfect results. The results they obtained 

concluded that WINNER II C1 and Walfish-Ikegami models were the most suitable 

when the FANET was deployed below 30m. Above that height, losses due to 

reflections and multipath are negligible and the free space model could be used to 

predict propagation losses. 
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TABLE 3-4.  Comparative of the literature on channel models. (Table 4, p. 11, [124]). 

Ref. Category Channel Frequency (GHz) 

[175] Theoretical UAV–Ground 2.4 
[169] Theoretical UAV–Ground 2–6 
[170] Empirical UAV–Ground 1.8–5.76 
[171] Empirical UAV–Ground 0.8 

[172] Empirical UAV–Ground 
0.96–0.977 
5.030–5.091 

[173] Empirical UAV–Ground 3.1–5.3 
[174] Semi-Empirical UAV–Ground 2 
[177] Semi-Empirical UAV–UAV 2.4 

3.1.4 Routing protocols 

In this section, we will look at the different routing protocols designed for ad-hoc 

and FANET networks. Routing protocols are responsible for the path taken by the 

data transmitted over the network and are the backbone of the system. In FANETs, 

the use of wireless communication and the characteristics of the nodes make 

routing protocols very different from traditional routing protocols. This makes 

routing a major challenge that affects system performance, furthermore, routing 

protocols must adapt to the system environment and the changing conditions it 

will face optimizing network performance. Successful implementation of routing 

protocols requires that it be tested and validated with the widest variety of 

conditions and that it be easy to adapt. It must also be agile and make decisions 

quickly, to adapt to different networks, changes in network topology, and 

characteristics, as well as handle unexpected difficulties. 

The different routing protocols for FANETs will be seen to focus on various 

applications, due to the wide range of possibilities they offer (coverage extension, 

search and rescue, real-time monitoring applications, etc.). Thus, for real-time 

video applications, the routing protocols designed will focus on achieving a 

constant jitter, in addition to satisfying the intrinsic characteristics of FANETs. On 

the other hand, for coverage extension applications or support for traditional 

communications networks, routing protocols will focus on providing high 

reliability, regardless of delay and jitter. However, to combine the strengths of 

traditional routing protocols and FANETs, one of the biggest challenges for a 

successful routing protocol is the ability to adapt to the constantly changing 

network topology and adapt it to the user's needs. 

In this subsection, we present the five groups of routing protocols proposed 

for FANETs and review their advantages, shortcomings, and applications. 

Topology-Based routing protocols 

These topology-based routing protocols use link information in data transmission. 

Within this category we can differentiate: 
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• Static routing protocols: This type of routing protocols are the simplest 

since the network nodes are forced to be static. Because of this, the routing tables 

are configured to ensure routing throughout the network, but no changes are 

allowed. Therefore, networks adopting these routing protocols must ensure a fixed 

topology, as they cannot adapt to changes in the network. The advantages offered 

by this type of routing protocols are its simplicity once the network is deployed, 

however, configuring all the nodes can be a laborious task if there are many nodes 

in the network, in addition, it must be guaranteed that the network will never 

change. Within this group, Load Carry and Deliver Routing (LCAD) [180], Multi-

Level Hierarchical Routing (MLHR) [181], and Data-Centric Routing (DCR) [182] 

stand out for FANETs. For example, LCAD employs the Store-Carry-Forward (SCF) 

[183] methodology as a basis, where a UAV node is responsible for capturing 

information from other ground nodes, and after capturing the information, the 

UAV physically moves towards a relay or destination node. As can be seen from 

the examples, these routing protocols are designed for DTN networks, where 

communication delay is not an important factor and can be used in 

agricultural/forestry/animal data gathering applications. 

• Proactive routing protocols: Proactive routing protocols are distinguished 

because each node in the network has a routing table that it updates periodically 

and also shares it with other nodes in the network so that all nodes have the most 

up-to-date routing table and create their own. Routing tables contain routes/nodes 

that a message needs to pass through, from a source node, to reach a destination 

node. Due to the proactivity offered by this type of protocols when the routing 

tables of all the nodes are shared, the main advantage they offer is their low delay 

in sending messages since the route that a packet must follow is known. However, 

their proactive nature brings with it a major disadvantage and that is the high load 

of sending routing tables when there are a large number of nodes in the network, 

which can exponentially increase the number of messages sent. Also, a parameter 

to be considered that will greatly affect the performance of the FANET is the 

frequency of sending these routing table update messages. A very high frequency 

will generate a heavy workload on the nodes, with high bandwidth and energy 

consumption. On the other hand, a very low frequency will not allow capturing the 

constant changes in the topology of the FANETs. Therefore, the configuration of 

this forwarding frequency must be fine-tuned, depending on the application to be 

deployed. We highlight the following proactive routing techniques that have been 

suggested or modified for FANETs: Optimized Link-State Routing (OLSR) [184], 

Destination Sequence Distance Vector (DSDV) [185], Better Approach to Mobile 

Ad Hoc Network (BATMAN) [186], and Directional OLSR (DOLSR) [187]. Because 

of its ease of use and speedy deployment, OLSR is likely the most widely used 

routing protocol in ad hoc networks. In OLSR, each node evaluates the links with 

its directly connected neighbor nodes by means of a metric that can be 
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communication delay, bandwidth, packet losses, etc. Once the cost of each node 

with its direct neighbors has been evaluated, it sends these costs by flooding to all 

nodes in the network. In this way, each node can search for the shortest path to a 

node in the network by applying the shortest path algorithm (Dijkstra [188]). 

However, due to this flooding procedure, as with all proactive routing protocols, if 

one node falls, the update will take considerable time to occur at all nodes in the 

network, something that for FANETs we see can be a crucial factor. On the other 

hand, there is DSDV, which is based on the Bellman-Ford algorithm. This 

algorithm adds several parameters that make it more complex but allow solving 

the major problem of the routing loop, as well as determining the freshness of the 

routes. Furthermore, in order to reduce the workload in sending routing tables, 

nodes only send incremental updates of their routing tables, although they are also 

allowed to send their full routing table very infrequently. However, when the 

network topology changes, a large message sending overhead is necessary before 

updating the routing tables. This makes DSDV unsuitable for very dynamic or large 

networks. Nevertheless, DSDV is being used in the field of FANETs in various 

application scenarios, as can be seen in [189]–[191]. Another interesting routing 

protocol is BATMAN. BATMAN is a recent routing protocol widely employed in 

MANETs [192]–[194]. Additionally, a modification of BATMAN, BATMAN-

Advanced (BATMAN-ADV) [195], was able to provide enhanced performance 

owing to its direct incorporation into the data transmission protocol stack. 

BATMAN-ADV has a major advantage over other reactive protocols since it does 

not follow a flooding technique of the entire network, but rather each node 

discovers the entire network from the nodes directly connected to them. This 

allows to better adapt to the requirements of FANETs and has been extensively 

studied [192], [195]. To meet the specific requirements of FANETs, a variant of 

OLSR DOLSR [187] was developed. DOLSR has a great advantage over other 

routing protocols, as its internal configuration parameters and operating principle 

allow it to reduce the overall network delay. This makes it ideal for real-time 

applications such as surveillance or search and rescue. Beyond the explained 

protocols, there are an extensive variety of alternative protocols employed in 

FANETs, such as Predictive-OLSR (P-OLSR) [196], Mobility and Load-Aware OLSR 

(ML-OLSR) [197], Contention-Based OLSR (COLSR) [198], Modified-OLSR (M-

OLSR) [199], Cartography-Enhanced OLSR (CE-OLSR) [200], Topology Broadcast 

Based on Reverse-Path Forwarding (TBRPF) [201], Fisheye State Routing (FSR) 

[202], and Babel [203]. 

• Reactive routing protocols: An alternative to proactive routing protocols are 

reactive routing protocols. These protocols use on-demand route discovery 

processes, i.e., they only find out which path a message should follow just before 

sending it. This approach reduces the considerable bandwidth consumption 

caused by the periodic network discovery of proactive routing protocols and 
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provides a greater dynamism and degree of adjustment to network changes, which 

is essential in FANETs. However, due to this reactive route discovery process, the 

initial latency of communication is high since the route is searched after there is a 

message to send. The basic approach of this protocol suite for searching the route 

of a message is to flood the network with RouteRequest packets. The destination 

node, upon receiving a RouteRequest packet, responds to the source node by 

sending a RouteReply packet, indicating the (backward) route that the received 

RouteRequest packet traversed. As can be seen, this procedure can lead to serious 

problems of network flooding and infinite message forwarding if no measures are 

taken to avoid it. Within this group of protocols, we can find several widely used 

algorithms, such as Dynamic Source Routing (DSR) [130], Ad Hoc On-Demand 

Distance Vector (AODV) [204], and Time-Slotted AODV (TS-AODV) [205]. DSR 

stands out for its simplicity since the source node is responsible for indicating the 

complete route in the header of the message to be sent. In DSR, the source node 

indicates the route. One of the most widely used reactive routing protocols within 

MANETs, VANETs, and FANETs is AODV [189], [206]–[214]. The difference 

between AODV and DSR is that, in AODV, nodes store in their internal memory a 

routing table with the routes of previously sent messages. If, when a message is to 

be sent, the route is already in its routing table, this route is used. If this is not the 

case or if there is an error in the message forwarding, the process of searching for 

the route to the destination node is initiated. This simple mechanism of saving 

routes offers AODV a lower communication latency on certain occasions, suitable 

for applications where routes are being discovered periodically. Focused on 

FANETs, TS-AODV (based on AODV) uses a time-slot mechanism to reduce 

packet collisions, decreasing packet losses considerably and increasing the 

bandwidth available. Other routing protocols seen in the related literature on ad-

hoc networks and FANETs, in addition to the aforementioned reactive protocols, 

are Multicast AODV (MAODV) [215] and AODV Security (AODVSEC) [216]. 

• Hybrid routing protocols: Hybrid routing protocols emerged to solve the 

main problems posed by both proactive (high bandwidth and energy consumption 

and low dynamism) and reactive (long delay in route discovery) protocols, 

especially in large networks with a large number of nodes. The main approach 

followed by this set of protocols is to divide the entire network into subnets (or 

zones) and select the routing protocol (proactive or reactive) that best suits the 

needs within each zone, and between zones. A proactive routing strategy, for 

example, might be utilized inside each zone to improve communication 

performance, while a reactive routing approach could be used for inter-zone 

communication. Due to this simple approach, in large networks, performance 

could be greatly improved by being able to maintain small routing tables within 

each zone, reducing latencies, and being able to anticipate the creation of routes 

reactively by knowing in advance that a message is going to leave a zone. Among 
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the hybrid algorithms, the zone routing protocol (ZRP) [217] stands out. For routes 

beyond the local zone, route discovery is performed using a reactive protocol. The 

source node sends a route request to the border nodes in its zone with its own 

address and that of the destination node. Each border node checks whether the 

destination node is in its local zone. If the destination is not in the local zone of 

the border nodes, the border nodes add their own address to the route request 

packet and forward the packet to their own border nodes. This process is repeated 

until the destination node is found. If the destination node is in the local area, a 

route reply message is sent to the source node, indicating the route to the 

destination node. Using this simple approach, ZRP reduces the overhead of 

sending control messages in large networks if proactive routing protocols were 

used, as well as reducing the routing delays within an area that would be caused 

when reactive routing protocols are used for route discovery processes. If we focus 

on FANETs, we find a set of algorithms that adapt to the requirements needed by 

these networks, such as the Temporarily Ordered Routing Algorithm (TORA) 

[218], Rapid-reestablish TORA (RTORA) [219], Hybrid Wireless Mesh Protocol 

(HWMP) [220], Sharp Hybrid Adaptive Routing Protocol (SHARP) [221], and 

Hybrid Routing Protocol (HRP) [222]. 

Position-Based routing protocols 

An alternative to topology-based routing protocols are position-based routing 

protocols. This type of protocols makes use of the information provided by the 

geographical position of the network nodes to create routes in a smarter way. As a 

result, this type of protocol is better suited to the needs offered by FANETs with 

high node mobility. Protocols in this category are grouped into three distinct 

categories: 

• Reactive-Based routing protocols: This type of protocol combines the 

reactive protocols with the UAV’s geographical position to enable them to obtain 

greater performance. One of the most widely used protocols within this category 

is the Reactive-Greedy-Reactive (RGR) algorithm [223]. RGR leverages the AODV 

reactive protocol [204] to discover routes on demand, and for message delivery, it 

relies on the Greedy Geographic Forwarding (GGF) protocol [224]. Other 

prominent protocols made for FANETs are Ad Hoc Routing Protocol for 

Aeronautical Mobile Ad Hoc Networks (ARPAM) [225] and Multipath Doppler 

Routing (MUDOR) [226]. 

• Greedy-Based routing protocols: To reduce message delay, this set of 

protocols uses the position of nodes to find the path with the lowest number of 

UAVs, using the Greedy Forwarding approach [227]. Thus, Geographic Position 

Mobility-Oriented Routing (GPMOR) [228] was designed to suit the needs of 

FANETs. Employing the Gauss-Markov mobility model [124] and the geographic 
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positions of UAVs, GPMOR predicts the positions of UAVs in the future and selects 

the next closest forwarding UAV to the receiver to reduce the latency and the 

number of hops. In addition to this protocol, there are others such as Mobility 

Prediction-Based Geographic Routing (MPGR) [229], Geographic Load Share 

Routing (GLSR) [230], Geographic Greedy Perimeter Stateless Routing (GPSR) 

[231], Greedy-Hull-Greedy (GHG) [232], Greedy-Random-Greedy (GRG) [233], 

Greedy Distributed Spanning Tree Routing 3D (GDSTR-3D) [234], and UAV Search 

Mission Protocol (USMP) [231]. 

• Heterogeneous routing protocols: Heterogeneous networks, networks 

formed by nodes of different nature (MANETs, VANETs, FANETs, etc.), are a very 

common type of networks in practice. Heterogeneous routing protocols are 

focused on this type of networks and are able to exploit this heterogeneity to offer 

advantages over other types of routing protocols. In this collection of protocols, we 

can find Connectivity-Based Traffic Density Aware Routing Using UAVs for 

VANETs (CRUV) [235]. CRUV leverages a FANET to enhance the performance 

offered by a DTN VANET, enabling VANET interconnection. In addition, the 

following can also be found: UAV-Assisted VANET Routing Protocol (UVAR) [236], 

Position-Aware Secure and Efficient Routing (PASER) [237], Cross-Layer Link 

Quality and Geographical-Aware Beaconless (XLinGo) [238], and Secure UAV Ad 

Hoc Routing Protocol (SUAP) [239]. 

Clustering/Hierarchical routing protocols 

This category of routing protocols is based on the existence of clusters and 

leader/head nodes, hierarchically organized. Each cluster has one or more leader 

nodes, and these are responsible for inter-cluster communication. The selection of 

these leader nodes is a crucial task since the overall performance of the network 

will be limited by the performance that these leader nodes can provide. 

Communication between nodes within a cluster can be done using one of the 

protocols discussed in the other sections. Particularly noteworthy in this category 

of protocols made for FANETs are: Clustering Algorithm of UAV Networking 

(CAUN) [240], and Mobility Prediction Clustering Algorithm for UAV Networking 

(MPCA) [241]. On the one hand, CAUN has a fairly simple operation: clusters and 

leader nodes are configured before deploying the FANET based on the application 

to be deployed and once the network is deployed the clusters are adapted based 

on real-time conditions/requirements. On the other hand, MPCA tries to predict 

the changes in the network topology and, depending on the mobility parameters 

of each UAV, calculates the clusters. Furthermore, it is possible to find other 

protocols that belong to this category, such as Landmark Ad Hoc Routing 

(LANMAR) [242], Multi-Meshed Tree Protocol (MMT) [243], Cluster-Based, 

Location-Aided DSR (CBLADSR) [244], and Disruption Tolerant Mechanism 

(DTM) [245]. 
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Swarm-Based routing protocols 

There are routing protocols based on the behavior of animals and nature. Based on 

this inspiration, the resulting protocols have characteristics that make them 

unique and allow them to adapt to situations in a very organic way. Within this 

group, for FANETs there is a set of swarm-based algorithms, the BeeAdHoc 

algorithm [246] which bases its operation on the behavior of bees, and the 

AntHocNet [247], and APAR [248] algorithms, both inspired by the behavior of 

ants. 

Delay-Tolerant Network (DTN) routing protocols 

For applications where there are constant node connection outages, partitions, and 

topology changes, delay-tolerant routing (DTN) protocols were developed. 

Moreover, these protocols are well suited for FANETs whose applications allow 

Store-Carry-and-Forward (SCF). In this way, UAVs in a FANET can move with the 

information to forward it to another UAV. Within this group, the most used 

protocol is Location-Aware Routing for Opportunistic Delay Tolerant (LAROD) 

[68]. LAROD was developed by combining the SCF technique with Greedy 

Forwarding, according to the situation, using the beaconless strategy to reduce 

network overhead. Also, within this category, the following algorithms are worth 

mentioning: AeroRP [249], Geographic Routing Protocol for Aircraft Ad Hoc 

Network (GRAA) [250], Epidemic [251], Maxprop [252], Spray and Wait [253], and 

Prophet [254]. 

A summary of the different classes of routing algorithms, their subclasses, 

and the algorithms discussed in this section is presented in TABLE 3-5. 

3.2 Understanding the Impact of Embedded Devices on the 
Radiation Pattern of UAVs 

In the previous sections, none of the works have addressed the impact that the 

UAV might have on the integrated communications module, affecting the 

proposed channel models (especially those obtained from real measurements), as 

well as the performance of the selected routing protocol. Because of this, in this 

section, we proposed to analyze the impact that an RW-UAV could have on the 

radiation pattern of a WiFi communications network in the 2.4 GHz and 5 GHz 

bands. 

To this end, this study was divided into three key objectives. The first was to 

derive the antenna configuration that best addressed the requirements of the U2U 

and U2G links. Then, secondly, we obtained the radiation pattern that the UAV 

has on the integrated WiFi communication device, both in the 2.4GHz and 5GHz 

bands, for the vertical and horizontal polarizations of the electromagnetic fields. 
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From the obtained results, we quantified the effect (if any) of the UAV motors, the 

UAV propellers, and the UAV chassis on the radiation pattern. 

Finally, in view of the above results, we denoted a series of conditions that 

must be met for the radiation pattern of an RW-UAV to be considered isotropic 

(with constant radiation power at all angles), laying the groundwork for 

simplifying future work related to UAVs and FANETs. 

Among the related works in this field, we can find [255], where the authors 

performed a set of experimental measurements, measuring RSS and UDP 

throughput in the U2G channel under the WiFi 802.11a standard, in the 5GHz band, 

using two antennas, for an RW-UAV. The conclusions they reached were that the 

antennas should be placed parallel to the ground and at a 90° angle to each other. 

In this way, the antennas could provide a radiation pattern capable of reducing the 

impact of UAV motion, demonstrating the importance of antenna position 

selection. An extension of the previous work can be found in [256], where the 

authors reanalyzed the U2G communication channel of an RW-UAV, performing 

a set of RSS measurements on the WIFI 802.11a standard, for the 5GHz band. 

 

TABLE 3-5.  A summary of routing algorithms and their classes and subclasses. (Table 2, 
p. 7, [214]). 

Type Subtype Routing Algorithm 

Topology-
Based 

Static LCAD [180], MLHR [181], DCR [182] 

Proactive 

OLSR [184], DSDV [185], BATMAN [186], 
BATMAN-ADV [195], DOLSR [187], P-OLSR [196], 
ML-OLSR [197], COLSR [198], M-OLSR [199], CE-

OLSR [200],  
TBRPF [201], FSR [202], Babel [203] 

Reactive 
DSR [130], AODV [204], TS-AODV [205],  

MAODV [215], AODVSEC [216] 

Hybrid 
ZRP [217], TORA [218], RTORA [219],  

HWMP [220], SHARP [221], HRP [222] 

Position-Based 

Reactive-Based 
RGR [223], GGF [224], ARPAM [225], MUDOR 

[226] 

Greedy-Based 
GPMOR [228], MPGR [229], GLSR [230], GPSR 
[231], GHG [232], GRG [233], GDSTR-3D [234], 

USMP [231] 

Heterogeneous 
CRUV [235], UVAR [236], PASER [237],  

XLinGo [238], SUAP [239] 
Clustering/ 
Hierarchical 

 
CAUN [240], MPCA [241], LANMAR [242],  
MMT [243], CBLADSR [244], DTM [245] 

Swarm-Based  BeeAdHoc [246], AntHocNet [247], APAR [248] 

Delay-Tolerant 
Network 

 
LAROD [257], AeroRP [249], GRAA [250],  

Epidemic [251], Maxprop [252],  
Spray and Wait [253], Prophet [254] 
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However, in this study, they employed 3 antennas at the ground node to 

measure the received power of the UAV. The antennas were placed in a triangular 

position, to reduce reception nulls. However, in both works the authors did not 

consider the use of multiple antennas in transmission, i.e., in the UAV, nor did 

they study the U2U channel, nor the influence that the UAV motors/chassis may 

have on the radiation pattern. 

Other similar works are found in [258], [259], where they also study the U2G 

channel for several scenarios such as urban, suburban, or rural, in addition to 

performing measurements varying the antenna positions, as well as varying the 

distance between nodes. The results they obtain are that the influence of the 

antenna position is large and should be taken into account before deploying the 

network and study the different antenna configurations since the UAV could 

adversely affect the radiation pattern. 

As can be seen in the works seen, a major drawback is that they do not 

consider the external interferences they may have, even if the experiments are 

performed outdoors, it is still not a totally controlled scenario free of interferences 

or reflections, and the results may be disturbed. This major problem could be 

solved by studying in a totally controlled scenario such as an anechoic chamber or 

a reverberation chamber, places specially designed for the electromagnetic study 

of devices such as antennas, cell phones, laptops, etc. 

3.2.1 Experimental setup 

Prior to studying the comprehensive radiation pattern under a fully controlled 

environment, in this section we will detail the hardware, software and testbed 

used. The UAV used in the experiments was the IdeaflyIFLY-4S (Shenzhen Idea-

Fly Technology Co., Ltd, Shenzhen, China), a quadcopter widely used in the UAV 

field for its low weight and high maneuverability, with carbon fiber chassis, 

brushless motors, and interchangeable propellers. 

Attached to this UAV was a wireless communication module consisting of an 

open firmware router WiTi Board (hereafter WiTi) [260]. WiTi was built on 

OpenWRT v14.07 with dual band and four antennas, two for each WiFi band. As 

communication chipsets were the MT7602E chip, which supported 802.11 b/g/n 

WiFi 2T2R, and the MT7612E chip, which supported 802.11 a/b/g/n/ac WiFi 2T2R, 

using the 2.4 GHz and 5 GHz bands, respectively. In addition, both communication 

chips could operate independently and simultaneously. Figure 3-8 shows the UAV 

and WiTi embedded. Furthermore, to study a broader antenna configuration, two 

different types of antennas, both dual-band, were used. The first, an 

omnidirectional antenna with a gain of 5 dBi on both bands (ARS-NT5B), and the 

second, a directional patch antenna with a gain of 8 dBi for the 2.4 GHz band and 

10 dBi for the 5 GHz band (APA-M25). 
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To analyze the influence of the UAV on the radiation pattern in a controlled 

environment, the UAV was placed next to the WiTi in a radio frequency anechoic 

bed. This anechoic chamber had dimensions of 5.2 m × 3.5 m × 2.25 m and was 

composed of electromagnetic wave isolation cones, which prevented the waves 

from penetrating the anechoic chamber, as well as preventing the signal from 

bouncing inside the chamber. The UAV was placed on a turntable with an INN-

CO DE 3260-P moving arm that was controlled by an INN-CO CO 2000 digital 

controller. The R&S ZVL spectrum analyzer, which allows capturing signals up to 

6 GHz, together with the R&S HF906 horn antenna with a large receive bandwidth 

(between 1 GHz and 18 GHz) and constant gain (10 dBi for 2.4 GHz and 11 dBi for 5 

GHz) were used as receiving devices. 

To analyze the power transmitted by the WiTi and to obtain the influence 

that the UAV would have, it was decided to use the traffic generator iperf v2.0.9 

[261] in its default configuration for sending TCP (transport control protocol) 

traffic. Thus, after launching the traffic session, the WiTi transmitted with 

maximum power a data transmission session and the signal was captured by the 

HF906 antenna and analyzed by the ZVL spectrum analyzer connected to it. As a 

receiving device for the iperf data transmission session, a USB-WiFi device was 

placed inside the anechoic chamber. The power measurements were analyzed with 

a 10-degree step, making a total of 36. The bandwidth analyzed was 20MHz, 

centered on the central frequency, with an analyzer resolution bandwidth of 3KHz. 

The captured signal was averaged, and the average power value was obtained. The 

distance between the UAV and the HF906 antenna was 3m, with a height to the 

ground of 1.5m. These distances allowed the far-field condition to be met for both 

working bands. Figure 3-9 depicts a schematic overview of the testbed. The testbed 

parameters are summarized in Table 3-6. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-8.  UAV and WiTi embedded- device and antennas used: (a) UAV and WiTi; (b) 
ARS-NT5B antenna; (c) APA-M25 antenna. (Figure 9, p. 14, [124]). 
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Figure 3-9.  Experimental testbed elements (DUT ≡ Device Under Test ≡ UAV + WiTi 
device). (Figure 10, p. 14, [124]). 

TABLE 3-6.  A overview of the testbed's parameters and characteristics. (Table 4, p. 14, 
[124]). 

Device or Parameter Configuration 

TX Antennas (Antenna Gain 2.4/5 GHz) ARS-NT5B (5/5 dBi), APA-M25 (8/10 dBi) 
RX Antenna (Antenna Gain 2.4/5 GHz) HF906 (10/11 dBi) 
Distance between TX and RX Antennas 3 m 

Traffic Generator Iperf v2.0.9 (TCP default configuration) 
Center Frequency 2.462/5.210 GHz 
Transmitted BW 40/40 MHz 

Captured BW 20/20 MHz 
TX Power 20/20 dBm 

3.2.2 Results 

In this study, we conducted three different experiments. The first included 

determining the ideal antenna configuration for the WiTi as an isolated device, i.e., 

the best orientation to provide the most signal power for the U2U and U2G 

connections, for the 2.4 GHz and 5 GHz WiFi bands. A representation of the U2U 

and U2G links is shown in Figure 3-10. The second series of studies sought to 

determine the impact (if any) of the UAV chassis, UAV motors (RPM and 

vibrations created in the antennas and chassis), and UAV propellers on the 

radiation pattern in the 2.4 and 5 GHz bands. Following the demonstration of the 

UAV influence, the final set of experiments aimed to obtain the most accurate 

radiation pattern of the entire system (UAV + WiTi) using the optimal antenna 

configuration, that is, the antenna configuration that provided the highest 

transmitted radiated power for each U2U and U2G communication link. 

To achieve the most complete radiation pattern possible, it was decided to 

study three radiation planes, represented in Figure 3-11 as X-plane, Y-plane, and Z-

plane. In addition, within each plane, the vertical and horizontal polarization of 

the electromagnetic fields was studied to test a larger number of possible antenna 

configurations. As an example of measurement and what it represents, Figure 3-11 

shows each plane analyzed and the position of the WiTi in each plane. To compare 

              

       

                 

        
        

            

          

  



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 3:  Unmanned Aerial Vehicles 

 

Antonio Guillén Pérez 2022  Page 54 

different antenna configurations considering a specific scenario, it was decided to 

select regions of interest. In Figure 3-12, the regions of interest for the U2U (green) 

and U2G (yellow) links are highlighted. 

We postulate, in particular, that the regions of interest for UAV-to-UAV 

communications (U2U connections) must be confined in the common horizontal 

plane (±45°). As a result, the region of interest for U2U linkages would include the 

whole X plane plus two 90° cones (45° to 135° and -45° to -135°) in the Y and Z 

planes, as illustrated in Figure 3-12. In turn, we defined the U2G communication 

region of interest as a 90° cone (from 135° to -135°) in the Y and Z planes from the 

UAV to the ground. Because of these regions of interest, obtaining the best antenna 

configuration came down to simply discovering the antennas that radiated the 

most power in those regions. Note that for different type of network deployment, 

for example, in the case of satellite-assisted UAV communication, the region of 

interest for the UAV-satellite link would be different, in which case the antenna 

configuration that maximizes power transmission in the Y and Z planes at a 90° 

angle (from -45° to 45°) might be of interest. 

 
Figure 3-10.  Example of FANET communication links employing the 5 GHz band for U2U 
communication and the 2.4 GHz band for U2G coverage. (Figure 1, p. 3, [124]). 

 
Figure 3-11.  Planes under study (X-Plane, Y-Plane, and Z-Plane) and WiTi. (Figure 11, p. 15, 
[124]). 
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(a) 

 
(b) 

 
(c) 

Figure 3-12.  Example of radiation pattern measurement in the three planes under study 
and highlighted in color (green for U2U and yellow for U2G) the areas of interest for each 
communication link: (a) X Plane; (b) Y Plane; (c) Z Plane. (Figure 12, p. 15, [124]). 

After performing the first series of experiments, the best antenna 

configuration obtained was the one shown in Figure 3-13. The radiation patterns 

we obtained with the antenna configuration previously depicted are shown in 

Figure 3-14 for the 2.4GHz band and in Figure 3-15 for the 5GHz band. 

It can be seen that, by orienting the antennas correctly, the radiated power 

can be concentrated within the regions of interest. For example, for the U2G link, 

in the 2.4GHz band shown in Figure 3-14 it can be seen that very concentrated 

power has been obtained within the area of interest defined for the Y and Z planes 

(from 135° to -135°), Figures 3-14 b and c. This is achieved by the selection of the 

APA-M25 directional antennas in the 2.4GHz band. In addition, by placing the 

antennas perpendicularly, forming a 90-degree angle, and pointing at the nadir, 

we can take advantage of the polarization diversity and increase the possibilities of 

having the same polarization between the transmitting and receiving antennas. If 

we had selected these antennas for the 5GHz band in the U2G link, since the 

radiation pattern of these antennas is narrower, the entire cone of the area of 

interest (135° to -135°) would not be covered. The 2.4 GHz band had a gain of 8 dBi, 

compared to 10 dBi for the 5 GHz band, which would make the radiation lobe 

narrower and not cover the entire cone of the area of interest. 

Furthermore, based on the characteristics of the area of interest of the U2U 

link (omnidirectional in the X plane, and a 90° cone in the Y and Z planes), the 

best configuration placed the ARS-NT5B omnidirectional antennas parallel to each 

other and perpendicular to the X plane. Thus, the results showed an 

omnidirectional radiation pattern in the X-plane (Figure 3-15 a, VPol), as well as 

sufficient amplitude in the required regions of interest in the Y- and Z-plane (see 

Figure 3-15 b and c). 
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Figure 3-13.  Upward view of WiTi's best antenna configurations: 2.4 GHz band for U2G 
link with APA-M25 antennas in horizontal position with 90° difference and 5 GHz band 
for U2U link with ARS-NT5B antennas in vertical position. (Figure 13, p. 16, [124]). 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3-14.  Radiation pattern of the isolated WiTi in the U2G link using the antenna setup 
indicated in Figure 3-13 in the U2G link @ 2.4 GHz: a) X-Plane; (b) Y-Plane; (c) Z-Plane. 
(Figure 14, p. 16, [124]). 

 
(a) 

 
(b) 

 
(c) 

Figure 3-15.  Radiation pattern of the isolated WiTi in the U2U link @ 5 GHz using the 
antenna configuration shown in Figure 3-13: (a) X-Plane; (b) Y-Plane; (c) Z-Plane. (Figure 
15, p. 16, [124]). 

                      

                 

                                    

                       

            

       

   

   

   

   

         

   

    

  

    

   

    

      

       

   

   

   

   

         

   

    

  

    

   

    

      

       

   

   

   

   

         

   

    

  

    

   

    

      

    

    

       

   

   

   

   

         

   

    

  

    

   

    

      

       

   

   

   

   

         

   

    

  

    

   

    

      

       

   

   

   

   

         

   

    

  

    

   

    

      

    

    



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 3:  Unmanned Aerial Vehicles 

 

Antonio Guillén Pérez 2022  Page 57 

To analyze the influence of the UAV, the WiTi was placed on board the UAV 

and the radiation pattern was obtained with the antenna configuration obtained 

previously. The measurements performed included different states of the UAV, in 

order to separate the influence of the propellers, engines, and chassis. UAV off, 

UAV on with the motors at 45 percent power with and without propellers, UAV on 

at 65 percent power with and without propellers, and UAV on at 95 percent power 

with and without propellers were the specific states studied. 

The results obtained showed that the influence of the propellers and motors 

was negligible compared to the influence due to the carbon fiber chassis. This is 

probably partly attributable to propellers being made of plastic and motors are 

brushless, in addition to the high stability of the whole UAV, with almost no 

vibrations. These findings may alter if carbon fiber propellers were utilized (which 

provide more thrust because they can spin faster) or if other types of motors were 

used. 

Regarding the effect of the UAV chassis, it was most noticeable in the Y and 

Z planes within the range of 135° and -135°. To verify these differences, Figures 3-14, 

3-15, along with 3-16, and 3-17 can be compared. As a result of focusing its region of 

interest inside that area, the U2G connection (Y and Z planes) was the most 

impacted, with a difference in received power of up to -10 dB. As for the U2U link, 

for the X-plane in the 5GHz band, within the area of interest, it can be seen in 

Figure X that the power does not fluctuate significantly, being even higher at some 

angles. This may be due to the carbon fiber composition of the chassis, which 

prevents the waves from passing through it and these are directed towards the X-

plane. 

 
(a) 

 
(b) 

 
(c) 

Figure 3-16.  Radiation pattern of the WiTi on-board the UAV for the antennas 
configuration shown in Figure 3-13 in the U2G link @ 2.4 GHz: a) X-; (b) Y-Plane; (c) Z-
Plane. (Figure 14, p. 16, [124]). 
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(a) 

 
(b) 

 
(c) 

Figure 3-17.  Radiation pattern of the WiTi on-board the UAV for the antennas 
configuration shown in Figure 3-13 in the U2U link @ 5 GHz: (a) X-Plane; (b) Y-Plane; (c) 
Z-Plane. (Figure 15, p. 16, [124]). 

Figure 3-18 illustrates the received power for the full range of angles when 

WiTi was used alone (without drone) and when used as a communication device 

onboard a UAV (with drone). In addition, the 2.4 GHz band is illustrated in the X-

plane (see Figure 3-18 a) and in the Y-plane (see Figure 3-18 b), and in the 5 GHz 

band in the X-plane (see Figure 3-18 c) and in the Y-plane (see Figure 3-18 d), for 

vertical (Vpol) and horizontal (Hpol) polarizations. Since the results obtained in 

the Z-plane were identical to those in the Y-plane, the Z-plane has been omitted to 

simplify the visualization, and the Y-plane results can be extrapolated to the Z-

plane. 

Finally, from the set of experiments performed, we could conclude that the 

incorporation of the UAV in the proposed models and protocols for FANETs can 

be seen as additional system losses, as a function of the working angle, as well as a 

function of the working band. Even for UAVs with configurations similar to those 

used in this study, the losses can be modeled as constant losses of -10dB in the U2G 

link for the 2.4GHz band. In this way, it could be guaranteed that the results 

obtained with the new models and protocols will comply with the received power 

is sufficient to corroborate the results, as long as the limits of the previously 

delimited regions of interest are respected. In addition, the most complete and 

optimal radiation pattern of the UAV together with the WiTi communication 

device can be found in Figures 3-16 and 3-17. This radiation pattern was specifically 

optimized for the links and areas of interest shown in Figure 3-12. Furthermore, 

with the antenna configuration proposed for this purpose, see Figure 3-13, it can be 

stated in view of the results that the radiation pattern generated by the UAV+WiTi 

was isotropic for the U2U link, and non-isotropic but constant for the U2G link, 

both within the regions of interest described above for each communication link. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3-18.  Radiation pattern of WiTi with (w/) and without (w/o) UAV (drone): (a) 2.4 
GHz band @ X Plane; (b) 2.4 GHz band @ Y Plane; (c) 5 GHz band @ X Plane; (d) 5 GHz 
@ Y Plane. (Figure 16, p. 18, [124]). 

3.2.3 Conclusions 

The importance of FANETs is determined by the communication capacity of the 

nodes that compose it. As we have seen, there is a large number of works that study 

the use of UAVs as new working tools, modeling the communication channel, or 

proposing new routing protocols that better adapt to the characteristics and needs 

of FANETs. However, not considering the influence that the UAV can have on the 

captured/received power can lead to serious problems such as non-validation of 

results, poor performances, etc. Due to this lack of works that analyze the previous 

                       

           

   

   

   

   

   

   

   

 
 
 
  
  
 
 
 
 

 
   

        

 
   

        

 
   

       

 
   

       

                       

           

   

   

   

   

   

   

   

 
 
 
  
  
 
 
 
 

 
   

        

 
   

        

 
   

       

 
   

       

                       

           

   

   

   

   

   

   

   

 
 
 
  
  
 
 
 
 

 
   

        

 
   

        

 
   

       

 
   

       

                       

           

   

   

   

   

   

   

   

 
 
 
  
  
 
 
 
 

 
   

        

 
   

        

 
   

       

 
   

       



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 3:  Unmanned Aerial Vehicles 

 

Antonio Guillén Pérez 2022  Page 60 

mentioned, in this study, we examined the influence that a UAV has on the 

radiation pattern offered by an integrated WiFi node in the 2.4GHz and 5GHz band 

in a controlled environment. 

For this purpose, using an anechoic chamber during all the experiments, we 

first obtained the best antenna configuration to suit the needs of the U2U and U2G 

links in the 5GHz and 2.4GHz bands, respectively. Then, the influence that the 

UAV can have on the radiation pattern was obtained, transforming the results into 

an expression that allows modeling the UAV as additional propagation losses. The 

results showed that the influence is mainly due to the carbon fiber chassis, being 

the influence of the engines and propellers negligible. Finally, having obtained the 

influence of the UAV on the radiation pattern, we demonstrated that the radiation 

pattern of a UAV on-board communication device can be approximated as an 

isotropic pattern if a correct antenna configuration, previously studied, is used, 

providing constant radiation within the regions of interest. 

3.3 A Comparative Performance Evaluation of Routing Protocols for 
Flying Ad-Hoc Networks in Real Conditions 

A second work performed on FANETs analyzed the throughput and packet loss of 

several routing protocols in a real deployment of a FANET. In this way, it was 

analyzed which protocols offered higher performance and thus demonstrate that 

routing protocols should be selected according to the application to be deployed, 

before the deployment of the network. 

As seen in the previous sections, a large number of routing protocols have 

been proposed/adapted for FANETs. Each of these routing protocols could be 

applied in each of the FANET use cases, but because of the broad spectrum of 

applications that FANETs can perform, routing protocols deliver different 

performances in different scenarios. 

Due to this, in this section we analyzed and compared the performance 

offered by different routing protocols (Babel, BATMAN-ADV, and OLSR) in terms 

of throughput and TCP packet loss in a real deployment composed of multiple 

UAVs, employing the 802.11 WiFi communication standard in the 2.4 and 5 GHz 

bands. 

3.3.1 The importance of real experimental studies 

Before developing the experiment, we analyze the proposed works that discuss the 

performance of various routing protocols in FANETs through a real deployment. It 

is a challenge to find papers that involve real deployments of FANETs, because of 

the high cost and complexity of establishing large-scale networks with variable 

topologies, in addition to the difficulties related to the repeatability of scenarios. 

That is why we consider this study important since the study through a real and 
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controlled deployment of a FANET can offer better results, as well as guarantee the 

performance offered by the proposed protocols/algorithms. By virtue of the 

veracity offered by the tests in a real deployment of a FANET, we consider it 

important to expose other previous works to help the reader understand the 

importance of analyzing the performance of the proposed routing protocols in a 

deployed FANET. 

Among these works is the one carried out by Rosati et al. in [262]. The authors 

compared the performance offered by P-OLSR and OLRS routing protocols in a 

FANET composed of two small FW-UAVs. The results they obtained showed the 

advantage offered by P-OLSR, obtaining a higher average throughput, in addition 

to reducing the number of communication interruptions. This advantage was due 

to P-OLSR uses the GPS information of the nodes to decide which nodes will be 

closer to the destination node, thus reducing latencies and increasing throughput. 

Moreover, the performance of P-OLSR was also compared with OLSR and 

Babel by Rosati et al. in [196], in a FANET composed of up to three UAVs with high 

mobility. The results obtained by the authors showed that P-OLSR offered higher 

throughput and fewer outages than OLSR and Babel. This may be due to the 

characteristic of the deployed network, where, for high mobility, routing protocols 

based on the geographical position of the nodes (such as P-OLSR) fit much better 

than the other tested protocols, which do not consider the mobility of the nodes. 

In the work proposed by Lee et al. [263], a routing protocol based on the 

geographical position of the nodes, called Ground Control System-Routing (GCS-

R), was developed. This routing protocol was compared with OLSR and DSDV in 

terms of throughput, stability, and outage time in a FANET network composed of 

up to six UAVs in a network coverage extension scenario. The results showed a 

clear advantage of GCS-R over the other tested protocols, however, we considered 

that this algorithm should have been compared with other algorithms of the same 

class, such as P-OLSR. Moreover, GCS-R was a centralized algorithm, so if the node 

in charge of routing was no longer available (something very frequent in FANETs) 

the routing would stop, and it could also present scalability problems. 

Another work that analyzed the performance offered by a FANET is found in 

[153], where the BATMAN-ADV routing protocol was analyzed in a network 

composed of two RW-UAVs. The performances offered guaranteed the optimal 

performance for a coverage extension scenario, in addition to providing a 

comparison in terms of energy consumption between the Access Point (AP) mode 

of operation and the ad-hoc mode, with the AP mode offering lower energy 

consumption. 

On the other hand, the work proposed by Kaysina et al. [264] showed the 

performance that a FANET using BATMAN as routing protocol can offer in terms 
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of coverage and throughput. The results obtained in a network composed of a UAV 

in three different scenarios showed that the maximum communication distance 

between two nodes, without packet loss, was 117m. 

Finally, Maxa et al. showed in [239] a new routing protocol for FANETs with 

special attention to security, called SUAP. The scenario they deployed consisted of 

three UAVs and the performance they achieved demonstrated the security that 

such robust routing protocols can provide. Table 3-7 shows a summary of the 

papers seen in this section, as well as the number of nodes used in the deployment 

and the routing protocols used in each job. 

TABLE 3-7.  Related works involving an actual FANET deployment. The routing 
protocols used and the number of UAVs are also detailed. (Table 1, p. 3, [214]). 

Work. Routing Protocols Number of UAVs 

Rosati et al. [262] OLSR, P-OLSR 2 
Rosati et al. [196] Babel, OLSR, P-OLSR 3 
Guillen et al. [153] BATMAN-ADV 2 

Lee et al. [263] GCS-R, DSDV, OLSR 6 
Kaysina et al. [264]  BATMAN 1 

Maxa et al. [239] SUAP 2 

3.3.2 Experimental setup 

To test the performance offered by the different routing protocols selected in a 

FANET, it was decided to perform the following experiment. The scenario was 

composed of five nodes, two of them RW-UAV, which were placed 10 meters above 

the ground. This scenario could correspond to an application of coverage extension 

over ground nodes on an ad hoc basis due to an overload of the traditional 

communication network. For coverage extension, each UAV was composed of a 

communications module (WiTi [260]) capable of deploying a WiFi network in the 

2.4GHz and 5GHz bands. Specifically, the IEEE 802.11g standard was used for the 

2.4GHz band and the IEEE 802.11a standard for the 5GHz band, using 2 antennas 

for each band. The antenna configuration and positioning were based on the 

results obtained in previous work [124]. 

The deployed scenario can be seen in Figure 3-19, where in the terminal PCs 

(PC1 and PC2) is where the iperf3 [261] session was executed (one as server and the 

other as client) to analyze the performance of the entire end-to-end FANET, 

composed by all the nodes. Finally, there was an intermediate node acting as a 

communication relay, to provide more complexity to the deployed FANET, acting 

as an intermediate communication node when distances between nodes required 

its use. The iperf3 tool was used to obtain the performance achieved by the 

different routing algorithms, analyzing throughput and packet losses. 

More specifically, the selected routing protocols belong to the proactive 

routing protocol group, namely OLSR, BATMAN-ADV, and Babel. The choice of 
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these routing protocols has been based on criteria of "state of the art", working 

experience with them, suitability to the proposed scenario, and compatibility with 

the communication module. 

The terminal PCs (PC1 and PC2) were placed below the UAVs, pretending to 

be nodes whose coverage is provided by the UAV to which they are connected. 

UAV1 and PC1 remained static throughout the test, plus the relay node was located 

35 m away from PC1 (UAV1). 

On the other hand, the motion pattern followed by UAV2 (and PC2) 

consisted of a linear motion, moving away from UAV1 in 10 m steps. At each step, 

throughput and packet loss measurements were performed between PC1 and PC2, 

passing through the UAVs, and through the relay node if the distance between the 

UAVs required it. The measurements had a duration of 60 seconds. A 

representation of the deployed scenario can be seen in Figure 3-19. 

3.3.3 Results 

Once the experiments have been performed, in this section we will show and 

analyze the results obtained. The throughput results for the 2.4GHz band and the 

5GHz band are shown in Table 3-8 and Figure 3-20. Also, the packet loss results are 

shown in Table 3-9 and Figure 3-21. 

Based on the results shown, we were able to conclude that Babel and OLSR 

protocols provided higher throughput in both the 2.4 GHz and 5 GHz bands. 

Furthermore, these results demonstrated the inversely proportional relationship 

between throughput and packet losses. 

 
(a) 

 
(b) 

Figure 3-19.  Real FANET test bench with relay node: (a) Communication path before 35-
meter mark; (b) Communication path after the 35-meter mark. (Figure 2, p. 9, [214]). 
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On the other hand, we can observe a notable difference in the performance 

of the results between the 2.4GHz band and the 5GHz band. This is because the 

5GHz band has a higher propagation loss constant than the 2.4GHz band, which 

implies a shorter communication distance. This means that, for example, in the 

measurement points located at 30 and 40 meters, the 2.4GHz band continues to 

establish the communication link between the UAVs directly (since there is no 

change in the trend of the results), however, for the 5GHz band there is a clear 

change in the trend of the results. This trend change is due to the modification of 

the communication path between the UAVs to include the relay node at the second 

measurement point (40 meters) resulting in a UAV-relay-UAV communication. 

Analyzing the results obtained in more detail, we can point out that for the 

2.4GHz band, the routing protocols presented significantly different performances. 

Specifically, OLSR uses the communication with the relay node between the 40-

meter and 50-meter points, something that we can obtain from the change of trend 

in the results. However, BATMAN-ADV and Babel do not switch to this 

communication through the relay node until the measurement point at 70 meters. 

This may be due to differences in the periodicity of updating the routing tables, 

with OLSR having the shortest update period. 

Lastly, in view of the results shown, it can be concluded that Babel and OLSR 

protocols present a better performance in terms of throughput and packet loss 

than those offered by BATMAN-ADV in the scenario described. Therefore, for the 

coverage extension scenario, these two routing protocols are preferable. Finally, 

between Babel and OLSR, although the results are very similar, Babel presented 

more stable results, with less variance, in both frequency bands. 

 

TABLE 3-8.  Mean throughput (Mbps) between PCs-UAVs with various gaps for OLSR, 
BATMAN-ADV, and Babel, for 2.4 and 5 GHz bands. Each measurement had a duration 

of 60 s. (Table 3, p. 10, [214]). 

Routing 
Protocol 

Frequency 
Band 

Distance 
10 m 20 m 30 m 40 m 50 m 60 m 70 m 

OLSR 
2.4 GHz 1.01 1.06 1.06 0.76 0.92 0.85 0.00 

5 GHz 0.99 0.74 0.52 0.98 0.81 0.00 0.00 

BATMAN-ADV 
2.4 GHz 1.06 1.04 0.91 0.83 0.52 0.26 0.76 

5 GHz 0.88 0.15 0.04 0.83 0.59 0.00 0.00 

Babel 
2.4 GHz 1.06 1.06 1.06 1.04 0.94 0.66 0.85 

5 GHz 0.95 0.65 0.48 0.89 0.72 0.00 0.00 
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TABLE 3-9.  Mean packet loss (%) between PCs-UAVs with various gaps for OLSR, 
BATMAN-ADV, and Babel, for 2.4 and 5 GHz bands. Each measurement had a duration 

of 60 s. (Table 4, p. 10, [214]). 

Routing 
Protocol 

Frequency 
Band 

Distance 
10 m 20 m 30 m 40 m 50 m 60 m 70 m 

OLSR 
2.4 GHz 3.3% 0% 0% 27% 11% 19% 100% 

5 GHz 6.6% 30% 44% 6% 20.4% 100% 100% 

BATMAN-ADV 
2.4 GHz 0% 0% 13% 22.1% 44% 73% 27% 

5 GHz 14% 84% 97% 21.3% 43% 100% 100% 

Babel 
2.4 GHz 0% 0% 0% 0% 10% 35% 18% 

5 GHz 8% 36% 45.9% 15% 29.7% 100% 100% 

 

 
Figure 3-20.  Mean throughput (Mbps) vs. distance (meters) (solid line for 2.4GHz and 
dashed line for 5GHz). (Figure 3, p. 10, [214]). 

 
Figure 3-21.  Mean packet loss (%) vs. distance (meters) (solid line @ 2.4GHz and dashed 
line @ 5GHz). (Figure 4, p. 10, [214]). 

3.3.4 Conclusions 

Due to the constantly changing network topology of FANETs, the correct selection 

of the routing protocol used is crucial to ensure the success of the deployment, as 

well as to obtain the best possible network performance. 

Because of its significance, we compare the performance of three distinct 

proactive routing protocols (OLSR, BATMAN-ADV, and Babel) in terms of 
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throughput and packet loss in this study using an actual FANET implementation. 

The scenario consisted of five nodes, two of which were RW-UAVs, and it 

simulated a coverage extension scenario in an emergency or search and rescue 

situation. The results revealed that Babel outperformed OLSR and BATMAN-ADV 

in the criteria under consideration. 

Additionally, this study corroborated the importance of selecting the 

appropriate routing protocol for FANETs, depending on the application to be 

deployed, to obtain the best possible performance. We feel that the routing 

protocol chosen will be incredibly essential in a few years as this sort of network 

becomes more ubiquitous in our daily lives and is used to a wide range of 

applications. 

3.4 Conclusions to this chapter 

Given the enormous importance that FANETs could offer with the advent of new 

technologies and communication standards such as 6G for intelligent 

transportation systems, Smart Cities, and for the Internet of Things (IoT) with 

applications such as remote monitoring of electronic systems, traffic surveillance, 

remote control of intelligent services, remote and autonomous sensing, or the 

extension of point coverage, the correct use of FANETs can offer a great advantage 

over traditional communication systems. Thus, the benefits that FANETs could 

have could be immeasurable, such as the reduction of development and 

deployment costs of new networks, the enormous speed of deployment, the low 

latency of communications, in applications for extending coverage in situations of 

natural disasters (earthquakes, tsunamis, fires, etc.), search and rescue, 

agriculture, intelligent transportation systems, etc. 

This chapter reviews the state of the art related to mobility models, 

positioning, propagation in FANETs, and routing algorithms. Although we have 

detected a wide variety of contributions within this novel field, further work by the 

research community is still needed to address the challenges intrinsic to this new 

type of flying network. 

The communication capability of each UAV node in a FANET is limited by 

the communication device integrated into each UAV. The influence that the UAV 

can have on the radiation pattern of the communication device is a complex and 

an open issue, as it depends on a large number of factors (UAV shape, 

communication technology, antenna types, application, etc.). However, we 

consider it important to take this issue into account during the network planning 

process. Therefore, a study of the impact of a UAV on the radiation pattern was 

conducted in a fully controlled environment. The results demonstrated the 

significance of this type of analysis, concluding that the influence of the UAV 

chassis resulted in a decrease in transmitted power of about 10 dB for the UAV-to-
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Ground link when compared to when there is no UAV, implying that the power 

dropped to one-tenth of its original value. 

Finally, the last section addresses the question of how the various routing 

protocols affect the service offered by FANETs. Routing protocols are particularly 

important, especially in large networks, where the amount of data being sent is 

large and therefore very important for the proper functioning of the services. 

Therefore, the choice of the appropriate protocol depends on several factors, such 

as the context, the application, and the requirements of the service users. Hence, 

in the second part of this section, we tested and contrasted the performance that 

three proactive routing protocols for FANETs can offer, presenting the results in 

terms of throughput and packet losses. The results showed that it is of vital 

importance to select the routing protocol prior to network deployment, to achieve 

optimal performance of the entire network. 

3.5 Publications associated with this research 

The works related to this chapter are as follows: 

Articles: 

Guillen‐Perez, A.; Cano, M.-D., “Flying ad hoc networks: A new domain for 

network communications,” Sensors, vol. 18, no. 10, p. 3571, Oct 2018, 

doi:10.3390/s18103571 

2018 Journal Impact Factor (JIF): 3.031. (Q1), Rank: 15/61 in Instrument & 

Instrumentation. 

 

Guillen-Perez, A.; Montoya, A-M; Sanchez-Aarnoutse, J. C.; Cano, M.-D., “A 

comparative performance evaluation of routing protocols for flying ad-hoc 

networks in real conditions,” Appl. Sci., vol. 11, no. 10, p. 4363, May 2021, doi: 

10.3390/app11104363 

2020 Journal Impact Factor (JIF): 2.679. (Q2), Rank: 38/90 in Engineering 

Multidisciplinary. 

 

Congress: 

Guillen-Perez, A.; Sanchez-Iborra, R.; Cano, M.-D., Sanchez-Aarnoutse, J. C.; 

and Garcia-Haro, J., “WiFi networks on drones,” in 2016 ITU Kaleidoscope: ICTs for 

a Sustainable World (ITU WT), Nov. 2016, pp. 1–8, doi: 10.1109/ITU-

WT.2016.7805730. 
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Chapter 4:  Smart Cities and Pedestrians 

4.1 Introduction 

Pedestrians will play a crucial role in the design of intelligent transportation 

systems and future smart cities. Estimating the number of users in an area offers 

countless advantages for optimizing a large number of systems: traffic light timing, 

ambient temperature, urban planning, etc. Table 4-1 summarizes a set of 

applications where the estimation of the number of users can offer a great 

advantage. 

 

TABLE 4-1.  Crowd estimation area and applications. (Table 1, p. 2, [265]). 

Area Example 

Energy efficiency 
Adjustment of indoor climate control (supermarkets, 

offices, etc.) according to the estimated number of people 
inside, etc. 

Urban planning and 
transportation 

Pedestrian patterns, passenger flows, customized traffic 
planning, etc. 

Security 
Crowd control (concerts, sporting events, street events, 

etc.), surveillance, search, rescue, etc. 
Better user satisfaction 

(QoS, QoE, UX) 
Improved design services in public spaces such as airports, 
hospitals, amusement parks, parks, museums, libraries, etc. 

Marketing and retail 
Traffic patterns in stores (people tracking) or shopping 
malls (crowd tracking), number of cash registers, etc. 

 

Due to this importance, many methods capable of estimating the number of 

users both indoors and outdoors have been investigated. So far, user counting or 

estimation has been based on image processing techniques [266] on the use of 

radiofrequency (RF) or ultrasound sensors [267] or the use of techniques based on 

radio frequency signals, such as Bluetooth or WiFi [268]–[270]. 

If we focus on the use of sensors, its main disadvantage is that it requires a 

wide deployment over the whole area to be monitored, however, once all the 

sensors are deployed, the results can outperform some image processing 

techniques [271]. 

As for image processing techniques, they have attracted the most attention 

from researchers, and numerous approaches based on this type of technique can 

be found to count the number of people. The most common approaches are based 

on background subtraction to improve person detection, regression-based 

techniques such as AdaBoost, or CNN classifiers. Despite the accuracy that these 

types of techniques can offer, they also have several drawbacks and limitations. 

The main one is privacy and data protection when dealing directly with images. 

Other limitations are given by situations in which people present similar patterns 
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to the background, reflections, shadows, or hidden areas, overlapping between 

people, or extreme far/close distance of people to the sensor. In addition, this type 

of technique presents a higher computational cost of processing, both during the 

training of the detection systems and in the inference. 

On the other hand, many approaches make use of RF signals emitted by 

devices carried by users for counting or estimating density in a specific area. The 

advantages that stand out of this approach are that RF signals can be unaffected by 

non-conductive obstacles (walls, shelves, trees, etc.), in addition to being able to 

operate over longer distances and requiring minimal deployment [272]. Within 

this category, approaches using wireless sensor networks [273], [274], 

Bluetooth/WiFi [268], [270], cellular [275] are distinguished. 

RF-based mechanisms rely on information captured from signals at the 

physical layer, such as Received Signal Strength Indicator (RSSI), Channel State 

Information (CSI), Channel Quality Indicator (CQI), or Channel Frequency 

Response (CFR) (see Table 4-2). 

RF-based category can in turn be divided into two subclasses: device-free (see 

Figure 4-1 a) or device-based (see Figure 4-1 b). While in the first approach, the 

proposed techniques assume that people leave a signature (fingerprint) on the 

transmitted signals. The human body absorbs and reflects part of the signal, i.e., it 

becomes an obstacle and an antenna at the same time, affecting LOS, propagation 

losses, and increasing the multipath effect. A paper where proposals for device-free 

activity recognition are analyzed can be found in [269]. 

 

TABLE 4-2.  Physical Layer Information parameters usually used. (Table 2, p. 2, [265]). 

Acronym Parameter Description 

RSS 
Received Signal 

Strength 

The received signal strength in dBm of a received data 
frame or a beacon is measured at the receiver’s 

antenna. 

CSI 
Channel State 

Indicator 
Channel measurements depict the amplitudes (signal 

strength) and phases of every subcarrier. 

CQI 
Channel Quality 

Indicator 
Current communication channel quality as measured 

by user equipment in cellular technologies. 

CIR 
Channel Impulse 

Response 
Temporal linear filter that models the wireless 

propagation channel. 

CFR 
Channel 

Frequency 
Response 

Discrete Fourier Transformation (DFT) of the Channel 
Impulse Response. 
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(a) 

 
(b) 

Figure 4-1.  RF-based approaches: (a) Device-free group. At least one WiFi Tx and one WiFi 
Rx are required; then the effect of people on the received signal is processed and associated 
to the number of people inside; (b) Device-based group. Each person must carry at least 
one WiFi device from which messages are collected. (Figure 1, p. 3, [265]). 

On the other hand, device-based mechanisms focus on using the signals 

generated by users' mobile devices. In turn, within this approach, we can find two 

methods of counting users: active and passive. Active methods are those that 

require the action/response of the mobile device to be counted, and passive 

methods are those that obtain an estimate of the number of people only by 

analyzing the Probe Request messages sent periodically by the mobile devices to 

be counted. 

Given that everyone carries a cell phone, that WiFi connectivity is now 

offered on a large scale, and that cell phones periodically send signals to discover 

WiFi Access Points (APs) to connect to, it is intuitive to think of a method that 

uses WiFi signals to distinguish devices and estimate the number of people. Note 

that the terms mobile device, smartphone, or cell phone will be used 

interchangeably throughout this paper to refer to a personal mobile 

communication device that includes a WiFi communication module. 

The challenges faced by passive WiFi-based methods are numerous, such as 

not considering that when a person is not carrying a mobile device or has WiFi 
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turned off (e.g., for security reasons or to save battery power), there could be a 

person with one or more WiFi devices. In addition, the use of the radio 

communication medium involves working with non-deterministic factors that 

affect electromagnetic signals in an uncontrollable way, such as signal fading, 

multipath propagation, noise, or distortion. Finally, and most importantly, 

randomization of the most used identifier for device identification and 

discrimination, the MAC address, is being encouraged during WiFi network 

discovery. Specifically, to increase user security and privacy, since iOS 8, Android 

6, and Windows 10, device MAC addresses follow a randomization policy. This 

randomization policy depends on the manufacturer of the communication chip 

and the state and characteristics of the mobile device. However, the cell phone has 

indeed become a device that accompanies us permanently and from which 

countless data about human activity can be extracted [276], [277]. 

Even though there are works that study this randomization [278]–[281], the 

study within this field requires more work by the scientific community to obtain a 

policy that allows the security and privacy of the user, but that allows obtaining an 

estimate of the number of mobile devices in a room for its correct optimization 

and use. 

4.2 Related works 

In this section, we will review the state of the art of the proposed works to estimate, 

track or count people based on the number of mobile devices using WiFi 

technology. 

4.2.1 Device-Free approach 

The device-free approach (see Figure 4-1 a) consists mainly of measuring the 

influence that a user has on an RF signal. That is, the human body acts as both an 

obstacle and an antenna, absorbing some of the RF energy and transmitting some. 

This phenomenon means that each person leaves a trace, or fingerprint, on the 

propagation of the RF waves. The objective of these methods is based on 

transmitting a set of RF waves and estimating the number of users based on the 

behavior of the RF waves received. To study the behavior, many statistical 

parameters have been studied. 

The simplest is the RSS measurement, i.e., the measurement of the power at 

which a receiver captures RF signals [269], [272], [282]–[289]. It is logical to think 

that when there are no users in a given area the received signal power will be higher 

than when there are users. However, RSS-based methods have a major drawback 

and that is the large variability of the RSS due to interference, noise, multipath, 

etc. [268]. In addition, other works showed that there is a trade-off value in the 

chosen frequency in the RF signal, since the higher the frequency, the more 
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accurate the results can be, but they will have a shorter range, in addition to very 

high frequencies are greatly affected by obstacles, as well as human absorption 

[290]. 

Another widely used parameter is the CSI. The CSI is able to provide higher 

granularity in the results, as it can separate the received signals into multipath 

components [291]. However, this parameter has a major drawback and that is that 

not all commercial WiFi communication cards offer this parameter [292], [293]. 

4.2.2 Device-Based approach 

Within the device-based approach (see Figure 4-1 b) we find the passive methods. 

These methods are the least intrusive to the user, as they do not force the device 

to send any messages, but only capture messages sent periodically by mobile 

devices. These messages are usually Probe Requests sent by mobile devices to 

discover WiFi networks to connect to. These messages are sent periodically with a 

sending frequency of 10 Hz (although this frequency may vary depending on the 

manufacturer, device status, etc. [294]–[296]). A breakdown of the fields included 

in the Probe Request message can be found in Figure 4-2. 

 

 
Figure 4-2.  Probe Request frame. DA  Destination Address; SA  Source Address (MAC); 

BSSID  SSID of destination Access Point; Other client’s parameters such as supported 
rates, extended rates, sequence number, fragmentation number, etc. (Figure 2, p. 2, [297]). 

 

As can be seen, within the Probe Request field, the address of the device 

sending the message, i.e., the MAC address, is sent unencrypted. This MAC address 

is unique for each device and is used to differentiate between devices. As 

mentioned above, this MAC address from iOS 8, Android 6, and Windows 10 are 

recommended to be sent in a randomized manner. However, this randomization 

depends on the manufacturer, device state, configuration, etc. In addition, 

numerous studies study this randomization concluding that there are techniques 

that allow device tracking using the sequence number sent in the frames as well as 

the MAC [276], [277]. 

The main works we have found on passive WiFi-based methods are located 

in indoor environments [268], [269], [298]–[302], achieving accuracy values around 

75% in the best case. We have only found a few works performing outdoor 

experiments [270], [295], [303]–[305]. In this part, we will review the proposed 

outdoor works, which is the focus of this part of the review. 
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The work developed by Petre et al. [295] consisted of studying pedestrian 

behavior in an open environment using an algorithm based on passive WiFi. They 

captured the Probe Request messages sent by mobile devices, and by analyzing the 

RSS and MAC, they differentiated between static devices and pedestrians, thus 

obtaining an estimate of the number of pedestrians. In addition, they analyzed the 

sending behavior of Probe Request messages by various devices, obtaining an 

average sending period of 3 seconds. The results obtained showed that information 

on pedestrian behavior (flow) could be obtained with high accuracy, as well as an 

estimation of user density from the study of the captured Probe Request messages. 

Undoubtedly, these findings could greatly facilitate the work of urban planners, 

event organizers, etc., as well as improve the performance of many other systems 

such as elevators, air conditioning temperature, security, etc. 

Another similar work using Probe Request messages can be found in [303]. In 

this work, they deployed a large number of low-cost capture sensors to analyze 

large-scale pedestrian flow. The captured messages were sent to a cloud server and 

processed there. Using large-scale deployment, the obtained results were able to 

provide a lot of information, such as density in a city, peak/valley hours of 

pedestrians, flow distribution by time slots, etc., corroborating the importance of 

passive WiFi-based methods. 

An interesting work was proposed by Acuña et al. [304]. In this work, they 

made use of the capture of Probe Request messages to locate people in 

disaster/emergency scenarios. For this purpose, they proposed the use of a UAV 

integrating a WiFi receiver, capable of capturing Probe Request messages from the 

mobile devices of the users to be searched/rescued. In this way, the search process 

could be accelerated, increasing the chances of surviving emergency situations. 

Following a similar approach to the previous work, another algorithm for 

pedestrian flow estimation based on Probe Request messages was proposed in 

[305]. However, in this case, they used a Viterbi algorithm to estimate the most 

probable route followed by pedestrians based on the captures made by the sensors. 

The results obtained conclude that passive WiFi-based methods are an excellent 

alternative to consider in large-scale deployments for the study of urban mobility 

among others, both pedestrians and vehicles, thanks to their low cost of both 

deployment and maintenance. 

From all the works analyzed, we can conclude that WiFi-based passive 

device-based methods have great applicability in a large number of work areas, and 

are very promising, being able to offer great information to numerous systems. 

Moreover, these approaches offer great simplicity, involving low development, 

operation, and processing cost, which gives them a great advantage over other 

camera-based methods, or other methods. However, more research should be 

done in outdoor environments, as well as trying to solve the problem of MAC 
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randomness by using other messages that can still offer privacy to users, but from 

which the same information as that provided by Probe Request messages can be 

obtained. 

4.3 A WiFi-based method to count and locate pedestrians in urban 
traffic scenarios 

4.3.1 Introduction 

Estimating the number of pedestrians in an open environment such as an 

intersection is not trivial. However, obtaining this value can provide great 

information to traffic light control systems, which already consider vehicles but 

not pedestrians. 

Therefore, in this research, we proposed an algorithm that uses a passive 

method based on WiFi to estimate the number of pedestrians in an urban 

environment consisting of a traffic-light intersection. With the proposed algorithm 

it was possible to distinguish between pedestrians walking and those waiting to 

cross, being the latter the important ones to be considered for the traffic light 

control system. In addition, pedestrians identified as waiting to cross were able to 

be positioned by the algorithm at the corner of the intersection where they are 

waiting to cross. 

In this way, the proposed algorithm laid the groundwork for other intelligent 

traffic control algorithms to take pedestrians into account, as they are the most 

vulnerable and neglected group in these control systems. 

4.3.2 Experimental setup 

To test the development of the proposed algorithm, the OMNET++ simulator [306] 

along with the INET framework [307] was used. The simulation scenario consisted 

of an urban arterial consisting of two intersections i ∈ {1, 2} (See Figure 4-3). By 

using two intersections, it was possible to simulate a wide range of behaviors: 

pedestrians waiting to cross, crossing, walking from one intersection to the other, 

etc. The simulated scenario can be seen in Figure 4-3, as well as the dimensions 

used. 

In the simulations, each pedestrian was simulated as a mobile device 

configured as AdhocHost, and the devices in charge of capturing the Probe Request 

messages from the mobiles were configured as WirelessAPWithSink. These capture 

devices were called Data Acquisition Units (DAUs) simulating being at the traffic 

lights of an intersection, therefore, they were at a height of 6 meters above the 

ground. There were four DAUs per intersection and were denoted as DAUij, i ∈ {1, 

2} and j ∈ {1, 2, 3, 4}. The rest of the features used to set up the simulator can be 

found in Table 4-3. 
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In order to evaluate the performance of the proposed algorithm, four 

different sets of experiments were proposed. First, to demonstrate whether there 

was an influence between the number of pedestrians and the sending of Probe 

Request messages, an experiment was conducted in which the number of 

simulated pedestrians was doubled. Next, a set of experiments was performed to 

adjust the internal parameters of the proposed algorithm. Finally, a last set of 

experiments was performed in which the performance of the proposed algorithm 

was evaluated against a large set of pedestrian behaviors. In addition, the impact 

of the frequency of sending Probe Request messages on the accuracy of the 

proposed algorithm was studied. 

 

 
Figure 4-3.  Simulated scenario. (Figure 7, p. 5, [297]). 

 

TABLE 4-3.  Simulation parameters employed in OMNET++. (Table 1, p. 5, [297]). 

Parameters Value 

Simulation tool / Framework OMNetT++ / INET 
Version 5.2.1 / 4.0 

Ground-type Flatground 
Obstacle loss Dielectric Obstacle Loss 

Propagation loss Rayleigh Fading 
DAU height 6 m 

Mobile devices height 1.5 m 
Mobile devices speed 1.39 m/s 

Number of mobile nodes 64 
Probe Request Period 2 secs 
Transmission power 13 dBm 
Reception sensibility -120 dBm 

Probability distribution to send Probe 
Request frames 

Normal distribution with variable mean 
and variances 
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4.3.3 Our proposal 

The proposed algorithm for estimating the number of pedestrians in an urban 

environment composed of an intersection from Probe Request message captures is 

detailed below. 

To classify pedestrians as static or moving, during each traffic light phase, 

Probe Request messages sent by mobile devices are captured, and just before each 

traffic light phase change (Red-Green or Green-Red), all messages are processed, 

analyzing the temporal behavior of each captured device along with the total time 

interval of data capture. In this way, the information on the estimation of the 

number of pedestrians would be available in the next cycle for advanced traffic 

control systems. 

Prior to data processing, all DAUs of each traffic light composing the 

intersection send the encrypted Probe Request messages to a central DAU, in 

charge of decrypting the messages and processing all captured devices to obtain 

their behavior and the position of static pedestrians, waiting to cross. For example, 

all DAU1j j ∈ {2, 3, 4} send the data to DAU11 of intersection i=1, which acts as the 

central DAU. 

To discriminate between a moving pedestrian and a static pedestrian, waiting 

to cross, it was decided to place an RSSI threshold in the Probe Request messages. 

Thus, if a DAU picks up a device with a high received power variance, it means that 

the device is moving. Otherwise, if all DAUs, that capture a device, have a low 

received power variance over the entire time interval, then the device is considered 

static, waiting to cross. This power variance threshold situation is crucial for the 

correct operation of the algorithm. 

Finally, the situation of static pedestrians, waiting to cross, is obtained by 

observing the DAUij with the highest received power during the capture interval. 

This is possible due to the large separation between the DAUij and the propagation 

losses characteristic of the 2.4GHz band. 

Through empirical tests, it was observed that mitigating the random 

components of the RF channel by smoothing the power measurements improved 

the performance of the discrimination algorithm. For this purpose, a Gaussian 

filter with an adjustable standard deviation was used. Thus, with an optimal value 

of the Gaussian filter width, smoothing could mitigate variations due to rudder for 

static pedestrians, while it could maintain variations in power measurements in 

situations where the pedestrian was moving. 

In summary, the proposed algorithm consists of: 
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1. Grouping the Probe Request messages sent by the devices to be analyzed in 

a central DAUij. 

2. Obtaining the list of DAUs captured by each pedestrian p (DAUijp). 

3. Perform a smoothing using a Gaussian filter of the power received by each 

DAUijp that captured p. 

4. Differentiation between each device is performed using the MAC included 

in the Probe Request messages. 

5. Discrimination between static and moving pedestrians is performed by the 

variance of the received power over the entire capture interval. 

6. Positioning of static pedestrians is performed on the DAUij with the highest 

average power over the entire capture interval. 

The pseudocode of the proposed method is represented in Algorithm 4-1 

 Algorithm 4-1: Our Proposal 

1 The 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 detected by all DAUij is obtained. 
2 for pedestrian 𝑝 𝑖𝑛 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 do: 
3  the 𝑙𝑖𝑠𝑡_𝑜𝑓_𝐷𝐴𝑈𝑖𝑗 that have detected 𝑝 is obtained. 
4  𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑇𝑟𝑢𝑒 # by default the pedestrian is considered as static 
5  for 𝐷𝐴𝑈𝑖𝑗 𝑖𝑛 𝑙𝑖𝑠𝑡_𝑜𝑓_𝐷𝐴𝑈𝑖𝑗 do: 

6   

# The power measurements of the pedestrian captured by the 𝐷𝐴𝑈𝑖𝑗 are  
# obtained. If this power measurement presents a high variance in one  
# 𝐷𝐴𝑈𝑖𝑗 means that this pedestrian 𝑝 is moving. 
# The power measurements are 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 to reduce noise. 

7   if 𝑣𝑎𝑟(𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑) > 𝑣𝑎𝑟_𝑚𝑎𝑥 then: 
8    𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐹𝑎𝑙𝑠𝑒 # now the pedestrian is considered as moving 
9   end if 
10  end for 
11  if 𝑠𝑡𝑎𝑡𝑖𝑐 == 𝑇𝑟𝑢𝑒 then: 

12   
# The pedestrian 𝑝 is considered as static in all of 𝑙𝑖𝑠𝑡_𝑜𝑓_𝐷𝐴𝑈𝑖𝑗, 
# then its correct location corresponds to the 𝐷𝐴𝑈𝑖𝑗 that presents 
# the higher power in average. 

13   𝐷𝐴𝑈𝑖𝑗_𝑚𝑎𝑥 =  𝑔𝑒𝑡_𝐷𝐴𝑈𝑖𝑗𝑝_𝑀𝑎𝑥𝑀𝑒𝑎𝑛𝑃𝑜𝑤𝑒𝑟(𝑝) 
14   𝐷𝐴𝑈𝑖𝑗_𝑚𝑎𝑥. 𝑎𝑑𝑑_𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛(𝑝) 
15  end if 
16 end for 

4.3.4 Experiments & Results 

Experimental set #1 

The first set of experiments obtained the possible influence on the behavior of 

probe request messages sent by mobile devices as a function of the number of 

mobile devices. For this, a simple scenario (an intersection) was used, and 

pedestrians followed a simple movement pattern. Figure 4-4 shows the simulated 

scenario and the movement pattern followed by the pedestrians (1-2-3). The 

movement pattern was as follows: between the time interval from 0 to 14.5 seconds, 

pedestrians approached the intersection from (1) and positioned themselves at (2). 
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Between the time interval of 14.5 and 44.5 seconds (in total, 30 seconds), 

pedestrians remained static at (2). Finally, at the time interval of 44.5 and 74.5 

pedestrians cross the intersection at the crosswalk and move away towards (3) 

passing next to DAU12. The number of simulated pedestrians doubled in each 

simulation in an interval between 1 and 64 pedestrians. 

The results of the behavior of the average received power of the Probe 

Request messages can be seen in Figure 4-5. Given the results, it can be stated that 

neither the number of messages sent by the mobile devices (there was a possibility 

of channel saturation) nor the average received power had any influence. It can be 

observed that, in all cases, the power received by the DAU followed the same 

behavior regardless of the number of people. To saturate the channel, there would 

have to be a huge number of devices trying to send messages at the same time on 

the same WiFi channel. 

 

 
Figure 4-4.  Simulated scenario for Experimental set #1 and mobility pattern followed by 
the simulated pedestrians. (Figure 3, p. 3, [297]). 

 

 
Figure 4-5.  Received power in Probe Request frames captured by DAU11 with an 
incremental number of pedestrians from 1 to 64. (Figure 8, p. 5, [297]). 
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Experimental set #2 

This set of experiments aimed to optimize the internal parameters of the proposed 

algorithm. That is, to find the optimal values of the variance threshold (var_max) 

and the optimal size of the Gaussian smoothing bell (std_len) that would maximize 

the accuracy of the proposed algorithm. In this way, the random components of 

the channel could be largely mitigated by the smoothing, in addition to being able 

to differentiate static and moving pedestrians thanks to the variance in the 

received power of the Probe Request messages during the entire capture interval. 

For this purpose, a group of 64 pedestrians was simulated in the scenario 

shown in Figure 4-3 following a movement pattern starting at the left-hand 

scenario (l) and ending at the right-hand scenario (r), crossing both intersections 

and using the upper sidewalk (t). 

After simulating the pedestrians, the optimization process of the var_max 

and std_len parameters was carried out using a mesh search to maximize the joint 

accuracy of the proposed algorithm. 

The results of this mesh search optimization process are shown in Figure 4-

6. From these results, we can obtain that the optimum values were 4.20 dB and 

0.78 for var_max and std_len respectively. 

 

 
Figure 4-6.  Accuracy versus var_max and std_len. In this case, the accuracy shown is the 
product of moving and static accuracies. (Figure 9, p. 6, [297]). 

 

Experimental set #3 

The third set of experiments was performed to obtain the overall accuracy of the 

proposed algorithm. 
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Before showing the results, we had to define a set of metrics that would allow 

us to get an idea of the overall performance of the proposed algorithm. In other 

words, since our algorithm presents different goals (defining the number of static 

pedestrians, the number of moving pedestrians, and the location of static 

pedestrians), it was necessary to define the following metrics: Amoving represents 

the detection accuracy of moving pedestrians; Astatic represents the detection 

accuracy of static pedestrians (waiting to cross); Apositioning represents the 

location accuracy of static pedestrians at the appropriate crosswalk (i.e., knowing 

their exact location under the DAUij where they are waiting). These accuracies are 

calculated as shown in equations (4-1), (4-2), and (4-3), respectively. 
 

 𝐴𝑚𝑜𝑣𝑖𝑛𝑔 =
𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑎𝑠_𝑚𝑜𝑣𝑖𝑛𝑔

total_number_of_pedestrians_moving
 (4-1) 

 𝐴𝑠𝑡𝑎𝑡𝑖𝑐 =
𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑎𝑠_𝑤𝑎𝑖𝑡𝑖𝑛𝑔

total_number_of_pedestrians_waiting
 (4-2) 

 𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 =
𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦

𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑎𝑠_𝑤𝑎𝑖𝑡𝑖𝑛𝑔
 (4-3) 

 

To obtain a large set of behaviors and a large data set, 12 groups of pedestrians 

with different movement behaviors were simulated in the scenario shown in Figure 

4-3. Each pedestrian group consisted of 64 pedestrians (mobile devices). These 

movement behaviors and the associated denotation are detailed below: 

1) From left l to right r on the top sidewalk t (crossing the two intersections), 

it was denoted as direction Dlrt, and from left l to right r on the down sidewalk d 

(crossing the two intersections), it was denoted as direction Dlrd. 

2) From right to left on the top sidewalk (crossing the two intersections), it 

was denoted as direction Drlt, and from right to left on the down sidewalk 

(crossing the two intersections), it was denoted as direction Drld. 

3) From top to down crossing only intersection i=1 on the left sidewalk, 

denoted as direction Dtdl1; ditto on the right sidewalk denoted as direction Dtdr1. 

4) From down to top traversing only the i=1 intersection on the left sidewalk, 

denoted as direction Ddtl1; ditto on the right sidewalk denoted as direction Ddtr1. 

5) From top to down crossing only intersection i=2 on the left sidewalk, 

denoted as direction Dtdl2; ditto on the right sidewalk denoted as direction Dtdr2. 

6) From down to top crossing only intersection i=2 on the left sidewalk, 

denoted as direction Ddtl2; ditto on the right sidewalk denoted as direction Ddtr2. 

To simplify the simulation, all pedestrians in each 30-second time interval 

were either static or moving, as shown in Table 4-4 and Table 4-5. 
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TABLE 4-4.  Timestamps and movement states. (Table 2, p. 6, [297]). 

Timestamp Time Interval (s) State 

T0 0 - 14.5 Moving 
T1 14.5 - 44.5 Static 
T2 44.5 - 74.5 Moving 
T3 74.5 - 104.5 Moving 
T4 104.5 - 134.5 Moving 
T5 134.5 - 164.5 Static 

 

TABLE 4-5.  Example of movements Dlrt and Dtdl1 (D=direction, l=left, r=right, t=top, 
d=down, 1=intersection 1, 2=intersection 2). Spots (1), (2), (5), (6) refer to the points 

marked in Figure 4-3. (Table 3, p. 6, [297]). 

Movement Example Temporary Mobility Pattern 

Horizontal Dlrt 

0s - 14.5s: Left to (1) 
14.5s-44.5s: Static in (1) 
44.5s-104.5s: (1) to (5) 
104.5s-134.5s: (5) to (6) 

134.5s-164.5s: Static in (6) 

Vertical Dtdl1 

0s - 14.5s: Top to (1) 
14.5s-44.5s: Static in (1) 

44.5s-74.5s: (1) to bottom 
74.5s-134.5s: Bottom to top to (1) 

134.5s-164.5s: Static in (1) 

 

The results obtained are shown in Figure 4-7. In view of the results, we can 

see that, despite the simplicity of the proposed algorithm, we were able to 

successfully identify moving pedestrians with an accuracy of over 52%. On the 

other hand, we see that we were able to correctly classify more than 61% of static 

pedestrians. Finally, pedestrians detected as static were correctly classified at the 

appropriate location with an accuracy of over 93%. 

Experimental set #4 

The last set of experiments consisted of analyzing the influence of the Probe 

Request message sending period on the accuracy of the proposed algorithm. As a 

reminder, the cycle time of state change of the simulated traffic lights at the 

intersection, and thus the Probe Request message capture window, was 30 seconds. 

For this purpose, several experiments were performed, each time doubling 

the sending period. The results are shown in Figure 4-8 and as expected, the longer 

the sending period, the lower the accuracy of the algorithm. Specifically, the 

accuracies for differentiating static from moving pedestrians remained above 51% 

when the sending period was equal to or less than 16 seconds. These results may 

be due to the relationship with the 30-second traffic light cycle. 
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Figure 4-7.  Accuracies obtained in the simulated scenario shown in Figure4-4 with 768 
pedestrians moving in twelve different directions. At timestamps T2, T3, and T4 all 
pedestrians are moving, whereas at timestamps T1 and T5 all pedestrians are static. (Figure 
10, p. 6, [297]). 

 

 
Figure 4-8.  Accuracies versus Probe Request sending rate (Tprobe represents the time 
interval between two consecutive Probe Request frames) in the scenario described in 
Figure 4-4 for timestamps T1 and T2. (Figure 11, p. 7, [297]). 

 

As can be seen, when the sending period is greater than 30 seconds (e.g., 32 

seconds) the accuracy decreases significantly because there will be a large number 

of devices that, by probability, have not sent any Probe Request message within 

the capture window. On the other hand, it can be seen how the positioning 

accuracy remains above 95% up to a sending period of 64 seconds. 
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4.3.5 Conclusions 

The role that pedestrians can bring to future smart cities and intelligent traffic 

control systems is crucial to ensure their successful development. Despite the 

multitude of approaches to pedestrian detection, the use of WiFi is increasingly 

boosted by the breakthrough in communication systems and the fact that the cell 

phone has become an essential device. However, the practice has shown that there 

are still numerous challenges to be faced in order to achieve a fully reliable and 

accurate pedestrian detection and positioning system in an outdoor environment 

such as an urban intersection. 

This research proposed a passive WiFi-based method capable of identifying 

the behavior of pedestrians, in an open environment such as an intersection, as 

static or moving, and was also able to obtain the position within the intersection 

of pedestrians detected as static. The results showed that the accuracy levels 

obtained were comparable, even superior in some cases to those obtained by 

previous work in indoor scenarios. Particularly noteworthy is the accuracy 

obtained by our method in the classification of moving pedestrians (higher than 

52%), in the classification of static pedestrians (higher than 61%), and in obtaining 

the position within the intersection that static pedestrians are waiting to cross 

(higher than 93%). 

4.4 Counting and locating people in outdoor environments: a 
comparative experimental study using WiFi-based passive 
methods 

4.4.1 Introduction 

In previous studies [297] we obtained an algorithm capable of classifying 

pedestrian behavior into static and moving, as well as obtaining the position of 

pedestrians in an outdoor urban environment such as an intersection. This 

algorithm was a passive WiFi-based method, which used Probe Request messages 

sent by mobile devices passively and periodically to find WiFi networks to connect 

to. To classify and position pedestrians, the RSSI was used by 4 DAUs located at 

each of the four traffic lights that make up an intersection. See Figure 4-4 for a 

picture of the proposed scenario. 

Given the promising results obtained in the previous research, in this study, 

it was decided to analyze the performance of the proposed algorithm in a real 

outdoor deployment. Furthermore, to compare the performance of our algorithm 

with others, it was decided to compare the performance offered by several classical 

Machine Learning algorithms, namely with Binary Logistic Regression, Support 

Vector Classification, Gaussian Naive Bayes, Random Forest, and k-Nearest 

Neighbors in discriminating pedestrian behavior between static and moving. The 
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objective of this comparison is to identify whether the simplicity of our proposal 

implies a reduction in accuracy, compared to other techniques that (initially) 

would have higher computational requirements. 

4.4.2 Experimental setup 

The experiments were performed in a rural environment to mitigate possible 

interference that could be added by other external devices to the experiment. The 

actual scenario in which the experiments were conducted is shown in Figure 4-9. 

This scenario simulated the traffic light-controlled traffic intersection depicted in 

Figure 4-10. A DAU acting as a WiFi sniffer capturing Probe Request messages was 

placed at each of the four traffic lights and consisted of a low-cost Beaglebone Black 

development board running Linux 7.8, along with a WiFi USB adapter (TP-Link 

TL-WN722N). Figure 4-11 shows the devices that made up each DAU. The distance 

between each DAU is 30 meters and the DAUs were located at a height of 2 meters. 

 

 
Figure 4-9.  The real outdoor scenario where experiments were performed. (Figure 2, p. 3, 
[294]). 

 

 
Figure 4-10.  A signalized traffic intersection composed of four branches. On each branch, 
there is a traffic light incorporating a data acquisition unit (DAU). (Figure 3, p. 3, [294]). 
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(a) 

 
(b) 

Figure 4-11.  Devices used in the experimental tests: (a) Beaglebone Black; (b) WiFi USB 
adapter TP-Link TL WN722N. (Figure 1, p. 2, [294]). 

A total of 14 cell phones were used in the experiments. The details of the cell 

phones are described in Table 4-6. The cell phones were in passive WiFi network 

search state, i.e., with WiFi in an activated state without being connected to any 

network and the display turned off. To simplify the scenario deployment, it was 

considered that, in each capture time interval, pedestrians are waiting to cross or 

are in motion. In addition, each pedestrian was considered to be carrying a mobile 

device and all pedestrians followed the same movement pattern, albeit with small 

variations in speed around the average (1.38 m/s). 

 

TABLE 4-6.  Devices used, brand, model, and version of the operating system (OS). 
(Table 1, p. 3, [294]). 

Brand/Model S.O Version 

Xiaomi Redmi Note 5 Android 8.1.0 MIUI 9.6 
Samsung J5 2016 SM-J500F Android 7.1.2 

Samsung Galaxy S4 GT-I9506 Android 7.1.2 
Samsung Galaxy S7 Edge Android 7.0 

Xiaomi Redmi Note 4 Android 6.0 MIUI 9.6 
Huawei Y6 2017 (x2) Android 6.0 EMUI 4.1 

Vodafone Smart Turbo 7 Android 6.0 
Xiaomi Redmi 3 Android 5.1.1 MIUI 9.6 

Samsung Galaxy S2 GT-9100 Android 4.1.2 
Google Nexus S Android 4.1.2 

Vodafone Smart III 975N (x2) Android 4.1.1 
Samsung Galaxy Ace GT-S5830 Android 2.3.3 

 

The movement pattern followed by pedestrians is represented as a dotted line 

in Figure 4-9 (1-2-3) and that is simulated to be the movement of pedestrians at the 

intersection in Figure 4-10 marked with a dotted line (1-2-3). The pedestrian 

movement pattern, time intervals, and associated timestamps are detailed in Table 

4-7. 
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TABLE 4-7.  Time intervals, timestamps, and pedestrians’ state. (Table 2, p. 4, [294]). 

Time Interval Timestamp State 

0s-30s T1 Static on (1) 
30s-60s T2 Static on (1) 
60s-90s T3 Static on (1) 
90s-120s T4 Static on (1) 
120s-150s T5 Moving from (1) to (2) 
150s-180s T6 Moving from (2) to (3) 
180s-210s T7 Moving from (3) to (2) 
210s-240s T8 Moving from (2) to (1) 

 

The experiments were divided into 30-second capture intervals, which placed 

the experiment in the worst case by providing the minimum time for the algorithm 

to capture the highest number of messages from cell phones, and there may be 

mobile devices that, due to their state (screen status, battery, etc.) and a random 

component, may not have sent any Probe Request messages and therefore cannot 

be classified/positioned. In scenarios with longer traffic light phases (typically 

ranging from 30 to 90 seconds), more Probe Request messages could be obtained, 

which would improve the accuracy of the algorithm (for more information on how 

the period of sending Probe Request messages affects the performance of the 

algorithm, see [297]). 

To capture the messages, the DAUs used the tcpdump tool. In addition, to 

capture the maximum number of Probe Request messages, the DAUs changed the 

WiFi channel they cyclically listen every 2 seconds. 

For data processing and algorithm execution, a program was developed in 

Python 3.6. In addition, high-performance scientific libraries such as NumPy [308], 

SciPy[309], and Pandas [310] were used to speed up the processing. For the 

implementation of ML algorithms, Scikit-learn library [311] was used, which 

provides a large number of traditional ML algorithms, and from which Binary 

Logistic Regression, Support Vector Classification (SVC), Gaussian Naive Bayes, 

Random Forest, and k-Nearest Neighbors were selected. 

A comparison of the ML algorithms versus the proposed algorithm was 

conducted on pedestrian behavior discrimination (moving or static). The input 

data for these ML algorithms were the same as used by our proposal, i.e., the power 

variance of the polling request messages captured at all DAUs. Position 

classification was further performed by identifying the DAU with the highest 

average power level during the capture time interval. Please refer to [297] for a 

complete definition of our approach as well as the metrics used to measure the 

accuracies. 
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4.4.3 Results 

In this section, we will show the results obtained, as well as a comparison between 

the accuracy obtained by the different algorithms tested. Once the experiment 

shown in the previous section has been performed, the results are shown in Figure 

4-12. In addition, the mean values of the accuracies obtained for each of the 

algorithms are shown in Table 4-8. 

If we focus on the results obtained by our proposal (Figure 4-12a) we can see 

that the accuracy in the differentiation of moving pedestrians (Amoving) is higher 

(on average) than 57%. We can also see that the accuracy in static pedestrian 

differentiation (Astatic) presents an average value higher than 81%. Finally, as for 

the positioning accuracy (Apositioning), it presents an average value higher than 

85%. 

The accuracies obtained significantly exceed those obtained in our previous 

work based on the simulator. This may be because the RF channel, in reality, 

presents less randomness and noise than the simulated RF channel. If we compare 

the results with other works in the related literature, we can observe that our 

proposal obtains better performance. It should be noted that, to the best of our 

knowledge, there are no other works that have the same approach for pedestrian 

counting and localization in urban environments. Therefore, it has had to be 

purchased with other types of related applications. 

If we compare the results obtained with those obtained with traditional ML 

methods such as Gaussian Naïve Bayes (Figure 4-12b), SVC (Figure 4-12c), Random 

Forest (Figure 4-12d), Binary Logistic Regression (Figure 4-12e), and kNN (Figure 

4-12f) the results are similar, even our proposal (Figure 4-12a) outperforms SVC, 

Gaussian Naïve Bayes, and Binary Logistic Regression in some accuracies. Finally, 

the results obtained by the Random Forest classifier and the kNN stand out, 

obtaining very high values in all the accuracies. 

According to the results obtained, we can conclude that the proposed 

algorithm obtains very promising results in real outdoor scenarios, outperforming 

some ML algorithms. Only Random Forest and kNN offer superior performance. 

 

TABLE 4-8.  Average accuracies obtained for each of the tested algorithms and each of 
the proposed accuracies. 

Algorithm Amoving Astatic Apositioning 

Our Proposal 57.27 81.25 85.78 
Gaussian Naïve Bayes 52.67 88.40 87.88 

SVC 52.67 84.82 88.58 
Random Forest 87.50 83.93 88.30 

Logistic Regression 60.73 75.90 87.23 
kNN 90.18 87.50 89.05 
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(a) Our Proposal 

 
(b) Gaussian Naïve Bayes 

 
(c) SVC 

 
(d) Random Forest 

 
(e) Logistic Regression 

 
(f) kNN 

Figure 4-12.  Accuracies obtained by the proposed algorithm and the ML algorithms: (a) 
Our proposal; (b) Gaussian Naïve Bayes; (c) SVC; (d) Random forest; (e) Logistic 
regression; (f) kNN with k=12; (Figures 4-9, p. 7, [294]). 
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4.4.4 Conclusions 

Passive WiFi-based methods for pedestrian counting are opening up new avenues 

of development for new intelligent traffic control systems due to their simplicity 

of application, low cost, and low computational requirements. Until now, these 

systems only took vehicles into account when calculating the duration of the next 

traffic light cycle, without considering other road users. Using such WiFi-based 

solutions, integrating an estimate of the number of pedestrians using the road is 

much more possible, eliminating the use of cameras or other devices that further 

violate pedestrians' privacy. 

In this study, a real experiment was conducted to show the performance 

offered by a previously developed passive WiFi-based pedestrian counting 

algorithm. Specifically, our goal was to classify pedestrian behavior and use this 

information for intelligent traffic control systems in urban areas. Our algorithm 

was not only able to differentiate the state of pedestrians (static or moving), but 

also to position them within the intersection. Furthermore, the performance 

offered by our approach was compared with other ML algorithms, namely Binary 

Logistic Regression, Support Vector Classification, Gaussian Naïve Bayes, Random 

Forest, and k-Nearest Neighbors. 

The results showed remarkable performance of our approach, despite the 

simplicity of our method, as well as results that outperformed the performance 

offered by several ML algorithms. Only Random Forest and kNN offered excellent 

performance for this classification task. 

Further work is needed to determine whether, as expected, the 

computational cost of ML solutions would be a compromise between lightweight 

(our proposal) and computational or energy requirements. 

4.5 Pedestrian Characterization in Urban Environments Combining 
WiFi and AI 

4.5.1 Introduction 

After realizing the advantage that machine learning algorithms could offer for 

pedestrian behavior classification using a passive WiFi-based algorithm in [294], 

this paper proposed an improvement in the intelligence of the previously proposed 

algorithm in [297] using a machine learning algorithm. This new algorithm was 

named intelligent Pedestrian Characterization using WiFi (iPCW). 

4.5.2 Experimental setup 

For this algorithm improvement, a simulation setup, simulated scenario, and 

pedestrian movement pattern similar to previous studies in [297] was employed. 

That is, OMNET++ [306] simulator was used in combination with INET framework 
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[307]. The simulated scenario was an urban arterial consisting of two intersections. 

Each intersection was composed of four traffic lights, where at each traffic light 

there was a DAU in charge of capturing pedestrian Probe Request messages. The 

scenario used, as well as all the parameters used in the simulator, can be seen in 

Figure 4-3, as well as in Tables 4-3. 

Twelve pedestrian groups consisting of 64 pedestrians each were simulated, 

for a total of 768 pedestrians. Each pedestrian group presented a different mobility 

pattern, although can be grouped in vertical movement and horizontal movement. 

These mobility patterns (vertical and horizontal) can be found in Table 4-9. 

For this project, a variant of the algorithm proposed in [297] was proposed 

that allowed the integration of an ML algorithm for the discrimination of 

pedestrian behavior (static or moving). The pseudocode of the algorithm of this 

proposal can be seen in Algorithm 4-2. A flowchart schematically illustrating the 

flow of operations and decisions made by the proposed algorithm can also be seen 

in Figure 4-13. 

For data processing, a program was developed in Python 3.6 together with 

high-performance scientific libraries such as NumPy [308], SciPy[309], and Pandas 

[310] were used to speed up the processing. For the implementation of the ML 

algorithms, the Scikit-learn library [311] was used. 

The ML algorithms analyzed in this study were Logistic Regressor, Gaussian 

Naïve Bayes, Support Vector Machine, k-Nearest Neighbor, and Random Forest. 

For a detailed explanation of the working principle, advantages, and disadvantages 

of the ML algorithms studied in this subsection, see section 3.3 of [265]. 

Schematically, the working principle of the analyzed ML algorithms is shown in 

Figure 4-14. 

 

TABLE 4-9.  Timestamps of different movements and their behavior (Table 3, p. 6, [265]). 

Movement Example Time Interval Timestamp Behavior 

Horizontal Dlrt 

0 s-30 s T1 Static in ① 

30 s-60 s T2 Moving - ① to ② 

60 s-90 s T3 Moving - ② to ⑤ 

90 s-120 s T4 Static in ⑤ 

120 s-150 s T5 Moving - ⑤ to ⑥ 

150 s-180 s T6 Static in ⑥ 

Vertical Dtdl1 

0 s-30 s T1 Static in ① 
30 s-60 s T2 Moving - ① to ④ 
60 s-90 s T3 Moving - ④ to ③ 
90 s-120 s T4 Static in ③ 
120 s-150 s T5 Moving - ③ to ④ 
150 s-180 s T6 Static in ④ 
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 Algorithm 4-2: iPCW pseudocode 

1 The 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 detected by all DAUij is obtained. 
2 for pedestrian 𝑝 𝑖𝑛 𝑙𝑖𝑠𝑡_𝑜𝑓_𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠 do: 
3  the 𝑙𝑖𝑠𝑡_𝑜𝑓_𝐷𝐴𝑈𝑖𝑗 that have detected 𝑝 is obtained. 
4  𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑇𝑟𝑢𝑒 # by default the pedestrian is considered as static 
5  for 𝐷𝐴𝑈𝑖𝑗 𝑖𝑛 𝑙𝑖𝑠𝑡_𝑜𝑓_𝐷𝐴𝑈𝑖𝑗 do: 

6   
# The power measurements are 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 to reduce noise. 
# The behavior (beh) is obtained. 0=static; 1=moving 

   𝑏𝑒ℎ = 𝑀𝐿_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟. 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟)  
7   if 𝑏𝑒ℎ == 1 then: # classifier considers p as moving. 
8    𝑠𝑡𝑎𝑡𝑖𝑐 = 𝐹𝑎𝑙𝑠𝑒 # now the pedestrian is considered as moving 
9   end if 
10  end for 
11  if 𝑠𝑡𝑎𝑡𝑖𝑐 == 𝑇𝑟𝑢𝑒 then: 

12   
# The pedestrian 𝑝 is considered as static in all of 𝑙𝑖𝑠𝑡_𝑜𝑓_𝐷𝐴𝑈𝑖𝑗, 
# then its correct location corresponds to the 𝐷𝐴𝑈𝑖𝑗 that presents 
# the higher power in average. 

13   𝐷𝐴𝑈𝑖𝑗_𝑚𝑎𝑥 =  𝑔𝑒𝑡_𝐷𝐴𝑈𝑖𝑗𝑝_𝑀𝑎𝑥𝑀𝑒𝑎𝑛𝑃𝑜𝑤𝑒𝑟(𝑝) 
14   𝐷𝐴𝑈𝑖𝑗_𝑚𝑎𝑥. 𝑎𝑑𝑑_𝑃𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛(𝑝) 
15  end if 
16 end for 

 

 
Figure 4-13.  Flow diagram of the proposed method (beh=behavior; DAU=Data Acquisition 
Unit). (Figure 5, p. 7, [265]). 
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(a) LR 

 
(b) GNB 

 
(c) SVM 

 
(d) kNN 

 
(e) RF 

Figure 4-14.  How each of the ML algorithms studied works: (a) Logistic Regressor; (b) 
Gaussian Naïve Bayes; (c) Support Vector Machine; (d) k-Nearest Neighbor; (e) Random 
Forest. (Figure 6, p. 9, [265]). 

 

For comparing the performance of the different ML algorithms studied, the 

confusion matrix was used. In each cell of the matrix, the number of predictions 

made by each algorithm is placed. Each column of the matrix represents the 

predictions of the ML algorithm, while each row represents the actual class. An 

example of a binary confusion matrix can be found in Table 4-10. 
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TABLE 4-10.  Example of Binary Confusion Matrix. (Table 6, p. 10, [265]). 

 Predicted: negative (0) Predicted: positive (1) 

Actual: negative (0) TN FP 
Actual: positive (1) FN TP 

 

In each cell of the matrix, the acronyms indicated stand for: 

• TN (True Negative): the model correctly predicts the negative class. 

• TP (True Positive): the model correctly predicts the positive class. 

• FN (False Negative): the model incorrectly predicts the negative class. 

• FP (False Positive): the model incorrectly predicts the positive class. 

From the confusion matrix, it is possible to obtain a large number of metrics 

that allow us to know in more detail the performance of each algorithm. For our 

case, we used: Precision, Recall, and F1-score. The equations of these metrics can 

be seen in Equations 4-4, 4-5, and 4-6. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4-4) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4-5) 

 𝐹1_𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4-6) 

 

4.5.3 Experiments & Results 

After simulating all the pedestrians in the scenario seen above, we obtained a 

dataset consisting of 36,864 samples. Each of the samples corresponding to the 

RSSI temporal evolution of the Probe Request messages during the capture 

intervals (30 seconds) and came from the behavior of the 768 pedestrians (12 

groups x 64 pedestrians/group = 768 pedestrians) in the 6 capture intervals (see 

Table 4-4) and the 8 DAUs installed at the 2 intersections (4 traffic lights per 

intersection, see the simulated scenario in Figure 4-3). Half of the temporal 

samples (18,432) belonged to static pedestrian behaviors and the other half to 

moving pedestrians. For training and testing, the data set was divided into 23,961 

samples (65%) for the training set and the remainder (35%) for the test set. In the 

training set, there were 12,722 samples from the static class and 11,139 from the 

moving class, and in the test set, there were 6,508 samples from the static class 

(timestamps T1, T4, and T6) and 6,395 from the moving class (timestamps T2, T3, 

and T5). 
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Experimental set #1 

The first set of experiments aimed to obtain the performance of different ML 

algorithms from a large set of previously generated input data in order to compare 

their performance. The generated input data set belongs to the statistical 

parameters of the temporal power behavior of the data set previously extracted 

from the simulation. These statistical parameters are shown in Table 4-11. In total 

27 different features allowed training the various ML algorithms for pedestrian 

behavior classification. 
 

TABLE 4-11.  Statistics used as input features for ML algorithms. (Table 5, p. 10, [265]). 

Statistic 

Mean power  
Variance  

From linear regression line 
Slope 

Intercept 
r-value 

From polynomial regression of degree 2 

Coefficient degree 0 
Coefficient degree 1 
Coefficient degree 2 

Residuals 

From polynomial regression of degree 3 

Coefficient degree 0 
Coefficient degree 1 
Coefficient degree 2 
Coefficient degree 3 

Residuals 

From polynomial regression of degree 4 

Coefficient degree 0 
Coefficient degree 1 
Coefficient degree 2 
Coefficient degree 3 
Coefficient degree 4 

Residuals 
Kurtosis parameter  

25% Quantile 
50% Quantile 
75% Quantile 

 

Pearson correlation coefficient  
Pearson p-value coefficient  

Skewness parameter  
 

After an exhaustive training process with grid search with cross-validation of 

the most important hyperparameters of all the ML algorithms seen above, the 

results are shown in Tables 4-12 and 4-13. More specifically, Table 4-12 shows the 

confusion matrix for each of the tested algorithms, as well as Table 4-13 shows a 

report of the metrics used to evaluate the performance (precision, recall, F1-score). 

In addition, the computational cost of inferring the results of the test set was 
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studied. The results of the average time of 100 runs on the test set, as well as their 

standard deviation, are shown in Table 4-14. 

TABLE 4-12.  Confusion Matrix in the testing dataset. (Table 8, p. 11, [265]). 

  Predicted: Static Predicted: Moving 

LR 
True: Static 4294 / 33.28% 2214 / 17.15% 

True: Moving 2083 / 16.14% 4312 / 33.42% 

GNB 
True: Static 3918 / 30.37% 2590 / 20.07% 

True: Moving 1903 / 14.75% 4492 / 34.81% 

SVM 
True: Static 4907 / 38.03% 1601 / 12.41% 

True: Moving 2042 / 15.83% 4353 / 33.74% 

kNN 
True: Static 6353 / 49.24% 155 / 1.20% 

True: Moving 448 / 3.47% 5947 / 46.09% 

RF 
True: Static 6490 / 50.31% 18 / 0.14% 

True: Moving 20 / 0.15% 6373 / 49.39% 

LR = Linear Regressor, GNB = Gaussian Naïve Bayes, SVM = Support Vector Machine, kNN = k-
Nearest Neighbor, RF = Random Forest. 

 

TABLE 4-13.  Classification report in the testing dataset. (Table 9, p. 11, [265]). 

 State Precision Recall F1-score 

LR 
Static 0.668 0.659 0.664 

Moving 0.665 0.674 0.669 
avg/total 0.667 0.667 0.667 

GNB 
Static 0.668 0.612 0.639 

Moving 0.639 0.704 0.669 
avg/total 0.653 0.647 0.654 

SVM 
Static 0.701 0.754 0.729 

Moving 0.733 0.680 0.706 
avg/total 0.718 0.717 0.718 

kNN 
Static 0.932 0.976 0.954 

Moving 0.975 0.930 0.952 
avg/total 0.954 0.953 0.953 

RF 
Static 0.996 0.997 0.996 

Moving 0.997 0.996 0.996 
avg/total 0.996 0.996 0.996 

LR = Linear Regressor, GNB = Gaussian Naïve Bayes, SVM = Support Vector Machine, kNN = k-
Nearest Neighbor, RF = Random Forest. 

 

TABLE 4-14.  Execution Time in the testing dataset. (Table 10, p. 11, [265]). 

 Execution time (mean ± std) (100 runs) 

LR 7.238 ms ± 0.245 ms per run 
GNB 108.008 ms ± 0.191 ms per run 
SVM 92970.154 ms ± 5779.215 ms per run 
kNN 35244.375 ms ± 2799.993 ms per run 
RF 311.806 ms ± 10.147 ms per run 

LR = Linear Regressor, GNB = Gaussian Naïve Bayes, SVM = Support Vector Machine, kNN = k-
Nearest Neighbor, RF = Random Forest. 
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Once the first set of experiments was performed, the results showed that the 

best classifier, with a large difference in performance and execution time, was the 

Random Forest classifier. Random Forest was able to obtain accuracy, recall, and 

F1 score values higher than 99% on the test dataset, in addition to having a run 

time of fewer than 0.5 seconds. 

Experimental set #2 

This second set of experiments consisted of reducing the complexity offered by the 

Random Forest classification algorithm by selecting the input features that provide 

the most information for classification. More specifically, a feature selection 

procedure called Recursive Feature Elimination with Cross-Validation (RFECV) 

was used. Thus, by selecting the input features that are most important for 

classifying pedestrian behavior, both the accuracies (precision, recall, F1-score) and 

the execution time are optimized. This is because the classification noise is reduced 

by eliminating features that do not (or the least) provide information for 

classification. 

The results of the RFECV process showed that the best classification 

performance occurred when 5 input features were selected. More specifically, these 

features are shown in Table 4-15. In addition, the complete RFECV process can be 

seen in Figure 4-15, where the accuracy of the cross-validation dataset (Cross-

validation score) is indicated as a function of the number of features selected. 

After this feature selection process, the RF algorithm was re-optimized 

considering only these selected variables. The results of the inference on the test 

data set after training can be seen in Table 4-16. In addition, the summary of the 

analyzed metrics can be seen in Table 4-17 and the computational performance 

analysis of the average inference time and its standard deviation of 100 runs can be 

seen in Table 4-18. 

 

TABLE 4-15.  Statistics used as input features for RF after RFECV. (Table 11, p. 12, [265]). 

Statistic 

From polynomial regression of degree 3 
Coefficient degree 0 
Coefficient degree 3 

From polynomial regression of degree 4 
Coefficient degree 0 
Coefficient degree 3 
Coefficient degree 4 

RF = Random Forest. 
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Figure 4-15.  RFECV results. The optimal number of features was 5. Increasing the number 
of features reduces the cross-validation score. This is because not all features provide the 
same information, apart from possibly conflicting or interfering with classification. (Figure 
7, p. 13, [265]). 

 

TABLE 4-16.  Confusion Matrix of RF algorithm pre- and post- RFECV the testing dataset. 
(Table 13, p. 13, [265]). 

  Predicted: Static Predicted: Moving 

RF 
True: Static 6490 / 50.31% 18 / 0.14% 

True: Moving 20 / 0.15% 6373 / 49.39% 
RF with 
RFECV 

True: Static 6495 / 50.34% 13 / 0.10% 
True: Moving 6 / 0.05% 6389 / 49.52% 

RF = Random Forest. 

 

TABLE 4-17.  Classification report of RF algorithm pre- and post- RFECV in the testing 
dataset. (Table 14, p. 13, [265]). 

 State Precision Recall F1-score 

RF 
Static 0.9965 0.9972 0.9968 

Moving 0.9973 0.9965 0.9969 
avg/total 0.9969 0.9969 0.9969 

RF with 
RFECV 

Static 0.9991 0.9980 0.9985 
Moving 0.9980 0.9991 0.9985 

avg/total 0.9986 0.9986 0.9985 

RF = Random Forest. 

TABLE 4-18.  Execution Time of RF algorithm pre- and post- RFECV in the testing 
dataset. (Table 15, p. 13, [265]). 

 Execution time (mean ± std) (100 runs) 

RF 311.8065 ms ± 10.1476 ms per run 
RF with 
RFECV 

110.7994 ms ± 0.6019 ms per run 

RF = Random Forest. 
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As can be seen in the results, the advantages offered by the feature selection 

mechanisms are enormous. We see how the results improve in all the metrics 

analyzed, achieving accuracies above 99.80%, and reducing the execution time to 

a third of its original value. 

Experimental set #3 

Finally, in this last set of experiments, the overall performance provided by iPCW 

when using RF as a pedestrian discriminator was evaluated. Pedestrian positioning 

was continued by simply finding the DAUijp with the highest mean power during 

the capture interval. 

To obtain an overall view of the performance offered by iPCW, several 

metrics were used to obtain the classification accuracy (Aclassification) and 

positioning accuracy (Apositioning), as shown in Equation 4-7 and Equation 4-8. 

 𝐴𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4-7) 

 𝐴𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔  =
𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_𝑙𝑜𝑐𝑎𝑡𝑒𝑑_𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦

𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛𝑠_𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑_𝑎𝑠_𝑠𝑡𝑎𝑡𝑖𝑐
 (4-8) 

Where: 

• TN (True Negative): the classifier (RF) correctly predicts the static state. 

• TP (True Positive): the classifier (RF) correctly predicts the moving state. 

• FN (False Negative): the classifier (RF) incorrectly predicts the static state. 

• FP (False Positive): the classifier (RF) incorrectly predicts the moving 

state. 

• pedestrians_located_properly: indicates pedestrians correctly located 

under the DAU waiting to cross. 

• pedestrians_detected_as_static: indicates pedestrians detected as static by 

the classifier (RF). 

After experimenting with the scenario shown above (Figure 4-3), the results 

are shown in Figure 4-16. In this figure, we can see both the pedestrian 

classification accuracy by the RF classifier and the positioning accuracy 

(timestamps T1, T4, and T6). 

Noticeably, the results obtained by iPCW are notable, showing a behavioral 

discrimination accuracy between static and moving pedestrians of more than 98%. 

In addition, the positioning accuracy within the intersection for static pedestrians 

exceeds 92%. This positioning accuracy is only shown at time intervals where static 

pedestrians were present, i.e., at timestamps T1, T4, and T6. These results are a 

huge improvement over those obtained in the work in which the base algorithm 

was proposed, showing the enormous advantages that ML algorithms can offer. 
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Figure 4-16.  Classification accuracy (RF) and positioning accuracy (mean RSS) results. 
Positioning accuracy only appears in the time intervals where pedestrians were static (T1, 
T4, and T6), since in the other time intervals (T2, T3, and T5) all pedestrians were moving. 
(Figure 8, p. 14, [265]). 

4.5.4 Conclusions 

The advantages of considering pedestrians in intelligent transportation control 

systems are immense, such as better traffic management, better quality of life for 

pedestrians, more safety, etc. This study proposed a method based on AI capable 

of classifying pedestrian behavior in urban environments, as well as positioning 

pedestrians detected as static within an intersection. The method, called 

intelligent Pedestrian Characterization using WiFi (iPCW), was a passive device-

based method using WiFi technology. More specifically, it used Probe Request 

messages sent by mobile devices passively and periodically to classify and position 

pedestrians in open urban environments. This iPCW used an artificial intelligence 

algorithm called Random Forest, picking out the most useful features that enabled 

higher performance with RFECV. iPCW was evaluated through intensive computer 

simulations in an urban scenario consisting of two traffic light-controlled 

intersections. The results showed excellent performance, with detection accuracy 

between moving pedestrians and static pedestrians exceeding 98% and positioning 

accuracy exceeding 92%. Consequently, we humbly consider iPCW to be simple, 

lightweight, and with great performance. The accuracy levels achieved are 

comparable (and in some cases even better) than those obtained by other 

proposals in both indoor and outdoor scenarios. Particularly noteworthy is the 
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accuracy that our algorithm achieves in discriminating pedestrian behavior 

(between static and moving), as well as in obtaining their location at the 

appropriate crosswalk. It is important to keep in mind that our algorithm requires 

simplicity and lightness so that it can be executed in real-time on low-cost, low-

power embedded devices. 

Although were identified some issues such as MAC randomness, the period 

of sending probes request messages or the underestimation of the number of 

people due to not everyone carries a WiFi-enabled mobile device, the advantages 

that these systems can offer are enormous. 

4.6 Conclusions to this chapter 

The potential benefits of taking pedestrians into account for advanced traffic 

management systems are enormous, such as increased safety, improved flow, 

improved quality of life for pedestrians, etc. 

In this section, we have analyzed the methods used for people counting in 

both indoor and outdoor environments. Seeing the benefits and advantages that 

device-based WiFi passive methods could offer, a set of works have been carried 

out to obtain a series of algorithms capable of classifying and positioning 

pedestrians in urban environments. 

The first study carried out a first simple approach that laid the foundation for 

subsequent developments. This approach provided over 52% performance in 

discriminating between static pedestrians and moving pedestrians. In addition, the 

positioning at the crosswalk that pedestrians were waiting to cross was performed 

correctly 93% of the time. 

Seeing the advantages that the previously proposed algorithm could offer; in 

the second work, a deployment was performed in a real scenario simulating an 

urban intersection. In this way, the proposed algorithm could be validated in a real 

deployment. In addition, the performance of the algorithm was compared with 

that of other ML classification algorithms. The results showed that the proposed 

algorithm could offer superior performance to other ML algorithms, as well as to 

the results of previous work. The behavior discrimination accuracy exceeded 57%, 

as well as the positioning accuracy was above 90%. However, the ML RF algorithm 

stood out. RF was able to obtain a positioning accuracy above 83%, as well as a 

positioning accuracy above 88%. 

Considering the benefits that ML algorithms could offer in the discrimination 

of pedestrian behavior, in the last work seen in this section, the performance 

offered by several ML algorithms was evaluated in order to obtain the ML 

algorithm with the best performance. In addition, another important feature is that 

the selected algorithm should be lightweight when inferring new results. After an 
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intensive process of optimization and selection of the variables that provide the 

most information when classifying by RFECV, the algorithm with the best 

performance was RF. After the selection of RF, a new algorithm was designed and 

named intelligent Pedestrian Characterization using WiFi (iPCW). The overall 

performance offered by iPCW was discrimination accuracy better than 98%, as well 

as positioning accuracy better than 92%. 

In conclusion, the systems proposed in this section can provide traffic control 

systems with the ability to consider pedestrians in their control decisions. In this 

way, advanced control policies capable of controlling both vehicular and 

pedestrian traffic can be obtained, maximizing road safety as well as minimizing 

waiting times. 

As a final note, it is worth mentioning that, due to the intended use case of 

this type of system, the main problem of MAC randomness in mobile devices 

during the search for WiFi networks to connect to is greatly reduced, since the 

probability of a device modifying its MAC in a short capture interval is reduced 

[296]. In our case, the capture intervals are determined by the traffic-light cycles 

and typically range from 30 to 90 seconds. 
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2021, doi: 10.1504/IJSNET.2021.117964. 

2020 Journal Impact Factor (JIF): 1.302. (Q4), Rank: 80/91 in 
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Guillen‐Perez, A.; Cano, M.-D., “A WiFi-based method to count and locate 
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2018, vol. 2018-Octob, pp. 123–130, doi: 10.1109/WiMOB.2018.8589170. 

 

Guillen‐Perez, A.; Cano, M.-D., “Counting and locating people in outdoor 
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methods,” ITM Web Conf., vol. 24, pp. 1–10, Feb. 2019, doi: 

10.1051/itmconf/20192401010. 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 5:  Smart Traffic Light Control – AI approach 

 

Antonio Guillén Pérez 2022  Page 103 

Chapter 5:  Smart Traffic Light Control – AI approach 

5.1 Introduction 

One of the main causes of traffic poor management at city intersections and 

approaches is due to inefficient management of traffic light control systems [312]. 

Following this challenge, ITS emerged. ITS are able to adapt the traffic light cycles 

controlling intersections based on various parameters (such as real-time lane 

utilization, air quality, vehicle waiting time, etc.) in order to improve the use of the 

intersection. 

These control systems are experiencing a transformation in the operating 

paradigm thanks to Smart Cities, big data, the Internet of Things, and artificial 

intelligence, giving rise to new opportunities to achieve more efficient, sustainable, 

and environmentally friendly urban mobility [313]. 

In this section, we present related work proposed to increase the intelligence 

of intelligent traffic-lights control systems by using different approaches like 

artificial intelligence algorithms. 

5.2 State of the art 

Numerous ITS can handle traffic in an intelligent way [314], within which they can 

be classified by levels of cognitive capability. There are the most basic systems that 

only control timing in time divisions [315], [316], passing through widely 

implemented systems such as SCATS [317], SCOOT [318], and Max-pressure [319], 

which adjust the parameters of the signal timing scheme (signal period, green/red 

signal ratio and phase difference), up to isolated systems fully capable of self-

learning the characteristics of the environment and requiring high computational 

power [320]–[323]. 

In the scientific literature, we can find numerous works addressing intelligent 

traffic control at regulated intersections using artificial intelligence or relying on 

AI to optimize an advanced control policy. The most important of these are fuzzy 

logic [324]–[326], reservation and market-based system [327]–[329], neural 

networks [330]–[332], reinforcement learning [72], [333]–[336] and swarm 

intelligence and evolutionary computation [337]–[339] that try to solve the traffic 

management problem by proposing new approaches in traffic light control. 

Another way to obtain a simple but advanced control policy is using 

Evolutionary Algorithms (EA). More specifically, using Genetic Algorithms (GA) 

for the optimization of very complex control systems, or to obtain an advanced 

control policy by modeling the phases of the policy on a set of chromosomes of the 

genetic algorithm. 
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Within the second group, we can find the work done by Sánchez-Medina et 

al. [340]. They encoded a fuzzy logic controller in the chromosomes of a GA 

population. After applying the optimization process, the obtained control policy 

allowed controlling vehicles in simple scenarios. Similar works can be found in 

[339], [341]. Also, in [342] we can find an approach that unifies the communication 

between track and GA devices. In this way, more information can be incorporated 

into the optimization process and better results can be obtained than in previous 

works. 

If we focus on the search for papers that use AE, we can find papers that use 

Ant Colony Optimization (ACO) processes. ACOs allow solving optimization 

problems using graphs. Within this category, the approaches proposed by Rehman 

et al. [343] or by Jerry et al. [344], where both treated with ACO the traffic control 

problem, are worth mentioning. 

5.3 Study on the influence of traffic signal duty cycle duration at a 
single intersection under incremental traffic density using 
traffic simulator 

5.3.1 Introduction 

The main basis of the operation of advanced traffic light control systems for 

intersections and intelligent transportation systems is to adapt the cycle time of 

traffic lights according to vehicular traffic conditions [312]. It should be noted that 

the cycle time is the sum of all phases through which a traffic light passes (red time, 

green time, yellow time, and intersection clearance time). However, this operating 

principle is strongly influenced by a huge number of external parameters that the 

vast majority of works do not consider. For example, most works consider that it 

is better to increase the duty cycle of traffic lights when the flow of vehicles 

increases [338], [345], [346]. However, this statement cannot always be admitted, 

as it will depend on the condition of the other roads, the number of lanes, the 

traffic light cycle, the characteristics of vehicles, etc. Moreover, if special attention 

is not paid to the simulated scenario, intersections could be oversaturated, i.e., the 

number of vehicles entering an intersection exceeds the number that the 

intersection itself can support, exceeding what is known as critical flow. Exceeding 

this critical flow makes the behavior of vehicles and the intersection unpredictable 

[347]. Figure 5-1 shows the relationship between incoming vehicular flow (veh/h) 

and outgoing vehicular flow (veh/h) through a typical intersection. As can be seen, 

when the critical flow is reached, the capacity to serve all vehicles is reduced, until 

a point is reached where the intersection becomes saturated, and the intersection 

is blocked (Jam Flow). 
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Figure 5-1.  Representation of vehicular entry flow (veh/h) and vehicular exit flow (veh/h). 
(Figure 1, p. 2, [348]). 

For the study of new control systems, there are numerous traffic simulators, 

such as SUMO [349], which allow the behavior of each vehicle to be modeled 

individually. However, due to the great versatility that this type of microscopic 

simulator can offer by modifying a large number of internal parameters of the 

simulation, the complexity of the simulation is high and may not be configured 

with sufficient rigor. 

For that reason, in this paper [348] we investigate the operating bases on 

which intelligent traffic control systems are based, corroborating the assumptions 

that are usually made in these works, as well as showing the conditions and limits 

that the simulations of these proposals must meet in order to be able to rely on 

these operating bases. 

The study aimed to analyze the influence of traffic signal cycle time for 

intersections as a function of a range of incremental vehicle flow. The influence on 

a large number of objective variables, such as average waiting time to cross an 

intersection, average vehicle speed, fuel consumption, and vehicle pollutant 

emissions, were analyzed. In this way, we were able to obtain the optimal cycle 

time of the traffic lights controlling an intersection, as a function of each incoming 

vehicular flow and for each objective variable, and we were also able to corroborate 

the operating principle on which these systems are based. 

5.3.2 Experimental setup 

For the experimental development, the SUMO traffic simulator was used, a 

microscopic traffic simulator, widely studied and developed by the scientific 

community and used in the study of various fields such as vehicular networks, the 

study of traffic flows in large cities, and the development of new ITS. The scenario 

used is shown in Figure 5-2 and is composed of a 4-branch intersection controlled 

by traffic lights. Each branch is 200 meters long and consists of 2 lanes in each 
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direction. Between each branch of the intersection, an inbound vehicular flow was 

defined varying between 600 veh/h and 2000 veh/h for through or right-turn 

directions. Left turns were not allowed. Table 5-1 shows the simulator input 

parameters used and the output data that were analyzed. 

The simulated vehicle fleet was based on the vehicle fleet data provided by 

the Dirección General de Tráfico de Madrid (Spain), which can be seen in Table 5-

2. The vehicles were configured to meet the air pollution and fuel consumption 

limitations imposed by the European EURO 5 regulations for more precise results. 

 

 
Figure 5-2.  Depiction of the simulated intersection. (Figure 2, p. 3, [348]). 

 

TABLE 5-1.  Input parameters to the simulator to configure the simulations and output 
parameters analyzed. (Table 1, p. 3, [348]). 

Input/Output Parameters Values 

Input 

Vehicle flow (symmetrical)1 {300 - 1000} veh/h/lane 
Yellow time 2 s 

Clearance time 5 s 
Red time {Green Time} 

Green time {15 - 100} s 

Cycle 
{Green + Yellow + Red + Clearance} =  

{37 - 207} s 

Output 

Trip duration  
Waiting time  
Average speed  

CO emitted  
Fuel consumption  

The simulated vehicular flows were symmetrical, i.e., equal in all lanes of all branches of the 
intersection. The flow entering each branch at the intersection is twice that indicated since each 
branch has 2 lanes in each direction. 
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TABLE 5-2.  Vehicle distribution and fuel type used. (Table 2, p. 3, [348]). 

Vehicle type Proportion Fuel type 

Car 30% Gasoline 

Car 40% Diesel 

Motorcycle 10% Gasoline 

Moped 10% Gasoline 

Van 5% Diesel 

Bus 5% Average of all fuel types 

5.3.3 Results 

The results obtained from the simulations are shown in Figure 5-3. In this figure, 

it can be seen the behavior of each of the analyzed metrics as a function of the 

duration of the green time (between 15 s and 100 s), which directly affects the cycle 

time of the traffic lights. In addition, each of the lines in each graph represents a 

different vehicle flow per entry lane (from 300 veh/h/lane to 1000 veh/h/lane). 

Note that the flow entering the intersection on each branch is twice that indicated 

in the subfigures in Figure 5-3 since there are two lanes per direction on each 

branch. 

In Figures 5-3 a to 5-3 f it can be noticed that for small flows (less than 500 

veh/h/lane) and for very large flows (more than 850 veh/h/lane) the difference in 

the selection of any green time is very small, as the performance metrics remain 

the same. However, for the intermediate flow range between 500 veh/h/lane and 

850 veh/h/lane, there is a large difference in the analyzed metrics between the 

green time values. 

If we focus on this range of flows, we can see in Figure. 5-3 a that increasing 

the green time to decrease the average travel time benefits (to a greater or lesser 

extent) traffic flows equal to or greater than 600 veh/h/lane. However, Figure. 5-3 

b shows that the same increase in green time is detrimental in terms of average 

waiting time for flows higher than 800 veh/h/lane. On the other hand, while 

average speed (Figure. 5-3 c) follows a similar behavior to the average travel time 

metric, emissions (Figure. 5-3 d) and fuel consumption (Figure 5-3 e) follow the 

pattern of average waiting time (i.e., limiting efficiency to flows below 

approximately 800 veh/h per lane). 

Finally, Figure 5-3 f shows the optimal green time value for each of the 

analyzed metrics, as a function of the incoming vehicular flow per lane. In this 

figure, it can be seen that there are two distinct flow regions. For the region where 

the vehicular flow is less than 800 veh/h/lane, but greater than 500 veh/h/lane, the 

behavior of the optimal time is as expected, the higher the vehicular flow, the 

longer the green time (increase the cycle) of the traffic lights controlling the 

intersection to optimize the target variables. Below 500 veh/h/lane, the optimal 

cycle time is always lower than the minimum analyzed (37 s). On the other hand, 
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if the vehicular flow is higher than 800 veh/h/lane, the behavior of the target 

variables is no longer predictable, some improve with decreasing green time 

(waiting time, CO emissions, and fuel consumption) and others improve with 

increasing green time (travel time and average speed). 

5.3.4 Conclusions 

In this subsection, we managed to demonstrate that it is possible to alter the 

performance of vehicular traffic at regulated intersections by modifying traffic light 

cycles, with particular emphasis on the need to delimit the region in which there 

is a real benefit and on the importance of identifying this area in work based on 

computer simulations to avoid results that may not be scientifically rigorous. More 

specifically, we succeeded in demonstrating that, before the intersection is in a 

region of oversaturation (in the scenario selected for this study is defined by a 

vehicular flow of less than 800 veh/h/lane), there is a region in which the studied 

parameters converge to an optimal value between the range of cycle lengths 

studied and follows the approach followed by the vast majority of works (the 

higher the vehicular flow, the more optimal it is to increase the cycle length of 

traffic lights). However, once this saturation flow is exceeded, the behavior of the 

analyzed metrics becomes unpredictable. It is interesting to note that there are 

numerous scientific works based on computer simulations that do not take into 

account this oversaturation value or do not indicate it, which could compromise 

the validity of some of the traffic scenarios evaluated. 
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(a) Duration 

 
(b) Waiting Time 

 
(c) Speed 

 
(d) CO 

 
(e) Fuel 

 
(f)  Optimal Green Time 

Figure 5-3.  Results of the experiments carried out. Shown in each of the subfigures (a-e) 
are the different metrics analyzed as a function of the green time of the traffic light cycle. 
Each of the lines represents a different incoming vehicular flow: (a) Trip duration: (b) 
Waiting time; (c) Average speed; (d) CO emitted; (e) Fuel consumption; (f) Optimal green 
time vs the input flow depending on the parameters studied. (Figures 3-8, p. 4, [348]). 
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5.4 Intelligent IoT systems for traffic management: a practical 
application 

5.4.1 Introduction 

As seen in previous work [348], the basis of intelligent traffic light control systems 

lies in the modification of the traffic light state depending on the current traffic. 

Thanks to the enormous advances that have been achieved in the field of AI, the 

incorporation of many AI algorithms in a myriad of applications have led to 

enormous improvement and optimization, such as autonomous vehicle control, 

computer vision, medicine, or NLP [8], [350]–[354]. 

Within the field of ITS, we can find a wide variety of approaches that apply 

AI to achieve better performance in numerous areas such as bus route planning, 

intelligent parking search, or traffic light control [355]–[358]. 

However, the vast majority of these applications require high computational 

power to run in real-time, making their deployment on low-cost IoT devices 

infeasible and having to rely on cloud computing resources [359]. 

Keeping this problem in mind, in this subsection we decided to address the 

problem of combining advanced traffic light control systems with AI, taking into 

account the limitations imposed by low-cost IoT devices and the limitations 

imposed by the control algorithms themselves, such as the need to run in real-

time. As the basis of the control system, the Randomized Early Detection for 

Dynamic Vehicles (REDVD) algorithm was employed providing a simple but 

efficient control capable of adapting the phases and cycles of traffic lights at 

signalized intersections [322]. 

REDVD was tested in isolated intersections, with simple scenarios, but due 

to its high degree of adjustment and its multiple parameters to be configured, its 

behavior in more complex scenarios was not as expected. Therefore, in this study, 

it was proposed to use a set of AI algorithms called evolutionary algorithms to 

perform the optimization process of all the parameters. Specifically, a genetic 

algorithm was employed, which is one of the most popular among EAs due to its 

simplicity and performance. 

These genetic algorithms allowed us to obtain an optimized version of 

REDVD, which we call iREDVD. iREDVD was able to obtain surprising results in 

scenarios of high complexity and unknown to iREDVD, allowing us to significantly 

optimize numerous studied metrics such as vehicle waiting time, average travel 

time, fuel consumption, and emissions of contaminating particles and pollutant 

gases, compared to other proposals. 
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5.4.2 Genetic Algorithms 

GAs are a set of procedures inspired by evolutionary theory intended to optimize 

a set of parameters within a problem in an iterative, intelligent, and fast way, using 

lightweight procedures [360], [361]. GAs are based on the assumption that, if there 

is a range of possible solutions to a problem, the best solutions are likely to lie in 

the solution space defined by the parameter space, and that they are also located 

spatially close to each other in the parameter space. The main approach followed 

by GAs is to run a set of iterations where in each iteration new individuals are 

generated based on the best ones from the previous iteration, in order to find the 

best individuals within the solution space. 

The iterative GA process consists of four phases: population initialization, 

fitness calculation, selection, and crossover. The GA randomly generates a new 

population of individuals called the initial population, assigning random values to 

each of the characteristics/parameters of each individual in the population. In the 

next phase, the fitness of each individual is evaluated. The fitness is given by the 

function(s) to be optimized or, alternatively, by an error or fit function. In the 

selection phase, each individual in the population is ranked according to its degree 

of fit and then the individuals with the highest degree of fit are selected. Finally, in 

the crossover phase, the individuals selected in the previous phase are used to 

create a new population through crossovers, thus obtaining the new population of 

the same size as the initial one. Moreover, in this phase, random mutations 

(considered as a noise-type perturbation) are performed on the parameters of the 

individuals to avoid local optima in the search of the solution space. The whole 

process is repeated until the convergence of the best solution occurs, i.e., the value 

of the objective function reaches a certain threshold, or a target number of 

iterations is met. 

A more detailed explanation of each of the phases of genetic algorithms can 

be found in section 4 of the original paper [313]. The flow diagram of genetic 

algorithms can be seen in Figure 5-4. 
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Figure 5-4.  A general Genetic Algorithm (GA) procedure. The convergence condition can 
be different, either several entire generations or a fitness value improvement after a few 
generations. (Figure 2, p. 4, [313]). 

5.4.3 Experimental setup 

In order to obtain the most accurate results possible, it was decided to use isolated 

scenarios, a training scenario for the execution of the genetic algorithm, and two 

test scenarios to obtain the results. The details of each scenario used can be seen 

in Table 5-3. 

The SUMO simulator v1.0.1 was used for the simulation. Python v3.7 together 

with TraCI (Traffic Control Interface) was used to develop all the algorithms, as 

well as to control the traffic. The computer used for the simulations and runs had 

an Intel Xeon CPU with 16 cores at 2.6GHz. 

For training and implementation of the genetic algorithm, a training scenario 

was designed consisting of a grid of 4x4 intersections (16 in total) with 2 lanes in 

each direction (see Figure 5-5). There was a distance of 300 meters between each 

intersection. The vehicular flow was designed to be fluctuating, presenting 

intervals with low, medium, and high vehicular load (600, 1200, and 1600 

veh/hour/lane respectively) in addition to presenting intervals of symmetric and 

asymmetric traffic. A representation of the simulated vehicular flow in the training 

scenario can be seen in Figure 5-6. The three flow values (low, medium, and high) 

can be seen, as well as the times when symmetric (e.g., hours 0, 1, and 2) and 

asymmetric (e.g., hours 3, 4, and 5) traffic existed. The North (N) and South (S) 

branches were imposed to have the same vehicular flow, as well as the East (E) and 

West (W) branches. A total of 10 hours were simulated with the traffic distribution 

shown in Figure 5-6. 

                     

                   

           

         
       

         

         

        

   

  



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 5:  Smart Traffic Light Control – AI approach 

 

Antonio Guillén Pérez 2022  Page 113 

TABLE 5-3.  Characteristics of the training and the testing scenarios, (Table 2, p. 5, [313]). 

Scenario 
Number of 

Intersections 
Intersection 

Layout 
Distance Between 

Intersections 
Simulation 
Duration 

Train 16 4×4 300m 10h 

Test1 5 1×5 200m 12h 

Test2 100 10×10 250m 12h 

 

 
Figure 5-5.  Simulated topology for the training scenario: Manhattan 4×4 network with 
300m between each intersection. (Figure 3, p. 5, [313]). 

 

 
Figure 5-6.  Vehicle flow rate per branch used in the training scenario. (Figure 4, p. 5, [313]). 

Within the test scenarios, it was decided to design two different scenarios to 

obtain a greater variety of results. The purpose of these scenarios was to evaluate 

the performance of iREDVD once trained in scenarios never seen before, with new 

conditions. Test scenario 1 consisted of a large avenue composed of 5 intersections 

(1x5) with a separation between intersections of 200 meters. This scenario can be 

seen in Figure 5-7 a. On the other hand, test scenario 2 consisted of a grid of 10x10 
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intersections (in total 100 intersections separated by 250 meters). This test scenario 

number 2 can be seen in Figure 5-7 b. 

The same flow distribution was used in the two test scenarios. This can be 

seen in Figure 5-8. As can be seen, this flow distribution presents a much more 

chaotic, complex, and realistic behavior, with intervals with low, medium, and high 

flows (700, 1000, and 1800 veh/hour/lane), and slow and fast variations of these 

flows. Twelve hours of traffic have been simulated with the flow distribution shown 

in Figure 5-8. 

 

 
(a)  Test Scenario 1 

 

 
(b)  Test Scenario 2 

 

Figure 5-7.  Simulated topology for the testing scenarios: (a) 1×5 network with 200m 
between each intersection; (b) Manhattan 10×10 network with 250m between each 
intersection Vehicle flow rate per branch used in the training scenario. (Figure 5, p. 6, 
[313]). 
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Figure 5-8.  Vehicle flow rate per branch used in the testing scenarios. (Figure 6, p. 6, [313]). 

It was decided to use the distribution of vehicles provided by the Dirección 

General de Tráfico for the city of Madrid (Spain) [362] to obtain the most accurate 

results possible. This distribution can be checked in Table 5-4. In addition, to 

model vehicle behavior as realistically as possible, it was decided to use the HBEFA 

pollution model [363]. HBEFA contains a large database of fuel consumption and 

air pollutant data for a large number of vehicles in a wide variety of states, 

considering a wide variety of conditions (hot/cold start, temperature, humidity, 

evaporation, etc.). 

 

TABLE 5-4.  Vehicle fleet distribution. (Table 3, p. 5, [313]). 

Vehicle type Proportion Fuel type 

Car 30% Gasoline 

Car 40% Diesel 

Motorcycle 10% Gasoline 

Moped 10% Gasoline 

Van 5% Diesel 

Bus 5% Average of all fuel types 

 

All intersections were composed of 2 lanes in each direction, where only 

forward and right turns were allowed. In addition, each intersection was regulated 

by 4 traffic lights (one for each branch) where the opposite traffic lights were 

synchronized (North with South and East with West) and the rest in opposite 

phase, that is, when the North traffic light was green, the South was also green and 

the East and West traffic lights were red. When North and South were red it was 

because East and West were green. A representation of the intersections used can 

be seen in Figure 5-9. In addition, an example cycle for an intersection can be seen 

in Figure 5-10, where the yellow time interval was set to 3 seconds, and the 

intersection clearance interval (all red) was set to 2 seconds. 
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Figure 5-9.  An example of a four-way signaled intersection, as used in this study. (Figure 
7, p. 6, [313]). 

 

 
Figure 5-10.  Example of a cycle in a traffic light. N=North; S=South; W=West; E=East. 
(Figure 8, p. 6, [313]). 

To compare the performance that iREDVD was able to offer, it was decided 

to use other widely used traffic light control algorithms, such as the fixed cycle 

time (FX) and green wave (GW) algorithms, which feature an offset between 

neighboring intersections to facilitate traffic. The cycle times analyzed were 30, 45, 

and 60 seconds, as they are the most commonly used in real scenarios. The 

nomenclature used to denote each algorithm analyzed was expressed as the 

algorithm employed coupled with the cycle time; thus, for example, GW45 

corresponds to the green wave algorithm with a cycle time of 45 seconds. In all 

cases, 10 experiments were performed for each algorithm studied, obtaining the 

mean value and its standard deviation for each metric studied. 

The metric used to test the fitness of the solutions found by the genetic 

algorithm was the waiting time per vehicle intersection. In addition, to show the 

overall performance of the tested algorithms, other metrics such as travel time, 

average speed, CO, CO2, HC, PMx and NOx emissions, and fuel consumption were 

analyzed. 
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5.4.4 Results 

Training scenario 

Under this scenario, the process of determining the best parameters of the REDVD 

was carried out using the genetic algorithm explained above, calling this new 

version of the control algorithm iREDVD. The evolution of the fitness level 

(average waiting time per intersection) reached by iREDVD during the generations 

of the genetic algorithm can be seen in Figure 5-11. Starting from generation 5, the 

results are very promising, but in order to find a robust solution set, it was decided 

to simulate up to 20 simulations. Once optimized, the control process performed 

by iREDVD is immediate, not having to run an artificial intelligence algorithm, as 

it relies on a lightweight and simple control algorithm. 

 
Figure 5-11.  Optimization process. “Best fitness” is the individual with the lowest 
normalized waiting time and “Average fitness” is the average normalized waiting time of 
all populations. X-Axis represents the generations. (Figure 9, p. 7, [313]). 

The values obtained by the genetic algorithm can be seen in Table 5-5. In this 

table, very interesting values can be seen. For example, the parameter limdec 

controls how many times the green time of the traffic lights should be reduced 

consecutively to reduce the total cycle time of the intersection. It can be observed 

that limdec presented a value equal to 1, which means that when a reduction in 

traffic flow is detected, even if it is slight, it is better to shorten the total cycle time 

quickly. Another interesting value is found in the parameter liminc, which 

indicates how many times the green time of the traffic light must increase in order 

to increase the total cycle time of the intersection. As can be noted, the value 

obtained was 5, which indicates that the iREDVD must be very safe (the flow must 

be much higher than what the intersection is capable of handling) before the total 

cycle time increases. More information about the parameters of REDVD algorithm 

can be found in [322]. 
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TABLE 5-5.  REDVD parameters. (Table 4, p. 5, [313]). 

Parameter Optimal Value 

minth 10 

maxth 25 

min_greentime 15 

max_greentime 60 

min_cycle 45 

max_cycle 130 

delta 10 

delta_cycle 15 

maxp 0.85 

wq 0.7 

limin 5 

limdec 1 

 

After the optimization process, the performance of iREDVD was analyzed 

and compared with the other previously mentioned control algorithms. The results 

in this scenario can be seen in Table 5-6. 

Comparing iREDVD with the traditional control algorithms (Fixed 30, Fixed 

45, Fixed 60, GreenWave 30, GreenWave 45, and GreenWave 60), it can be 

evidenced that iREDVD was able to obtain an improvement of more than 50% 

(reduction of almost 25 seconds) in the optimized metric (average vehicle waiting 

time per intersection). In other indirectly optimized metrics improvements 

ranging from 7% to 32% can be seen, being especially remarkable the reduction of 

more than 32% in CO emissions, as well as 20% in HC and 17% in PMx. 

Concerning the original REDV algorithm proposed in [322], an even greater 

improvement is noticed than with previous algorithms. This reinforces the need to 

adjust the parameters of advanced control algorithms in complex scenarios, which 

can lead to catastrophic results if the algorithms are not adjusted correctly. 

Lastly, compared to the original REDVD variant, also presented in [322], there 

was an improvement of about 27% of the optimized metric. This meant a reduction 

of 8 seconds in the average waiting time per intersection. Observing other 

indirectly optimized metrics, highlights how iREDVD can outperform REDVD in 

all these metrics in improvements ranging from 7% to 45%. Furthermore, the 

reduction in fuel consumption (7%) and the reduction in pollutant emissions (7%-

13%) are also remarkable. 

Testing scenarios 

Under this scenario, the process of determining the best parameters of the REDVD 

was carried out. 
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After carrying out the optimization process and demonstrating the 

advantages that iREDVD could offer over other control algorithms, iREDVD was 

tested in two test scenarios. The results obtained can be seen in Table 5-7 and Table 

5-8. It is worth noting that the improvements offered by iREDVD are very similar 

to those obtained in the training scenario, demonstrating that there is no over-

fitting of iREDVD parameters over the training scenario. This also corroborates the 

flexibility of iREDVD to adjust to new conditions never seen before, showing its 

robustness to be applied in real deployments. 

From the results tables, we can highlight how iREDVD was able to reduce the 

average waiting time between 34% and 49% in test scenario 1, and between 78% 

and 82% in test scenario 2. This improvement was also reflected in other metrics 

analyzed, such as the reduction of CO emissions by around 25% or the reduction 

of fuel consumption by around 6% and 17%. 

Final remarks 

The exceptional performance that iREDVD was able to provide is mainly due to 

the quick cycle time adjustment as a function of the flow through each 

intersection. This behavior can be seen in Figure 5-12a and Figure 5-12b, where it is 

highlighted how iREDVD proactively adapted the traffic light cycle time as a 

function of the simulated traffic flow, both in the training scenario (Figure 5-12 a) 

and in the test scenario (Figure 5-12 b) in the face of unknown situations. It can be 

observed that the traffic light cycle increases as vehicle flow increases, and vice 

versa, as well as allowing controlling the branches independently, adjusting to the 

traffic conditions on each branch for symmetrical (Figure 5-12 b hour 1) and 

asymmetrical (Figure 5-12 b hour 4) traffic. This independence allowed iREDVD a 

better distribution of the total cycle time, as well as a notable reduction of the 

waiting time seen previously. 

 
(a) Training scenario flow 

 
(b) Testing scenario flow 

Figure 5-12.  Vehicular flow rate simulated, time for each branch, and total cycle for 
intersection 1 vs. simulation time: (a) Train scenario; (b) Test scenarios (Figure 10, p. 7, 
[313]). 
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TABLE 5-6.  Training scenario results. (Table 5, p. 8, [313]). 

Algorithm 
Avg. norm. 

waiting time 
(s) 

Avg. trip 
time 
(s) 

Avg 
speed 
(m/s) 

Avg. CO 
emissions 

(mg) 

Avg. CO2 
emissions 

(g) 

Avg. HC 
emissions 

(mg) 

Avg. PMx 
emissions 

(mg) 

Avg. NOx 
emissions 

(mg) 

Avg. Fuel 
consumption 

(ml) 

T
ra

d
it

io
n

al
 

FX30 
51,5 ± 
 0,11 

213,96 ± 
 0,23 

7,25 ± 
 0,01 

6642,68 ± 
 21,51 

783,90 ± 
 4,49 

131,83 ± 
 1,08 

62,75 ± 
 0,56 

3988,72 ± 
 31,07 

315,59 ± 
 1,79 

FX45 
48,3 ± 
 0,04 

201,81 ± 
 0,09 

7,61 ± 
 0.02 

6184,13 ± 
 24,62 

739,80 ± 
 3,07 

122,93 ± 
 0,22 

58,39 ± 
 0,14 

3749,9 ± 
 15,14 

297,69 ± 
 1,11 

FX60 
51,64 ± 
 0,06 

204,76 ± 
 0,10 

7,53 ± 
 0.01 

6463,22 ± 
 50,19 

739,23 ± 
 2,78 

124,46 ± 
 1,42 

58,87 ± 
 0,69 

3754,17 ± 
 26,77 

297,47 ± 
 1,19 

GW30 
46,13 ± 
 0,08 

203,29 ± 
 0,11 

7,65 ± 
 0.04 

6016,83 ± 
 36,41 

751,81 ± 
 2,05 

122,43 ± 
 0,38 

58,54 ± 
 0,16 

3788,61 ± 
 14,89 

302,59 ± 
 0,71 

GW45 
50,02 ± 
 0,04 

206,29 ± 
 0,07 

7,64 ± 
 0.01 

6427,96 ± 
 20.95 

748,24 ± 
 2,40 

125,86 ± 
 0,89 

59,63 ± 
 0,43 

3796,72 ± 
 19,92 

301,2 ± 
 0,99 

GW60 
47,4 ± 
 0,07 

199,45 ± 
 0,07 

7,82 ± 
 0.02 

6178,43 ± 
 18,74 

725,66 ± 
 5,34 

120,27 ± 
 1,06 

56,98 ± 
 0,52 

3665,26 ± 
 34,72 

291,95 ± 
 2,11 

REDV original 
62,07 ± 

 4,01 
234,22 ± 

 7,61 
7,22 ± 
 0,09 

7560,28 ± 
 363,68 

819,66 ± 
 15,15 

143,19 ± 
 5,02 

67,75 ± 
 2,21 

4221,82 ± 
 96,23 

4221,82 ± 
 96,23 

REDVD original 
29,58 ± 

 0,33 
184,06 ± 

 0,67 
8,27 ± 
 0,03 

4708,8 ± 
 27,36 

723,41 ± 
 1,67 

107,39 ± 
 1,00 

52,51 ± 
 0,51 

3573,78 ± 
 16,83 

3573,78 ± 
 16,83 

iREDVD 
21,37 ± 
 1,86 

167,2 ± 
 2,91 

9,14 ± 
 0,16 

4074,01 ± 
 135,67 

672,11 ± 
 10,13 

96,01 ± 
 2,35 

46,96 ± 
 1,15 

3275,5 ± 
 59,96 

3275,5 ± 
 59,96 

          

Improvement of iREDVD vs traditional. a          

Improvement Abs -24,76 -32,25 1,32 -1942,82 -53,54 -24,27 -10,02 -389,76 -21,83 
Improvement % 53,67 16,16 16,87 32,28 7,37 20,18 17,58 10,63 7,47 

Improvement of iREDVD vs REDV orig.          
Improvement Abs -40,7 -67,02 1,92 -3486,27 -147,54 -47,19 -20,79 -946,32 -59,92 
Improvement % 65,57 28,61 26,59 46,11 18,01 32,96 30,68 22,42 18,15 

Improvement of iREDVD vs REDVD orig.          
Improvement Abs -8,21 -16,86 0,87 -634,79 -51,29 -11,39 -5,55 -298,28 -20,85 
Improvement % 27,75 9,16 10,51 13,48 7,09 10,60 10,56 8,34 7,16 

a Improvement compared to the best traditional algorithm. Note: avg ± std of 10 tests. 
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TABLE 5-7.  Testing scenario 1 results. (Table 6, p. 9, [313]). 

Algorithm 
Avg. norm. 

waiting time 
(s) 

Avg. trip 
time 
(s) 

Avg 
speed 
(m/s) 

Avg. CO 
emissions 

(mg) 

Avg. CO2 
emissions 

(g) 

Avg. HC 
emissions 

(mg) 

Avg. PMx 
emissions 

(mg) 

Avg. NOx 
emissions 

(mg) 

Avg. Fuel 
consumption 

(ml) 

T
ra

d
it

io
n

al
 

FX30 
21,22 ± 
 0,25 

169,9 ± 
 1,21 

7,34 ± 
 0,02 

5395,04 ± 
 65,59 

597,56 ± 
 4,11 

102,91 ± 
 0,73 

48,99 ± 
 0,32 

3073,18 ± 
 22,29 

240,61 ± 
 1,6 

FX45 
19,2 ± 
 0,03 

150,47 ± 
 0,16 

7,72 ± 
 0,01 

4756,42 ± 
 23,49 

551,99 ± 
 1,54 

92,4 ± 
 0,27 

44,06 ± 
 0,15 

2814,95 ± 
 5,68 

222,12 ± 
 0,58 

FX60 
21,74 ± 
 0,01 

153,05 ± 
 0,08 

7,58 ± 
 0,02 

5047,54 ± 
 20,13 

555,22 ± 
 3,02 

95,51 ± 
 0,8 

45,26 ± 
 0,42 

2844,12 ± 
 23,67 

223,56 ± 
 1,17 

GW30 
17,68 ± 
 0,39 

154,05 ± 
 1,79 

7,81 ± 
 0,04 

4586,92 ± 
 69,72 

558,36 ± 
 3,49 

91,28 ± 
 0,91 

43,83 ± 
 0,41 

2829,06 ± 
 20,56 

224,73 ± 
 1,4 

GW45 
19,25 ± 
 0,03 

151,67 ± 
 0,15 

7,83 ± 
 0,05 

4803,28 ± 
 19,67 

554,43 ± 
 3,27 

92,62 ± 
 0,74 

44,21 ± 
 0,38 

2825,08 ± 
 21,72 

223,09 ± 
 1,28 

GW60 
21,36 ± 
 0,02 

151,66 ± 
 0,12 

7,75 ± 
 0,03 

4919,4 ± 
 18,56 

555,01 ± 
 3,09 

93,9 ± 
 1,19 

44,67 ± 
 0,55 

2839,66 ± 
 22,56 

223,32 ± 
 1,19 

REDV original 
25,38 ± 

 0,71 
152,55 ± 

 2,94 
7,73 ± 
 0,05 

4663,73 ± 
 120,77 

547,49 ± 
 5,15 

91,42 ± 
 1,91 

43,61 ± 
 0,86 

2789,18 ± 
 34,95 

220,32 ± 
 2,14 

REDVD original 
17,66 ± 
 0,47 

172,52 ± 
 2,99 

7,49 ± 
 0,08 

4771,9 ± 
 84,21 

580,91 ± 
 7,70 

95,48 ± 
 1,86 

45,93 ± 
 0,91 

2953,28 ± 
 51,28 

233,81 ± 
 3,08 

iREDVD 
11,6 ± 
 0,27 

132,6 ± 
 1,65 

8,38 ± 
 0,06 

3406,27 ± 
 66,39 

511,34 ± 
 3,07 

77,09 ± 
 1,56 

37,62 ± 
 0,7 

2536,01 ± 
 23,01 

205,74 ± 
 1,36 

          

Improvement of iREDVD vs traditional. a          

Improvement Abs -6,08 -17,87 0,55 -1180,65 -40,64 -14,19 -6,21 -278,94 -16,38 
Improvement % 34,38 11,87 7,02 25,73 7,36 15,54 14,16 9,91 7,37 

Improvement of iREDVD vs REDV orig.          
Improvement Abs -13,78 -19,95 0,65 -1257,46 -36,14 -14,33 -5,99 -253,17 -14,58 
Improvement % 54,29 13,07 8,40 26,96 6,60 15,67 13,73 9,07 6,61 

Improvement of iREDVD vs REDVD orig.          
Improvement Abs -6,06 -39,92 0,89 -1365,63 -69,57 -18,39 -8,31 -417,27 -28,07 
Improvement % 34,31 23,13 11,88 28,61 11,97 19,26 18,09 14,13 12,0 

v Improvement compared to the best traditional algorithm. Note: avg ± std of 10 tests. 
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TABLE 5-8.  Testing scenario 2 results. (Table 7, p. 10, [313]). 

Algorithm 
Avg. norm. 

waiting time 
(s) 

Avg. trip 
time 
(s) 

Avg 
speed 
(m/s) 

Avg. CO 
emissions 

(mg) 

Avg. CO2 
emissions 

(g) 

Avg. HC 
emissions 

(mg) 

Avg. PMx 
emissions 

(mg) 

Avg. NOx 
emissions 

(mg) 

Avg. Fuel 
consumption 

(ml) 

T
ra

d
it

io
n

al
 

FX30 
139,05 ± 

 0,04 
428,63 ± 

 0,43 
6,49 ± 
 0,01 

14273,45 ± 
 55,48 

1508,16 ± 
 10,14 

266,46 ± 
 1,25 

125,60 ± 
 0,33 

7738,98 ± 
 7,48 

608,09 ± 
 0,87 

FX45 
131,08 ± 

 0,07 
400,10 ± 

 0,85 
6,85 ± 
 0,02 

13064,96 ± 
 44,84 

1415,19 ± 
 4,25 

246,19 ± 
 0,84 

116,05 ± 
 1,15 

7274,22 ± 
 10,44 

569,66 ± 
 2,15 

FX60 
134,60 ± 

 0,21 
399.23 ± 

 0,37 
6,90 ± 
 0,05 

13388,89 ± 
 14,35 

1396,32 ± 
 7,19 

246,41 ± 
 3,44 

115,58 ± 
 0,88 

7181,57 ± 
 8,21 

561,98 ± 
 1,49 

GW30 
122,31 ± 

 0,18 
403,24 ± 

 0,59 
6,69 ± 
 0,05 

12634,05 ± 
 43,01 

1443,93 ± 
 13,25 

245,45 ± 
 2,25 

116,67 ± 
 0,91 

7738,98 ± 
 4,97 

581,48 ± 
 0,45 

GW45 
136,20 ± 

 1,01 
407,89 ± 

 0,89 
6,97 ± 
 0,02 

13394,84 ± 
 24,12 

1435,91 ± 
 6,84 

252,15 ± 
 0,98 

118,97 ± 
 1,01 

7274,22 ± 
 11,02 

577,83 ± 
 1,04 

GW60 
122,79 ± 

 0,50 
382,22 ± 

 1,21 
7,28 ± 
 0,01 

12415,55 ± 
 33,21 

1348,19 ± 
 9,50 

231,86 ± 
 1,21 

109,01 ± 
 2,45 

7185,77 ± 
 6,81 

542,51 ± 
 0,76 

REDV original 
140,69 ± 

 2,15 
421,36 ± 

 8,16 
5,98 ± 
 0,11 

15584,88 ± 
 33,86 

1550,40 ± 
 3,46 

308,69 ± 
 3,48 

130,18 ± 
 2,38 

7911,04 ± 
 15,01 

624,14 ± 
 1,24 

REDVD original 
99,22 ± 

 8,33 
374,45 ± 

 5,74 
8,12 ± 
 0,18 

8847,37 ± 
 76,84 

1321,84 ± 
 2,62 

212,11 ± 
 1,12 

99,01 ± 
 1,22 

6812,88 ± 
 21,66 

539,69 ± 
 4,18 

iREDVD 
21,45 ± 
 0,24 

286,85 ± 
 0,15 

9,39 ± 
 0,11 

6764,93 ± 
 27,11 

1286,49 ± 
 0,96 

178,71 ± 
 1,52 

89,27 ± 
 0,69 

6249,30 ± 
 25,21 

517,07 ± 
 0,59 

          

Improvement of iREDVD vs traditional. a          

Improvement Abs -101,34 -95,37 2,11 -5650,62 -61,70 -53,15 -19,74 -932,27 -25,44 
Improvement % 82,46 24,95 28,98 45,51 4,58 22,92 18,11 12,98 4,69 

Improvement of iREDVD vs REDV orig.          
Improvement Abs -119,24 -134,53 3,41 -8829,95 -263,91 -128,98 -40,91 -1661,74 -107,07 
Improvement % 84,75 31,93 57,02 56,62 17,02 42,11 31,43 21,01 17,15 

Improvement of iREDVD vs REDVD orig.          
Improvement Abs -77,77 -87,60 1,27 -2082,44 -35,35 -33,39 -9,74 -563,58 -22,62 
Improvement % 78,38 23,39 16,64 23,54 2,67 15,74 9,83 8,27 4,19 

a Improvement compared to the best traditional algorithm. Note: avg ± std of 10 tests. 
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5.4.5 Conclusions 

The use of advanced traffic light control systems integrated in ITS require perfect 

tuning to control traffic efficiently and safely. As this research study has shown, 

poor tuning of control algorithms can lead to catastrophic situations, resulting in 

traffic situations that ITS are unable to manage. 

Considering this imperative to control multiple unexpected situations and 

anticipate unexpected events, the work seen in this section used an evolutionary 

algorithm in order to find the best parameter settings for the advanced traffic light 

control algorithm REDVD. After this optimization process using GAs, the new 

optimized version of REDVD (iREDVD) was tested in highly complex traffic 

scenarios and with traffic scenarios never seen during the optimization process, 

thus eliminating the training scenario bias. iREDVD was compared both to widely 

used traditional control algorithms (Fixed and Green Wave) and to the versions on 

which iREDVD is based (REDV and REDVD). The metric directly optimized by the 

genetic algorithm was the average waiting time per vehicle intersection, in 

addition, other indirectly optimized metrics such as travel time, travel speed, 

emissions (namely CO, CO2, HC, PMx, and NOx), and fuel consumption were 

analyzed. 

In light of the results, we have been able to draw several conclusions. The 

first and most important is the importance of tuning the internal parameters of 

advanced control algorithms such as REDVD. As can be seen in Tables 5-6, 5-7, and 

5-8, when we compare REDVD without optimization with iREDVD we can see that 

the travel time metric can be reduced by 23%, in addition to many other 

improvements, demonstrating the importance of optimization. 

On the other hand, if we compare iREDVD with widely used traditional 

control techniques, improvements range from 34% to 80% in several metrics, 

showing reductions of between 6 and 100 seconds in the vehicle waiting time per 

intersection in the scenarios analyzed. 

Finally, if we compare iREDVD with the original REDVD, we can see that it 

was able to reduce the waiting time at each intersection by 34% to 78% in the test 

scenarios. In addition, iREDVD was able to achieve a reduction in both pollutant 

emissions and fuel consumption between 2%-28% and 4%-12% of vehicles, 

respectively. 

Based on the results obtained in this section, in the design and deployment 

of new traffic light control systems in large-scale intersections iREDVD can offer a 

great advantage over other control systems by allowing to control traffic in a very 

efficient and anticipatory way through the deployment of low cost, low 

requirements, and low power IoT devices, outperforming not only iREDVD but 

also other known traffic management methods in all the metrics analyzed. 
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5.5 Conclusions to this chapter 

ITS are set to revolutionize the smart cities of the future, largely through the 

incorporation of new technologies such as IoT devices, big data, AI, and new 5G/6G 

communication standards. 

Due to the constant increase in the number of vehicles, the massification of 

large cities, the enormous progress of intelligent control systems, and the great 

development of mobile communication systems, there is a great demand for 

intelligent systems capable of orchestrating all users of public roads efficiently and 

safely. If we focus on intersections regulated by traffic lights, it is imperative to 

respect safety by improving vehicular flow, obtaining control policies capable of 

anticipating congestion situations, improving traffic flow, and decreasing pollution 

and fuel use in cities, which is extremely imperative. 

As this section has shown, the basis of these control systems lies in modifying 

the cycle time of the traffic lights controlling the intersections according to the 

incoming flow at each intersection to maximize the use of the intersection in an 

efficient manner. In addition, it has been evidenced that a major issue is the correct 

optimization and adjustment of these traffic control systems, which leads to 

complicated situations if comprehensive traffic management is not carried out. 

This fine-tuning process can be performed through multiple procedures, such as 

the one seen in this section using genetic algorithms. Thanks to this fine-tuning, it 

would be possible to achieve an advanced control system, called iREDVD in the 

previous paper, capable of greatly improving other widely used advanced and 

traditional control systems. 

In conclusion, ITS will bring to future smart cities new advanced tools for the 

orchestration of all vehicles, which will increase safety, reduce waiting times, and 

air pollution due to vehicle emissions, and improve the quality of life for all 

citizens. 
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273–285, Feb. 2021, doi: 10.1049/itr2.12021. 
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Chapter 6:  Interoperability of Connected Autonomous 
Vehicles and Intelligent Transportation Systems 

6.1 Introduction 

After analyzing the different alternatives for vehicle management at urban 

intersections based on the breakthrough of AI algorithms and communication 

protocols, this chapter analyzes the Autonomous Intersection Management (AIM) 

approach. In addition, several AIM approaches using DRL for vehicular control are 

proposed. 

The future success of autonomous vehicles will depend on advances in 

various components of the driving and control system, as well as understanding 

and handling unpredictable situations that may arise in complex driving 

environments. The application of Multi-Agent Deep Reinforcement Learning 

(MADRL) will enable the development of advanced systems capable of adapting to 

myriad situations and acting collectively and proactively, anticipating dangerous 

situations, and ultimately avoiding accidents and increasing fluidity. Using 

MADRL, new and interesting AIMs capable of controlling autonomous vehicles 

could be developed with extraordinary results, minimizing waiting times, 

eliminating accidents, and improving the quality of life of users. 

6.1.1 Autonomous Intersection Management 

Traffic intersections are the main points of congestion in urban areas and are 

among the most important places for the planning and management of urban 

traffic flows, as they are very complex and risky scenarios for urban mobility, due 

to the hazard of accidents or unexpected interactions between vehicles, 

pedestrians, or other actors. The main requirement that an intersection must meet 

is to regulate the way vehicles pass through it in such a way that safety is 

guaranteed, and flow can be guaranteed. 

The development of ITS has become a key strategy to improve transportation 

safety, as well as to reduce congestion in cities. The advancement and progress of 

AI is increasing the intelligence and deployment of autonomous vehicles. 

Autonomous vehicles are expected to contribute significantly to road safety, 

reducing fatalities and injuries due to human error. The main idea is a system of 

Connected Autonomous Vehicles (CAVs), which can be interconnected with each 

other to improve control through collective intelligence. 

AIM is an emerging technology that enables advanced control of CAVs at 

urban intersections through centralized control via an AIM algorithm. This 

advanced control allows control of the right-of-way of individual vehicles through 

the application of multi-agent and multivariable optimization rules while 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 127 

improving the performance offered by traditional intersection control techniques, 

such as those based on traffic lights, by minimizing collisions and optimizing the 

overall traffic flow. 

AIMs operate mainly based on two modules: 

Conflict module 

The conflict module determines whether there will be a conflict (accident) 

between two vehicles that want to cross an intersection. That is, from the routes 

that the vehicles want to follow, the conflict module will predict the paths that the 

vehicles will follow, and if two or more vehicles coincide at some point of the 

intersection in space-time, it will identify that there is at least one conflict. This 

module can follow several approaches for the identification of conflicts between 

vehicles: i) intersection-based [327], [364], [365], ii) tile-based [366]–[369], iii) 

conflict point-based [370]–[374], and iv) vehicle-based [375]–[378]. A simple sketch 

of each approach is shown in Figure 6-1. 

The intersection based approach laid the foundation for early AIM [327]. In 

this approach, only one vehicle was allowed within the intersection at a time, 

regardless of the route taken by the vehicles. Although this approach was very 

simple, it had serious obvious disadvantages. 

Following this, tile based and conflict-point based approaches emerged. The 

former checked conflicts within a grid, where two vehicles could not coincide in 

the same tile simultaneously in space-time. The main problem with this approach 

is that there was a large trade-off between the granularity chosen, the overall 

intersection performance, and the complexity of conflict checking. The second 

approach only considered the conflict points of the routes followed by the vehicles. 

If two vehicles coincided at the same conflict point simultaneously in space-time, 

a conflict was identified. This second approach reduced the complexity of conflict 

checking; however, due to the variable geometry of the vehicles, unexpected 

collisions could occur. 

Finally, a much more complex approach is the vehicle based approach. In this 

approach, vehicles have total freedom of movement within the intersection, and 

the AIM is in charge of finding them a valid route (that does not coincide in space-

time with that of other vehicles already assigned) within the intersection according 

to their requirements. This option is undoubtedly the one that offers more freedom 

at the cost of enormous computational capacity requirements since it turns the 

problem into a multidimensional and multiagent problem of enormous 

complexity. 
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(a) Intersection based 

 
(b) Tile based 

 
(a) Conflict-Point based 

 
(b) Vehicle based 

Figure 6-1.  Approaches developed for the conflict module of AIM: (a) Intersection based; 
(b) Tile based; (c) Conflict-Point based; (d) Vehicle based. (Figure 2, p. 3, [379]). 

Priority module 

Once conflicts between vehicles have been identified, the priority module is 

responsible for deciding what to do with those vehicles to resolve them. The 

priority module acts on the state of the vehicles (e.g., their speed, acceleration, 

etc.) to try to resolve conflicts as fairly as possible, ensuring that no vehicle is stuck 

infinitely. 

In addition, this module is responsible for obtaining a right-of-way for 

vehicles, assigning priorities among the vehicles wishing to cross the intersection 

following a priority policy. This policy can follow different approaches: 

- On a First-Come, First-Served (FCFS) basis [327], [370], [380], [381]. 

- Based on vehicle status (speed, waiting time, etc.) or intersection status 

(number of vehicles per branch, average waiting time per branch, etc.). For 
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example, the Fast First Service (FFS) policy [372], where vehicles arriving 

the fastest at the intersection have the highest priority, or the Long Queue 

First (LQF) policy [368], where vehicles in the longest entry queue have the 

highest priority. 

- Using heuristics such as Dynamic Programming (DP) or Mixed Integer 

Linear Programming (MILP), where the policy is found using a series of 

equations and conditions that model the behavior of the intersection and 

vehicles [366], [374], [378], [382]–[385]. 

- Through auctions [364], [386], in which vehicles are charged with bidding 

for right-of-way priority based on an internal economy for the AIM. 

Vehicles with the highest bid pass first. 

- Making use of artificial intelligence mechanisms such as genetic algorithms 

[387] or RL [368]. 

A representation of AIM with both modules (conflict and priority) can be 

seen in Figure 6-2. 

 

 
Figure 6-2.  AIM basic operation. AIM includes a Conflict module and a Priority module to 
control CAVs. (Figure 1, p. 3, [379]). 

6.1.1. Deep Reinforcement Learning 

RL [11] is a domain of machine learning in which an agent learns to perform a task 

in an environment where it can perform an action and will receive a reward for the 

action performed. The agent's goal is to perform actions that maximize the 

accumulated rewards during the entire task, which is known as expected 

discounted total rewards. 
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When an RL problem satisfies the Markov property, i.e., the future state 

depends only on the current state and current actions, but not on the past, it can 

be formulated as a Markov Decision Process (MDP) and can be defined by the 5-

tuple 〈𝑆, 𝐴, 𝑅, 𝑇, 𝛾〉, where 𝑆 represents a set of states of an environment, 𝐴 

represents the set of actions that the agent can take, 𝑇 is the transition function 

𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] that determines the transition probability from any state 𝑠 ∈ 𝑆 

to any state 𝑠′ ∈ 𝑆 when the action 𝑎 ∈ 𝐴 is taken. 𝑅 is the reward function 

𝑅: 𝑆 × 𝐴 × 𝑆 → ℝ and 𝛾 ∈ (0,1] represents the discount factor that adjusts the 

trade-off between immediate and future rewards. 

Resolving an MDP generates a policy 𝜋 ∶  𝑆 → 𝐴, which maps the states 𝑠 ∈ 𝑆 

to the actions 𝑎 ∈ 𝐴. An optimal policy 𝜋∗ maximizes the expected discounted total 

reward for all states. This approach to finding the optimal policy can be formulated 

by the state-action value function (Q-function) and can be found in Equation 6-1. 

This Q-function determines the expected reward (𝑅) by starting from the state 𝑠, 

taking the action 𝑎, and following the policy 𝜋. 

 𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋 [∑ 𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡)
∞

𝑡=0
] (6-1) 

Focusing on DRL, the incorporation of NN to traditional RL algorithms was 

a major breakthrough, greatly speeding up the learning process of these algorithms 

and allowing their application to tasks that previously seemed impossible because 

NNs can act functions to approximate the policy to be learned. 

Within DRL there are several approaches to find the optimal policy, but the 

most analyzed in recent years is based on a paradigm composed of two types of NN 

for continuous control problems: actor and critic. Both the actor (the policy that 

decides what action to take for each state) and the critic (given a state and an action 

decided by the actor, it predicts what expected reward, or Q-value, is obtained, 

indicating to the actor whether the action to be taken can be good or not) are 

modeled by NNs. 

Twin Delayed Deep Deterministic Policy Gradients (TD3) 

One of the most advanced algorithms within the actor/critic approach is TD3 [388]. 

TD3 has become one of the most widely used RL algorithms in continuous control 

tasks such as robotics or autonomous control. TD3 improves the Deep 

Deterministic Policy Gradient (DDPG) [39] algorithm in several aspects: 

- TD3 uses two critical networks (two Q-functions) instead of one (hence 

"twin") and uses the lower Q-value during training, which gives a better 

approximation, thus improving the stability of the whole algorithm. 

- TD3 updates the actor policy (and the target networks) less frequently than 

those of the critics. In the original paper, the authors recommended 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 131 

updating the actor policy every two updates of the critics. In this way, TD3 

delays the actor updates, the delayed part. 

- TD3 adds a small noise to the target action. This makes it more difficult for 

the policy to exploit Q-function errors by smoothing Q along with the action 

changes. 

The TD3 algorithm can be seen as outlined in Algorithm 6-1. 

 Algorithm 6-1:  TD3 

 
Initialize critic networks 𝑄𝜃1 , 𝑄𝜃2 and actor-network 𝜋𝜙  with random parameters; 

 𝜃1, 𝜃2, 𝜙. 
 Initialize target networks 𝜃1

′ ← 𝜃1, 𝜃2
′ ← 𝜃2, 𝜙

′ ← 𝜙  
 Initialize replay buffer ℬ 
1 for timestep 𝑡 ∈ {1,… , 𝑇} do: 

2  
Select action with exploration noise 𝑎 ~ 𝜋𝜙(𝑠) + 𝜀, 𝜀 ~ 𝒩(𝑜, 𝜎) and observe 

reward 𝑟 and new state 𝑠′ 
3  Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′) in ℬ 
4  Sample mini-batch of N transitions (𝑠, 𝑎, 𝑟, 𝑠′) from ℬ 

5  �̃� ← 𝜋𝜙′(𝑠′) + 𝜀, 𝜀 ~ 𝑐𝑙𝑖𝑝(𝒩(𝑜, 𝜎), −𝑐, 𝑐). 

6  𝑦 ← 𝑟 +  𝛾 𝑚𝑖𝑛𝑖=1,2(𝑄𝜃𝑖
′(𝑠′, �̃�)). 

7  Update critics 𝜃𝑖 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑖 (𝑁
−1  ∑ (𝑦 − (𝑄𝜃𝑖(𝑠, 𝑎))

2
) 

8  it 𝑡 𝑚𝑜𝑑 𝑑 then: 
9   Update 𝜙 by the deterministic policy gradient: 

10   ∇𝜙 𝐽(𝜙) = 𝑁
−1  ∑ ∇𝑎𝑄𝜃1(𝑠, 𝑎)|𝑎=𝜋𝜙(𝑠) ∇𝜙𝜋𝜙(𝑠)   

11   Update target networks: 
12   𝜃𝑖

′ ← 𝜏𝜃𝑖 + (1 −  𝜏)𝜃𝑖
′. 

12   𝜙′ ← 𝜏𝜙 + (1 −  𝜏)𝜙′. 
13  end if 
14 end for 

Prioritized Experience Replay (PER) 

Prioritized Experience Replay (PER) [53] is a technique used in DRL to speed up 

training. In DRL, a replay buffer is used to store the previous experiences seen 

during training. These experiences are composed by the 4-tuple including states, 

actions, rewards, and next states (st, at, rt, st+1) are used to approximate the Q-values 

by the DNN. What PER proposes is to use more frequently those actions from 

which more can be learned. The experiences that PER considers most important 

to learn from are those in which the error made between the predicted Q-value 

(Q(s,a))and the actual Q-value (Q*(s,a)) is high. Therefore, by employing PER, the 

network is able to focus on those experiences where it predicts with high error and 

minimize its error, reducing the global error and increasing accuracy, reducing 

training time. 
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Curriculum Learning for Reinforcement Learning 

Curriculum learning [389] consists of training an intelligent agent on a task 

sequentially, increasing the complexity of the task to be performed little by little. 

For example, in tasks where a robot has to learn to jump over an obstacle, a 

curriculum can include: training the robot to stand, then to walk, then to run, and 

finally to jump over the obstacle. Adoption of the curriculum has been found to 

accelerate the speed of convergence and may even outperform the final policy 

performance, although designing an efficient and effective curriculum is not easy; 

in fact, a bad curriculum can even hinder learning. One of the most widely 

employed methods is curriculum-based learning through Self-Play. In this 

approach, the complexity of the scenario to be solved by the agent increases when 

a policy is reached that obtains stable results, i.e., when after some simulations, 

the agent is not able to improve the solution found. For example, in object 

manipulation and classification tasks, different objects can be added when the 

results of the task are satisfactory and stable results are obtained. 

6.2 State of the art 

In this section, we will look at works related to the field of AIM. 

Autonomous Intersection Management (AIM) 

AIMs emerged as intersection traffic control alternatives to traffic lights. These 

AIMs propose centralized intersection-level control of autonomous vehicles 

crossing each intersection. At each intersection there is an Intersection Manager 

(IM) that controls all vehicles crossing the intersection together, achieving higher 

throughput than if each vehicle is left to act individually. 

One of the first works to propose this was developed by Dresner et al. [390]. 

In this work, they proposed that the IM follow the “F     C   , F        v  ” (FCFS) 

policy to find the right-of-way of vehicles. The operation of their proposal 

consisted of each vehicle asking the IM to reserve a space-time within the 

intersection. If this reservation did not conflict with any vehicle, the request was 

accepted, and the vehicle had to follow the route it had requested. In case of 

potential conflicts with another route already assigned, the vehicle received a 

denial of the request and had to slow down and try again later to find available 

time-space. The results showed that the proposed AIM improved flow and lost 

time over traditional control systems (stop, traffic lights), although it was only 

tested with simple intersections and low traffic flows. 

In later works [391], [392] proposed improvements to this protocol such as 

the consideration of non-autonomous vehicles (FCFS-LIGHT) as well as 

emergency vehicles (FCFS-EMERG). Finally, they proposed [393] a capable 
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algorithm between each of the previously proposed algorithms depending on the 

needs and the state of each intersection. 

In [370], FCFS protocol was further studied and tested against an optimized 

traditional traffic light signal. The results indicated that FCFS was able to 

significantly reduce the delay up to 90%. 

Huan et al. presented an improvement of the FCFS in [394]. In this study, the 

authors proposed to modify the request denial message, allowing the IM to 

indicate in this message the recommended deceleration rate to reduce the waiting 

time. The proposed algorithm showed a waiting time reduction of more than 85%, 

as well as a fuel consumption reduction of more than 50%. 

Since FCFS was not able to group vehicles into platoons and take advantage 

of the benefits they offer, mechanisms were proposed in [395], [396] that allowed 

grouping requests from vehicles with similar characteristics (same route, same 

destinations, etc.). The results showed an improvement in both FCFS and traffic 

light control, increasing the flow x2 and reducing the time loss up to 85%. 

A different approach was followed by Carlino et al. in [364]. In this research, 

they proposed the use of auctions to obtain the right-of-way of vehicles. Vehicles 

with the highest bids passed first. In this work, a great deal of work was done to 

test the proposal by testing it in four scenarios simulating four urban cities. The 

results they obtained showed superior performance of their proposal in three of 

the four scenarios tested against FCFS and traffic-light based control algorithms. 

However, despite the goodness of their work, they had serious problems. The main 

problem is the approach followed using bids, which involve intrinsic economics, 

with the risk that some vehicles will be left without food with the risk that they 

will experience indefinite waiting times, in addition to generating a market 

economy of the currency used, inflation, discrimination, etc. 

Within the field of DRL we can find the work proposed by We et al. [368]. In 

this study, they used RL to obtain the right-of-way for each vehicle. The results 

compared with FCFS as well as with a variant proposed by them, Longest-Queue-

First (LQF), showed that thanks to the use of DRL their proposal could reduce the 

delay by more than 60%. 

While the proposed AIMs were impressive, the work of Levin et al. [397] 

showed that, under certain conditions, these new AIMs could provide inadequate 

behaviors that could lead to inappropriate results. To this end, they subjected 

several AIMs to various scenarios, such as burst traffic, asymmetric traffic, heavy 

traffic, or traffic traveling on the main avenue and several secondary approaches. 

They indicated that AIM control policies, such as FCFS, required detailed and in-

depth study before being operational in real control systems. In addition, they 

noted that the study of these new AIMs required a comprehensive simulation 
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analysis, in which a large number of scenarios were tested to ensure adequate 

performance. 

From this context, it makes a lot of sense to take advantage of the benefits 

that DRL can offer for the development of new AIMs, as this approach allows the 

AIM to learn and acquire an advanced and deep control policy through trial and 

error. In addition, it is expected that the use of DRL will provide a safer and faster 

solution that will help overcome the limitations of existing AIM algorithms. In the 

following sections, we will look at the work related to the proposed AIM. 

6.3 RAIM 

6.3.1 Introduction 

The first approach to an AIM based entirely on deep reinforcement learning was 

carried out in the work [398]. This research analyzed the use of DRL to design an 

advanced control policy implementing an AIM, controlling autonomous vehicles 

within urban intersections. 

The main advantage of using DRL is obvious: finding an advanced control 

policy, based on trial and error, improving the performance of other proposed AIM 

policies. Thus, this new approach made it possible to unify the advantages offered 

by DRL with the great opportunities that AIM could offer in the development of 

new vehicle control systems. This first approach was called Reinforced 

Autonomous Intersection Management (RAIM). 

6.3.2 RAIM - Reinforced Autonomous Intersection Management 

RAIM unified the conflict module and the priority module into a single controller, 

formed by a deep neural network, which would determine the action to be carried 

out by each vehicle at each time interval, depending on the state of each of the 

vehicles at the intersection. 

The RAIM was considered an ego-centered policy. That is, it calculated the 

action to be performed by the vehicles individually, based on the state of the ego-

vehicle and the state of the other vehicles. It was something like, based on the state 

of the ego-vehicle and the state of the cooperating vehicles, what action the ego-

vehicle should perform so that the overall performance would improve. Because of 

this ego-centric policy, RAIM needed to calculate as many speeds as there were 

vehicles to control. 

RAIM considered the status of vehicles that planned to cross each 

intersection and determined the speed to be followed by the vehicles during the 

next time interval. This speed ensured collision avoidance and minimized travel 

time. Due to technical constraints, the RAIM had a limitation with the number of 

vehicles to be considered simultaneously, allowing a maximum of up to 32 vehicles 
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in total (the ego-vehicle and up to 31 additional vehicles). For situations where 

there were no additional 31 vehicles, a zero-fill policy was followed because the 

format of the input data to the control neural network had to have the same form 

(n_features x 32 vehicles). 

The features of each vehicle used to indicate its status can be seen in Table 

6-1. After correctly encoding the input parameters, each vehicle inputted 14 

features (n_features) into the first layer of the controller's neural network. The total 

number of input features for the controller was 448 features (32 vehicles x 14 

features/vehicle). 

 

TABLE 6-1.  Input Variables and Meaning. (Table 1, p. 5, [398]). 

Variable Description 

Relative pos x Relative position to the center of the intersection on the x-axis 

Relative pos y Relative position to the center of the intersection on the y-axis 

Speed Vehicle speed 

Angle Vehicle orientation angle 

Lane Lane of approach (left lane, right lane) 

Way Way the vehicle will follow (right turn, straight path, left turn) 

Queue 
Intersection branch through which the vehicle is approaching 

(North, South, East, West) 

The parameters with continuous range (such as position, speed, and angle) were normalized 
between -1 and 1, and the parameters with discrete values (lane, way, queue) were encoded with 
one-hot encoding. There are only two lanes because we consider 2 lanes per branch. 

 

The neural network responsible for modeling the RAIM control policy was 

composed of 4 fully connected layers. The characteristics of each layer can be 

found in Table 6-2. In addition, a graphical representation of the neural network 

architecture designed for RAIM can be seen in Figure 6-3. The ego-vehicle features 

are fed into the first 14 neurons of the input layer, and the rest of the neurons are 

used for the features of the other vehicles. 

For the optimization of the controller modeled by the neural network seen 

above, the reinforcement learning algorithm TD3 [388] was used. In addition, to 

accelerate the training process, techniques such as curriculum-based learning 

through Self-Play [389] and PER [53] were employed. TD3 is the evolution of the 

DDPG algorithm, widely studied within the scientific community, and which has 

become one of the most popular algorithms for continuous control problems 

within the fields of robotics and autonomous driving. TD3 bases its training on the 

existence of two different types of networks, Actor and Critic. The Actor-network 

tries to predict the best action to perform based on the current state of the 

environment (Actor, learns the policy). On the other hand, the Critic-network tries 

to predict what will be the expected future reward obtained by the action predicted 

by the Actor-network (Critic, learns the action-value function, Q-function). 
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TABLE 6-2.  RAIM neural network architecture summary. 

Layer Number of neurons Activation function 

Input Layer 448 ReLU 

Hidden Layer 1 128 ReLU 

Hidden Layer 2 64 ReLU 

Output Layer 1 Sigmoid 
 

 
Figure 6-3.  RAIM policy neural network architecture. (Figure 2, p. 4, [398]). 

6.3.3 Experimental setup 

To simulate vehicle behavior as close to reality as possible, the SUMO open-source 

microscopic traffic simulator was used. SUMO has been widely studied and used 

in numerous works by the scientific community. For the development and 

implementation of RAIM, Python 3.7 together with Pytorch 1.5 was used to train 

the neural network. A 16-core AMD processor and an Nvidia RTX 2080TI graphics 

card were used as testbed. 

Two scenarios were designed, i) a training scenario in which RAIM 

optimization was performed, and ii) a test scenario in which the performance 

offered by RAIM was compared with other traditional traffic light control 

algorithms (FT) and advanced adaptive control algorithms (iREDVD [313]). 

Training scenario 

The testing scenario designed consisted of a 4-branch urban intersection, with 2 

lanes in each direction. Left turns, right turns, and crossing the intersection in a 

straight line were allowed. A representation of the simulated intersection can be 

seen in Figure 6-4. 

Each simulation had a duration of 5 minutes, in which the flow of vehicles 

was increased if, after a series of simulations, the stability objectives were met, 

following the procedure of learning by curriculum. In each simulation, the 
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behavior of the vehicles was randomized to obtain a wide range of experiences 

analyzed by RAIM in order to learn a stable and advanced controller model able to 

cope with a wide variety of different states never seen before. RAIM began to take 

control of the vehicles when they approached within 100 meters of the center of 

the intersection and stopped controlling them when they crossed the intersection. 

A summary of the parameters used in the simulation can be found in Table 6-3. 

As a reward signal, the following rewards were designed: 

• -100 (strong negative reward). When the vehicle was involved in a collision. 

• +100 (strong positive reward). When crossing the intersection. 

• -timestep (weak negative reward). To encourage crossing the intersection 

as fast as possible, without collision. This reward was given at each 

simulation timestep. 

 
Figure 6-4.  Train scenario simulated. (Figure 3, p. 4, [398]). 

TABLE 6-3.  Summary of simulation setup and RAIM parameters. (Table 2, p. 6, [398]). 

S
im

u
la

to
r 

Simulation timestep 0.25 segs 
Flow step 50 veh/hour 

Minimum flow 25 veh/hour 
Maximum flow 625 veh/hour 
Test duration 5 mins 
Test scenario 4 branches and 2 lanes/way 

Control distance 100 meters 

R
A

IM
 

Batch size 128 
Gamma 0.99 

Tau 4 × 10-3 

Learning rate actor 1 × 10-5 
Learning rate critics 1 × 10-4 

Weigh decay 1 × 10-6 
Policy noise 0.2 

Policy Noise Clip 0.3 
Optimizer epochs 3 

TD3 update actor every 2 
PER Memory Size 220 
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Testing scenario 

The testing scenario consisted of an intersection similar to the training scenario. 

However, the difference lies in the simulated vehicular flow pattern. This time a 

fluctuating vehicular flow was simulated, with periods of high, low, symmetrical, 

and asymmetrical flow. In this way, it was simulated an intersection where more 

realistic flow has to be coped with. Each simulation was performed 10 times, with 

a simulated duration of 14 hours. The simulated vehicular flow can be seen in 

Figure 6-5. As can be seen, there are multiple different situations, low, medium, 

and high flows, asymmetric and symmetric flows, slow and fast flow variations, etc. 

This allowed us to evaluate the optimized RAIM control policy in a large number 

of circumstances as close to reality as possible. 

The algorithms with which the RAIM was compared were a traditional fixed 

traffic light (FT) control algorithm, with different total cycle times (30 s., 45 s., and 

60 s.) and the advanced adaptive traffic light control algorithm iREDVD [313] based 

on queuing theory. The metrics analyzed were several: travel time, waiting time, 

time loss due to congestion, speed, and energy consumption). 

 
Figure 6-5.  Vehicle flow-rate per branch used in the testing scenario. Low = 100 veh/h; 
Med = 350 veh/hour; High = 600 veh/hour. (Figure 7, p. 7, [398]). 

6.3.4 Results 

In this section, we present the results obtained in the training scenario, as well as 

the comparison and discussion of the results obtained in the testing scenario. 

Training scenario 

After performing the training process, the results obtained can be seen in Figure 

6-6. In this figure, the temporal behavior during the optimization process of the 

metrics: average reward, and average time loss due to congestion can be found. 

The values shown are the mean values of the simulations performed, smoothed 

with a moving average. 
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The results obtained showed excellent stability as a consequence of the set of 

algorithms used (PER and curricular learning). It can be observed how, due to the 

curricular learning process, when the results begin to stabilize, the vehicular flow 

increases. After this increase, outliers are observed, which are smoothed out by the 

use of TD3 and PER. 

Testing scenario 

After the optimization process was performed in the training scenario, the test 

scenario was simulated. The results obtained by both RAIM and the 

aforementioned control algorithms can be seen in Table 6-4. As can be seen, RAIM 

was able to provide superior performance to the other algorithms analyzed in all 

the metrics studied. RAIM was able to reduce travel time by up to 52%, as well as 

reduce time loss by up to 84%. Focusing on the energy consumption metrics, the 

use of RAIM resulted in vehicles using up to 71% less energy. The results obtained, 

while remarkable, are due to the extensive training and advanced control policy 

learned by the DRL algorithm, TD3. 
 

 
(a) 

 
(b) 

Figure 6-6.  Training results. We plot the smoothed mean with an exponential moving 
average. RAIM was training for 82 hours: (a) Reward; (b) Time Loss. (Figure 5, p. 8, [398]). 

 

TABLE 6-4.  Testing scenario results. (Table 3, p. 7, [398]). 

Algorithm 
Travel time 

(s) 
Waiting time 

(s) 
Time loss 

(s) 
Speed 
(m/s) 

Elect. Cons. 
(KW/h) 

FT (30) 62.48 ± 3.58 10.98 ± 3.72 18.98 ± 4.11 9.96 ± 6.44 1.84 ± 0.25 

FT (45) 66.98 ± 4.55 15.21 ± 3.84 23.40 ± 5.54 9.57 ± 5.51 1.79 ± 0.18 

FT (60) 71.32 ± 6.31 19.39 ± 4.41 27.78 ± 4.97 9.27 ± 4.15 1.94 ± 0.33 

iREDVD 57.49 ± 3.55 5.86 ± 2.21 13.96 ± 3.88 10.49 ± 4.81 1.66 ± 0.12 

RAIM 33.89 ± 3.10 0.71 ± 0.19 4.41 ± 1.44 11.81 ± 3.36 0.55 ± 0.09 

Improvem.      

Abs [37.43, 23.60] [18.66, 5.15] [23.37, 9.55] [2.54, 1.32] [1.39, 1.11] 

% [52.59, 41.05] [96.34, 87.88] [84.13, 68.41] [127.40, 112.58] [71.65, 66.87] 

The improvement shows the range between [best-case, worst-case]. The improvement is shown as 
an absolute value (abs) in the corresponding units and in percentage value (%). The results indicate 

the mean and std values (mean ± std). 
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6.3.5 Conclusions 

With the advance of artificial intelligence, numerous fields such as robotics, 

autonomous vehicles, and intelligent transportation systems are undergoing 

tremendous development in recent years. In this paper, the first AIM design 

approach based on deep reinforcement learning was presented, which was termed 

Reinforced Autonomous Intersection Management (RAIM). RAIM was a novel 

system employing a controller modeled by neural networks and trained by deep 

reinforcement learning, which was capable of controlling vehicles at an urban 

intersection in order to maximize vehicular flow while maintaining safety. The 

performance of RAIM showed significant results in numerous metrics, such as 

reducing travel time by 52%, waiting time by 96%, time loss by 84%, speed by 127%, 

and electrical energy consumption by 71% compared to other traffic light control 

algorithms. 

6.4 Multi-Agent Deep Reinforcement Learning to Manage 
Connected Autonomous Vehicles at Tomorrow’s Intersections 

6.4.1 Introduction 

Due to the great potential that deep reinforcement learning applied to systems 

such as AIM has shown to offer [398], this study proposed a significant 

improvement of RAIM by removing the strict constraints imposed on the 

architecture developed for RAIM. In this section [379], the proposed system was 

called advanced Reinforced AIM (adv.RAIM) and made use of recurrent neural 

networks, more specifically LSTM networks to cope with the limitation of the 

number of vehicles to be considered simultaneously. Thus, when gaining control 

of a vehicle, adv.RAIM considers all the other vehicles in the intersection to obtain 

the optimal action to ensure the safety of all vehicles. The performance of 

adv.RAIM was extensively evaluated in a variety of realistic and very complex 

scenarios. 

6.4.2 adv.RAIM – advanced Reinforced Autonomous Intersection 
Management 

adv.RAIM was based on the knowledge obtained from RAIM, and is trained by 

DRL, using insights from multi-agent systems, along with other advanced methods 

such as curriculum- learning through Self-Play and PER, to accelerate training and 

model the complex dynamics of the environment to control autonomous vehicles 

at intersections. adv.RAIM introduced significant improvements over RAIM, such 

as: 

- The control network architecture was modified by including a recurrent 

Long Short-Term Memory (LSTM) module to analyze the influence of the 

other vehicles in front of the ego-vehicle and include it in the calculation of 
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the ego-vehicle's speed. In this way, all vehicles at the intersection could be 

taken into account simultaneously and an even more advanced control 

policy that takes all vehicles into account for decision making could be 

obtained. In this way, the constraint of always using the same number of 

vehicles (previously 32) was removed so that the number of input 

parameters to the neural network would match the number of neurons in 

the first layer. Thanks to the LSTM module, the characteristics of the 

vehicles were encoded in such a way as to obtain the conflicts between the 

ego-vehicle and the other vehicles. This module was called the state/conflict 

encoder module. 

- Secondly, the complexity of the scenarios, both training, and testing, was 

considerably increased, going from a maximum flow of 450 veh/h/lane to 

1200 veh/h/lane and from 2 lanes to 3 lanes per direction, increasing 

exponentially the complexity and allowing to maximize the advantages 

offered by DRL over traditional and other AIM techniques. 

- Finally, adv.RAIM was compared with more recently published algorithms, 

such as an intelligent traffic light control system (iREDVD) and a previously 

proposed AIM. 

As state variables for each vehicle, adv.RAIM used those listed in Table 6-5. 

Variables with a continuous range (such as position, speed, and angle) were coded 

by normalizing their values in the range of [-1, 1], and discrete variables (i.e., lane, 

track, tail) were coded using the one-shot encoder. 

TABLE 6-5.  Input Features and Meaning. (Table 1, p. 5, [379]). 

Variable Description 

Relative pos x Relative position to the center of the intersection on the x-axis 

Relative pos y Relative position to the center of the intersection on the y-axis 

Speed Vehicle speed 

Angle Vehicle orientation angle 

Lane Lane of approach (left lane, center lane, right lane) 

Way Way the vehicle will follow (right turn, straight path, left turn) 

Queue 
Intersection branch through which the vehicle is approaching 

(North, South, East, West) 

As in RAIM, TD3, PER and Curriculum Learning through Self-Play were used 

for controller optimization. The architecture of adv.RAIM can be seen in Figure 6-

7. 
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Figure 6-7.  New advanced RAIM (adv.RAIM) network. The LSTM Cell allows us to control 
a variable number of vehicles, obtaining the possible conflicts between the ego-vehicle and 
the rest of the vehicles at the output of the State/Conflict Encoder. The policy output is 
the speed that the ego-vehicle must follow in the next timestep. Note that there is only 
one LSTM cell that is iteratively fed with the features of each vehicle (14), starting with 
ego-vehicle’s state, and continuing with other vehicles’ state. The intermediate output (hx) 
was set to 256 parameters. (Figure 3, p. 6, [379]). 

 

The pseudocode for adv.RAIM inference can be seen in Algorithm 6-2. 

 Algorithm 6-2:  adv.RAIM 

1 # Reset the environment. 
2 for timestep 𝑡 ∈ {0,… ,𝑀𝑎𝑥𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑒} do: 

3  # Obtain the vehicles currently being simulated. 
4  𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 = 𝑠𝑖𝑚. 𝑔𝑒𝑡_𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠()  
5  # For each vehicle, the desired speed for the next timestep is obtained. 
6  # This loop is repeated for each vehicle in the intersection. 
7  # Clear 𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑟𝑎𝑚𝑠. 
8  for vehicle 𝑒𝑔𝑜_𝑣𝑒ℎ ∈ vehicles do: 

9   
# Obtain the params of 𝑒𝑔𝑜_𝑣𝑒ℎ (position, speed, lane, etc.) and append to 
𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑟𝑎𝑚𝑠. 

10   # Obtain the params of other vehicles. 
11   for vehicle 𝑣𝑒ℎ ∈ vehicles do: 
12    # Obtain the params of 𝑣𝑒ℎ ≠ 𝑒𝑔𝑜_𝑣𝑒ℎ and add to 𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑟𝑎𝑚𝑠. 
13   end for 

14   
# Obtain new speed of 𝑒𝑔𝑜_𝑣𝑒ℎ using 𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑟𝑎𝑚𝑠 and actor net of TD3 
and set 𝑛𝑒𝑤_𝑠𝑝𝑒𝑒𝑑. 

15   𝑛𝑒𝑤_𝑠𝑝𝑒𝑒𝑑 = 𝑎𝑐𝑡𝑜𝑟_𝑛𝑒𝑡(𝑖𝑛𝑝𝑢𝑡_𝑝𝑎𝑟𝑎𝑚𝑠)  
16   𝑠𝑖𝑚. 𝑠𝑒𝑡_𝑣𝑒ℎ_𝑠𝑝𝑒𝑒𝑑(𝑒𝑔𝑜_𝑣𝑒ℎ, 𝑛𝑒𝑤_𝑠𝑝𝑒𝑒𝑑)  
17  end for 
18 end for 
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6.4.3 Experimental setup 

SUMO was used as a simulator. A computer with a 16-core Intel processor and an 

Nvidia RTX 2080TI graphics card was used. adv.RAIM was implemented in Python 

3.7 using PyTorch 1.5.0 framework. The setup consisted of two scenarios, one for 

training and one for testing. 

Training scenario 

The training scenario consisted of an intersection composed of 4 branches (north, 

east, south, and west), where each branch had 3 lanes in each direction. In addition, 

right and left turns were allowed, as well as through the intersection. The 

representation of the simulated intersection can be seen in Figure 6-8. 

Following the methodology employed in the previous work, adv.RAIM was 

trained following learning with the curriculum through Self-Play. The conditions 

for increasing flow were to keep reward scores stable over the last 150 simulations. 

The metrics analyzed were average reward per vehicle, the number of collisions, 

and average time loss due to congestion per vehicle. The reward signal is identical 

to that of previous work. Each simulation had a simulated duration of 5 minutes, 

where in each simulation the flow was kept constant. In addition, to increase the 

number of states seen by adv.RAIM during training, in each simulation the random 

seed was changed, so the vehicles followed random routes in each simulation. A 

summary of the parameters used in the simulation can be seen in Table 6-6. 

 

 
Figure 6-8.  Simulated intersection with 4 approaches and 3 lanes/approach, where the 
movements go straight, turn right, and turn left are allowed. (Figure 4, p. 7, [379]). 
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TABLE 6-6.  Summary of simulation setup and RAIM parameters. (Table 2, p. 6, [379]). 

S
im

u
la

to
r 

Simulation timestep 0.25 segs 
Flow step 100 veh/hour 

Minimum flow 200 veh/hour 
Train duration 5 mins/simulation 
Test duration 720 mins/simulation 
Test scenario 4 branches, 3 lanes/way, and all ways. 

Control distance 100 meters 

R
A

IM
 

Batch size 128 
Gamma 0.99 

Tau 4 × 10-3 

Learning rate actor 1 × 10-5 
Learning rate critics 1 × 10-4 

Weigh decay 1 × 10-6 
Policy noise 0.2 

Policy Noise Clip 0.3 
Optimizer epochs 3 

TD3 update actor every 2 
PER Memory Size 220 

Testing scenario 

For the testing scenario, an intersection was simulated as in the training scenario 

(4 branches, 3 lanes per branch). In each simulation, 12 hours of traffic were 

simulated, following the vehicular flow indicated in Figure 6-9. As can be seen in 

the previous figure, the simulated flow was separated according to the traffic origin 

(vertical flow or horizontal flow), in addition, the multiple flow variations can be 

seen, presenting periods of low (200 veh/h/lane), medium (600 veh/h/lane) and 

high (1200 veh/h/lane) flow, along with symmetric and asymmetric traffic as well 

as slow and fast flow variations. Each simulation was performed 10 times, obtaining 

the mean values and standard deviation. The metrics analyzed were multiple, such 

as travel time, waiting time, and time loss due to intersection congestion, as well 

as pollution and fuel/energy consumption metrics (CO, CO2, HC, PMx, NOx, and 

fuel and electricity). The vehicle distribution included 35% diesel vehicles, 35% 

gasoline vehicles, and 30% electric vehicles. 

Using this scenario, the performance offered by adv.RAIM could be 

thoroughly tested and compared with that of other control algorithms. The 

algorithms with which adv.RAIM was compared were: traditional fixed-time traffic 

light (FT) control algorithms with different phase durations for each branch (10, 15, 

20, and 30 seconds), an advanced adaptive traffic light control algorithm (iREDVD 

[313]), an AIM algorithm previously proposed by Qian et al. [372] and the previous 

version of RAIM [398]. The performance of other metrics of interest is shown 

because the control policy found by adv.RAIM allowed to optimize them. 
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Figure 6-9.  Vehicle flow-rate per lane used in the testing scenario. Low = 200 
veh/hour/lane; Med = 600 veh/hour/lane; High = 1200 veh/hour./lane (Figure 5, p. 7, 
[379]). 

6.4.4 Results 

In this section the results obtained in the training scenario will be presented, 

accompanied by a detailed comparative analysis of the results of the testing 

scenario. 

Training scenario 

After the training process, the record of the analyzed metrics can be seen in Figure 

6-10. In Figure 6-10 a is the number of collisions metric, in Figure 6-10 b is the 

average reward metric per vehicle in each simulation, and finally, in Figure 6-10 c 

can be seen the average time loss per vehicle metric. In addition, in each of these 

metrics, the simulated flow metric (veh/hour) can be seen in red. It can be seen 

how this metric has been increasing as adv.RAIM was learning to control the 

vehicles, as well as that at the beginning the scenario faced by adv.RAIM was 

simpler than at the end, where more simulations were required to increase the 

simulated flow. The results shown show the moving average (blue line) of the 3 

runs, as well as the 90% confidence interval (blue shaded area). 

From the results obtained in the training scenario we can see that by means 

of curriculum learning through Self-Play and PER, the analyzed metrics offered 

high stability, showing outliers that broke the trend when there was a change in 

the simulated flow, but showing a fast convergence to stable values after a few 

simulations. Thus, adv.RAIM was able to handle a larger number of vehicles 

simultaneously and learns to deal with them to further optimize each metric. 

Looking at the number of collisions metric (Figure 6-10 a), the trend 

displayed shows a very robust trend, showing a clear understanding by adv.RAIM 

of the large negative reward of collisions from about simulation 750 onwards. 
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On the other hand, if we focus on the metric of average reward received per 

vehicle (Figure 6-10 b) we see a negative trend. At first instance this may seem a 

bad behavior, but if we analyze the evolution of the scenarios we see that this is 

because, as the number of simulated vehicles increases, the intersection is 

increasingly congested and vehicles can't circulate at a higher speed than when 

there is a lower flow, having to reduce their speed (on average) progressively and 

losing some time (the minimum) to maximize the average reward received by each 

vehicle. 

Finally, if we look at the time loss metric (Figure 6-10 c), we can see an 

increasing trend, but it occurs similarly to what happened with the reward metric. 

As the flow of vehicles increases, the number of simulated vehicles increases, and 

the average time loss per vehicle due to congestion increases. The adv.RAIM 

training, despite the techniques used, lasted 14 days. 

 
(a) 

 
(b) 

 
(c) 

Figure 6-10.  Training results. We plot the smoothed mean with an exponential moving 
average and 90% confidence interval across 3 seeds. The right vertical red axis and the 
curve in red show the simulated vehicular flow (veh/hour). The left vertical blue axis and 
the blue curve show each of the metrics studied: (a) Average number of collisions; (b) 
Average reward per vehicle; (c) Average Time Loss. (Figure 6, p. 7, [379]). 

Testing scenario 

After training, adv.RAIM was compared with other control algorithms in the test 

scenario. The results are presented in Table 6-7 (directly optimized metrics) and 

Table 6-8 (indirectly optimized metrics). 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 147 

If we focus on the traffic light control algorithms (FT and iREDVD), we can 

see that, for all the analyzed metrics, adv.RAIM showed its superiority in 

performance. More specifically, if we focus on the advanced iREDVD algorithm, 

adv.RAIM was able to reduce time loss by up to 95%, in addition to reducing travel 

time by up to 59%. On the other hand, indirectly, significant reductions in 

pollutant gas emissions (CO, CO2, HC, PMx, and NOx) and consumption (fuel and 

electricity) of up to 37%, 13%, 28%, 37%, 50%, 21%, and 27% respectively are 

observed. 

More interesting is if the performance obtained from adv.RAIM is compared 

with those of the AIM algorithm proposed by Qian et al. in [21]. The results 

obtained showed similar performance. However, the algorithm proposed by Qian 

et al. had a major disadvantage and that is that they had to know in advance the 

scheduling of all vehicles to obtain the optimal passing policy. In case there was a 

new vehicle, or it could not adjust to the speeds imposed by [21], the system had to 

recalculate from scratch all the passing priorities, with no possibility to readjust 

the policy. Consequently, this prevented it from being able to easily adapt to 

changing conditions in the environment, which is very common at intersections 

where cyclists, pedestrians, emergency vehicles, accidents, etc. may occur. In the 

case of adv.RAIM, this problem is avoided because it can be trained to take into 

account these occurrences and provide optimal solutions, considering all vehicles 

and actors (cyclists, pedestrians, emergency vehicles, etc.) in each time interval 

and obtain for each vehicle the optimal speed that guarantees the highest expected 

reward (eliminating collisions and minimizing time loss). With RAIM we can see 

that the performance is similar to adv.RAIM although slightly lower because not 

all simulated vehicles are considered simultaneously. 

 

TABLE 6-7.  Testing scenario results, metrics directly optimized. (Table 3, p. 8, [379]). 

Algorithm Travel Time (s) Waiting Time (s) Time loss (s) 

T
ra

ff
ic

 l
ig

h
t FT10 72.75 ± 7.44 30.91 ± 4.91 43.77 ± 9.88 

FT15 54.67 ± 8.11 17.59 ± 3.74 25.58 ± 6.12 

FT20 56.04 ± 6.91 19.02 ± 3.89 27.05 ± 7.91 

FT30 60.56 ± 7.92 23.56 ± 4.98 31.27 ± 8.89 

iREDVD [313] 43.23 ± 6.11 10.14 ± 3.33 18.64 ± 4.41 

Qian et al. [372] 32.49 ± 3.39 2.55 ± 0.83 4.87 ± 1.22 

RAIM [9] 31.44 ± 2.71 1.86 ± 0.94 3.08 ± 1.12 

adv.RAIM 29.88 ± 3.01 1.14 ± 0.71 2.16 ± 0.46 

For all metrics, the lower the better. No collisions were recorded. [avg. ± std. of 10 simulations]. 
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TABLE 6-8.  Testing scenario results, metrics indirectly optimized (Table 4, p. 8, [379]). 

Algorithm 
CO 

emiss. 
(g) 

CO2 
emiss. 

(g) 

HC 
emiss. 
(mg) 

PMx 
emiss. 
(mg) 

NOx 
emiss. 
(mg) 

Fuel 
cons. 
(ml) 

Elect. 
cons. 
(W) 

T
ra

ff
ic

 l
ig

h
t 

FT10 
1.58 ± 
0.28 

80.56 ± 
18.84 

9.78 ± 
2.47 

3.32 ± 
0.98 

240.13 ± 
55.12 

33.03 ± 
5.58 

32.57 ± 
4.55 

FT15 
1.04 ± 
0.31 

76.21 ± 
16.81 

7.88 ± 
2.88 

2.22 ± 
0.88 

18.56 ± 
53.34 

27.77 ± 
5.21 

32.08 ± 
4.15 

FT20 
1.27 ± 
0.24 

70.81 ± 
14.99 

8.08 ± 
2.32 

2.46 ± 
0.91 

189.49 ± 
51.66 

28.95 ± 
5.01 

31.54 ± 
2.94 

FT30 
1.38 ± 
0.33 

74.60 ± 
19.22 

8.69 ± 
2.12 

2.82 ± 
0.92 

211.44 ± 
50.22 

30.48 ± 
4.88 

31.74 ± 
2.71 

iREDVD 
[313] 

1.01 ± 
0.21 

70.70 ± 
20.21 

7.54 ± 
1.99 

2.21 ± 
0.89 

154.43 ± 
45.22 

27.21 ± 
4.64 

29.11 ± 
3.33 

Qian et al. 
[372] 

0.99 ± 
0.09 

70.44 ± 
16.55 

7.04 ± 
1.58 

2.18 ± 
0.66 

125.44 ± 
30.31 

26.84 ± 
3.12 

23.84 ± 
1.98 

RAIM [9] 
1.00 ± 
0.10 

70.08 ± 
13.47 

7.02 ± 
0.97 

2.11 ± 
0.47 

121.71 ± 
44.19 

26.42 ± 
4.71 

23.89 ± 
3.01 

adv.RAIM 
0.99 ± 
0.08 

69.84 ± 
12.01 

7.01 ± 
0.91 

2.07 ± 
0.43 

119.42 ± 
13.42 

25.99 ± 
4.01 

23.71 ± 
1.48 

For all metrics, the lower the better. No collisions were recorded. [avg. ± std. of 10 simulations]. 

6.4.5 Conclusions 

In this study, a significant improvement of an intersection vehicle control 

algorithm called adv.RAIM was presented, which has been based on RAIM for the 

development of this new version, adding important improvements to solve the 

problems presented by RAIM. The results have shown that adv.RAIM achieved 

notable results, overcoming the most important disadvantages of traditional AIM, 

managing to control autonomous vehicles in extremely challenging scenarios, and 

achieving outstanding results thanks to the coexistence of DRL techniques such as 

TD3, PER, and curriculum-based training techniques. Furthermore, by comparing 

adv.RAIM with traditional and advanced traffic-light based control techniques, 

was possible to evidence the benefits that an AIM trained by DRL can offer. 

6.5 Learning from Oracle Demonstrations – A new approach to 
develop Autonomous Intersection Management control 
algorithms based on Multi-Agent Deep Reinforcement Learning 

6.5.1 Introduction 

As we have seen in previous work, the development of advanced autonomous 

vehicle intersection control systems using deep reinforcement learning offers great 

advantages such as reduction of travel time, elimination of waiting times, reducing 

collisions, etc. However, they require extensive training so that, through trial and 

error, the AIM can find an advanced optimal policy that can perform in a wide 

variety of situations. This development may be feasible in simple scenarios, but 
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when the number of variables to consider increases: different types of vehicles, 

each with unique characteristics, pedestrians, bicyclists, emergency vehicles, 

multiple lanes, etc. the complexity of the policy to be learned increases 

enormously, and with it, the training time [399]. 

In the scientific literature, different solutions can be found to speed up 

learning. Such as Imitation Learning (IL) [400], Imitation from Observation (IfO) 

[401], or Learning from Demonstration (LfD) [402]. Each of them has its 

advantages and disadvantages, but the most promising is LfD, where there are 

several papers showing how LfD speeds up training in several tasks [402]–[404]. 

In LfD, there is an expert agent that indicates which action the training agent 

should perform for each state. Thus, from this demonstration provided by the 

expert agent (demonstration = {env_state, optimal_action}), the training agent can 

use supervised learning to optimize its policy. However, not all simulators and 

simulation scenarios have an expert from which to extract what action to perform 

(demonstration) in each possible state, like in traffic simulators used to develop 

new AIMs (e.g., SUMO). 

Therefore, in this research [405], a new approach was proposed that allowed 

an IL-trained agent to act as an expert agent and thus leverage the advantages 

offered by LfD. This new agent was called Oracle and hence this new training 

approach was called Learning from Oracle Demonstrations (LfOD). 

Thus, in environments where there is no expert, or is embedded/hidden in 

the programming of the simulator (as in traffic simulators), from which to extract 

demonstrations, an agent can be trained using IL to imitates the behavior of the 

hidden expert and act as an Oracle from which to extract demonstrations and train 

a new agent by means of DRL. 

LfOD was implemented on top of the TD3 DRL algorithm, incorporating 

significant changes to exploit Oracle most efficiently during training. Because of 

these changes in TD3, it was decided to call this new version of TD3, TD3fOD. 

6.5.2 Imitation Learning 

IL is a learning technique that emerged as an alternative to RL for agent training. 

In IL there is an expert agent from which are extracted demonstrations (state-

action tuples) of the desired behavior. These demonstrations are used to train a 

new agent by supervised learning, learning to “imitate” the behavior of the e pert 

agent. 

The main advantages of IL over RL are that it reduces training time and 

eliminates the problem of reward shaping, where in RL a reward signal had to be 

hand-designed to allow stable and consistent training. Within IL we can find 

several approaches: 
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Behavioral Cloning (BC) 

BC [400], [406], [407] exploits the demonstrations extracted from the expert to 

train an agent through SL and obtain a policy that clones the behavior of the expert 

in the observed states. This form of IL is the simplest and easiest to apply, 

presenting excellent results in tasks where the expert agent is able to explore the 

entire state-action space. However, in most tasks, BC can be problematic because 

the expert does not explore the entire state-action space, but only visits the states 

that have previously resulted from taking an optimal action. This problem leads to 

a situation where, when an agent trained using BC encounters a state never seen 

during SL due to the accumulation of errors, the agent's behavior can lead to 

dangerous situations from which it can never recover. This problem is known as 

compound errors [400] and an example of its behavior can be seen in Figure 6-11. 

In this figure, the optimal policy taught by the expert agent to navigate the circuit 

can be observed. The trained agent learns by IL means to mimic the behavior of 

the expert, and when it proceeds to make decisions, it may make a small error in 

each decision making. After a series of decisions, it will reach a state never seen 

during training that can lead to dangerous situations. In this example, the vehicle 

would collide with the outside of the circuit. 

 

 
Figure 6-11.  Compounding Errors example. (Figure 1, p. 3, [405]). 

 

Direct Policy Learning (DPL) via Interactive Demonstrator 

DPL [408] incorporates a training loop to the BC where the expert agent is asked 

what action it would have taken in the states visited by the learner agent, extracting 

the optimal demonstrations from the states visited by the learner agent. That is, 

DPL would start as a BC that collects the demonstrations of an expert agent. With 

these demonstrations, an agent would be trained by SL. This agent would roll out 

the trained policy and the visited states would be stored. Then, from the states 

visited by the previous agent, feedback is obtained from the expert, asking him 
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what actions he would have performed in these new states and storing these new 

demonstrations. These new demonstrations would be added to the rest of the 

expert's demonstrations and used to train a new learner agent using SL. The DPL 

training loop can be seen in Figure 6-12. Within this approach, there are several 

algorithms proposed, among which SEARN (Search-based Structured Prediction). 

[408], SMILe (Stochastic Mixing Iterative Learning) [409], and DAGGer (Data 

AGGregation) [400] stand out. Despite the simplicity of these approaches, as in the 

end, they are learning to mimic the behavior of an expert agent they will not be 

able to obtain a policy that allows them to improve that expert behavior. 

 

 
Figure 6-12.  The general Direct Policy Learning (DPL) algorithm main loop. (Figure 2, p. 
3, [405]). 

 

6.5.3 Learning from Demonstration 

Due to the problems presented by IL algorithms, a set of algorithms that take 

advantage of the demonstrations offered by experts to train a superior policy using 

RL was proposed. This type of algorithms was called LfD. Basically, LfD uses the 

BC-trained policy of an expert agent as a starting point. Then, using RL algorithms, 

it uses the pre-learned policy to discover a policy superior to the expert agent's 

policy by interacting with the environment, but without forgetting the pre-learned 

policy. 

One of the first proposals for LfD work was in the DeepMind paper Deep Q-

Learning from Demonstrations (DQfD) [402]. In this work, the authors were able 

to unify the strengths of IL together with RL in a very efficient way by employing 

the Deep Q-Network (DQN) algorithm. The results showed a great acceleration of 

training on discrete tasks such as Atari games, in addition to the fact that DQfD 

was able to find a superior policy compared to the expert policy. 

Following that, they transferred what they learned to the DDPG algorithm 

used for scenarios with agents in continuous space actions. Due to modifications 
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made in DDPG that ensured a stable transition between IL and RL, they named the 

new algorithm DDPGfD [403]. DDPGfD stored both the demonstrations obtained 

in the IL phase and the actions performed by the agent in a replay buffer 

indefinitely. The results obtained by DDPGfD showed a clear acceleration of the 

training, being able to reduce the number of simulations up to x4 compared to 

DDPG. 

However, DQfD and DDPGfD had the disadvantage that there could be a 

mismatch in the agent's internal parameters learned during the IL phase when the 

agent took control. This problem could lead to forgetting everything pre-learned 

during the IL phase. 

6.5.4 TD3 from Oracle Demonstration – TD3fOD 

In this paper, we proposed a new approach for the development of LfO algorithms 

using an oracle trained by BC. This Oracle would act as an expert from which to 

extract demonstrations to train an agent. To allow the use of the demonstrations 

offered by the Oracle and to guarantee a smooth training handover between IL and 

RL, several modifications had to be proposed in the RL algorithm used, which was 

TD3, which we will see in this section. Following the nomenclature used in 

previous work, we decided to denote this new approach Learning from Oracle 

Demonstration (LfOD), and the modification of the RL algorithm used (TD3) was 

denoted TD3fOD. 

TD3 is one of the most powerful and advanced off-policy model-free RL 

algorithms for continuous tasks. TD3 where several key improvements are added, 

specifically, Clipped Double-Q Learning, Target Policy Smoothing, and “Delayed” 

Policy Updates [388], [410]. As many articles have shown, TD3 offers fast 

convergence for complex tasks where continuous control is required [411], [412]. 

This is the reason why it was decided to implement the algorithm on TD3 and not 

on other algorithms such as SAC [413], PPO [57], or A3C [414]. 

For the training of the Oracle (from which we can extract new 

demonstrations and ask about what action to take in each state) we used BC on 

the experiences collected from the hidden expert of the simulator. To capture the 

experiences of the hidden expert what was done is to obtain the state of the actors 

in two consecutive time instants so that we could extract the actions that the 

hidden agent performed in the previous instant for each of the actors (e.g., for each 

vehicle, reduce, maintain, or increase its speed). The optimization of the Oracle 

parameters was performed using SL. 

The TD3 actor parameters (𝜃𝑎𝑐𝑡𝑜𝑟
𝜋 ) were updated using a soft_update 

approach (soft-copy of parameters) inspired by that employed by Mnih et al. in 

[47]. In this case, the weights of πθ network (𝜃𝑎𝑐𝑡𝑜𝑟
𝜋 ) were updated as shown in 
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Equation 6-2. As can be seen in that equation, the influence of the Oracle on the 

TD3 actor is controlled by the parameter 𝜏1. 

 
𝜃𝑎𝑐𝑡𝑜𝑟
𝜋 = 𝜏1  ×  𝜃𝑜𝑟𝑎𝑐𝑙𝑒

𝜋  +  (1 − 𝜏1)  × 𝜃𝑎𝑐𝑡𝑜𝑟
𝜋  

𝑤𝑖𝑡ℎ 0 < 𝜏1 < 1 
(6-2) 

Using the soft_update, the actor is forced to learn more slowly than the 

Oracle, improving the stability of the training. Furthermore, so that the influence 

of the Oracle on the actor is progressively reduced throughout the simulations, the 

parameter 𝜏1 followed the expression shown in Equation 6-3. The behavior 

throughout the simulations of 𝜏1can be seen in Figure 6-13. 

 𝜏1 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (−
𝑠𝑖𝑚 − 𝑡ℎ

𝑡ℎ/5
) (6-3) 

The parameter 𝑡ℎ in Equation 6-3 controlled the smoothness of the transition 

and the number of simulations from which learning by RL was considered more 

important than learning by Oracle via soft_update. This parameter 𝑡ℎ should be 

adjusted depending on the complexity of the scenario. 

As can be seen in Equations 6-2, 6-3, and Figure 6-113, at the beginning of the 

training (𝑠𝑖𝑚 <<  𝑡ℎ), the parameter 𝜏1has values close to 1. This implies that the 

parameters of πθ (𝜃𝑎𝑐𝑡𝑜𝑟
𝜋 ) will be very similar to the parameters of the Oracle. After 

several simulations, the influence of the Oracle on πθis progressively reduced, until 

reaching a simulation where 𝑠𝑖𝑚 >>  𝑡ℎ and 𝜏1has a value close to 0, which causes 

the Oracle term to cancel out, nullifying the changes in πθdue to the soft_update. 

In addition to the incorporation of Oracle in the training of the RL agent, the 

following modifications to the RL algorithm, TD3, had to be proposed: 

1. Modification of TD3 error equation so that the importance of the error 

produced by the RL actions increases progressively as the number of 

simulations performed increases. More specifically, Equation 6-4 is as 

follows. 

 ∇𝜃
1

ℬ
∑ 𝜏2𝑄𝜙1(𝑠, 𝜋𝜃(𝑠))

𝑠 ∈ ℬ

 (6-4) 

Where 𝜏2 modifies the importance of 𝑄𝜙1 (Q-values of critic Q1) on the 

update of πθ. 

𝜏2is defined by Equation 6-5 and its behavior throughout simulations can be 

seen in Figure 6-13. 

 𝜏2 =  1 − τ1 (6-5) 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 154 

2. Use of 2 replay buffers with PER. One replay buffer was used to store 

experiences extracted from Oracle (Imitation Buffer) and the other was 

used to store experiences performed using RL (RL Buffer). Although PER 

was designed to be used for RL, the original PER paper [53] indicates that it 

can also be used for SL, speeding up training. The size of both replay buffers 

was of fixed length, removing older experiences when new ones were 

obtained, and the replay buffer was full. The Oracle used the experiences 

stored in the Imitation Buffer for SL training. 

3. Finally, 𝛽 factor was added, which allowed the TD3 agent (𝜋θ) to control 

the agent spontaneously, during a timestep. This parameter indicated the 

probability that the control of the agents was performed by the TD3 agent 

instead of the simulator (hidden expert). This probability increased 

smoothly exponentially until finally, the TD3 agent had full control of all 

agents. Thanks to this parameter, it was possible to guarantee high stability 

at the beginning of the training and a gradual and smooth transition from 

BC to RL. In addition, it allowed Oracle to explore a wider set of states at 

the beginning of training since the action taken by 𝜋θ could be considered 

as "sticky actions", or noise actions, with all the benefits this can offer, and 

reducing compounding errors. 

TD3fOD algorithm is divided into Algorithm 6-3, Algorithm 6-4, and 

Algorithm 6-5. 

 

 
Figure 6-13.  Evolution of τ1 and 𝜏2 throughout the simulations in function of 𝑡ℎ parameter. 
(Figure 3, p. 6, [405]). 
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 Algorithm 6-3:  TD3fOD 

 Input: 𝑒𝑛𝑣 Environment; 𝜃𝑎𝑐𝑡𝑜𝑟
𝜋  initial actor policy parameters; 𝜃𝑎𝑐𝑡𝑜𝑟

𝜋′  initial actor 
policy target parameters. 

 Input: 𝜙1
𝑄

 initial Q1-function parameters; 𝜙1
𝑄′

 initial Q1-function target 
parameters. 

 Input: 𝜙2
𝑄

 initial Q2-function parameters; 𝜙2
𝑄′

 initial Q2-function target 
parameters. 

 Input: 𝜃𝑜𝑟𝑎𝑐𝑙𝑒
𝜋  initial Oracle policy parameters; 𝒟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 Imitation replay buffer; 

 𝒟𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 Reinforcement replay buffer; 𝑝 coeff. to expert decay; 
𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 number of simulations to pre-train actor, Q-functions, and 
Oracle; 𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑙𝑒𝑎𝑟𝑛_𝑒𝑣𝑒𝑟𝑦 every each timestep 𝑟𝑢𝑛 𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑢𝑙𝑒; 
𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑙𝑒𝑎𝑟𝑛_𝑒𝑣𝑒𝑟𝑦 every each timestep 𝑟𝑢𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑚𝑜𝑑𝑢𝑙𝑒; 

  
1 for simulation 𝑠𝑖𝑚 ∈ {1,… ,𝑁𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠} do: 
2  # run simulation(sim): 
3  𝛽 =  𝑝𝑠𝑖𝑚 − 𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 
4  for timestep 𝑡 ∈ {1,… ,𝑀𝑎𝑥𝑒𝑝𝑖𝑠𝑜𝑑𝑖𝑒} do: 

5   𝑒𝑥𝑝𝑒𝑟𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑇𝑟𝑢𝑒 if 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) < 𝛽 else 𝐹𝑎𝑙𝑠𝑒 
6   obtain state 𝑠𝑡  ∀ 𝑎𝑔𝑒𝑛𝑡 
7   if 𝑒𝑥𝑝𝑒𝑟𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 then: 
8    # Expert1 selects the actions 𝑎𝑡 ∀ 𝑎𝑔𝑒𝑛𝑡 
9   else: 
10    # Actor selects the actions 𝑎𝑡 ∀ 𝑎𝑔𝑒𝑛𝑡 
11    𝑎𝑡 = 𝜋𝜃(𝑠𝑡) 
12    𝑒𝑛𝑣. 𝑎𝑐𝑡𝑖𝑜𝑛𝑠(𝑎𝑡) 
13   end if 
14   # Get next state and reward ∀ 𝑎𝑔𝑒𝑛𝑡 
15   𝑟𝑡, 𝑑𝑡 , 𝑠𝑡+1 ← 𝑒𝑛𝑣. 𝑠𝑡𝑒𝑝() 
16   if 𝑒𝑥𝑝𝑒𝑟𝑡_𝑐𝑜𝑛𝑡𝑟𝑜𝑙 then: 
17    # Obtain 𝑎𝑡comparing 𝑠𝑡 and 𝑠𝑡+1 ∀ 𝑎𝑔𝑒𝑛𝑡 
18    # Store (𝑠𝑡 , 𝑎𝑡) 𝑖𝑛 𝒟

𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛  
19   end if 
20   # Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡, 𝑠𝑡+1, 𝑑𝑡) 𝑖𝑛 𝒟

𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 
21   if 𝑡 𝒎𝒐𝒅 𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑙𝑒𝑎𝑟𝑛_𝑒𝑣𝑒𝑟𝑦 =  0 then: 
22    𝑟𝑢𝑛 𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑢𝑙𝑒(𝑠𝑖𝑚) 
23   end if 
24   if 𝑡 𝒎𝒐𝒅 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑙𝑒𝑎𝑟𝑛_𝑒𝑣𝑒𝑟𝑦 =  0 then: 
25    𝑟𝑢𝑛 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑚𝑜𝑑𝑢𝑙𝑒(𝑠𝑖𝑚) 
26   end if 
27  end for 
28 end for 

1 We can’t ask to an expert to obtain the actions. 
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 Algorithm 6-4:  Imitation Module 

 # Run imitation module (sim): 
1 for epoch 𝑒 ∈ {1,… ,𝑁𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑒𝑝𝑜𝑐ℎ𝑠} do: 

2  for 𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 ℬ in 𝒟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 do: 
3   𝑎𝑐𝑡𝑖𝑜𝑛𝑠, 𝑠𝑡𝑎𝑡𝑒𝑠 = 𝑢𝑛𝑧𝑖𝑝(ℬ) 
4   𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑝𝑟𝑒𝑑 = 𝜋𝑜𝑟𝑎𝑐𝑙𝑒(𝑠𝑡𝑎𝑡𝑒𝑠) 
5   # Update oracle params (𝜃𝑜𝑟𝑎𝑐𝑙𝑒

𝜋 ) with one step of gradient descent. 
6  end for 
7 end for 
8 # 𝑠𝑜𝑓𝑡_𝑢𝑝𝑑𝑎𝑡𝑒(𝜋𝑜𝑟𝑎𝑐𝑙𝑒 , 𝜋𝜃, 𝜏1):  
9 𝜃𝑎𝑐𝑡𝑜𝑟

𝜋 = 𝜏1 · 𝜃𝑎𝑐𝑡𝑜𝑟
𝜋 + (1 − τ1 ) · 𝜃𝑜𝑟𝑎𝑐𝑙𝑒

𝜋  

 

 Algorithm 6-5:  TD3 Reinforcement Module 

 # Run reinforcement module (sim): 
1 for epoch 𝑒 ∈ {1,… ,𝑁𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑒𝑝𝑜𝑐ℎ𝑠} do: 

2  # Sample a 𝑚𝑖𝑛𝑖_𝑏𝑎𝑡𝑐ℎ ℬ from in 𝒟𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 
3  𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡  = 𝑢𝑛𝑧𝑖𝑝(ℬ) 
4  𝑎′𝑡 = (𝜋′𝜃(𝑠𝑡) + 𝜖). 𝑐𝑙𝑎𝑚𝑝(𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥)  
5  # Update Q-functions parameters 𝜙1

𝑄and 𝜙2
𝑄 as in TD3 

6  if  𝑒 𝒎𝒐𝒅 𝑢𝑝𝑑𝑎𝑡𝑒_𝑎𝑐𝑡𝑜𝑟_𝑒𝑣𝑒𝑟𝑦 =  0 then: 
7   τ2 =  1 − 𝜏1  
8   # Update actor policy with one step of gradient ascent with equation 4 and 

using 𝜏2 
9   # Update target networks as in TD3 and using 𝜏3 
10   # 𝑠𝑜𝑓𝑡_𝑢𝑝𝑑𝑎𝑡𝑒(𝜙1

𝑄 , 𝜙1
𝑄′ , τ3) 

11   # 𝑠𝑜𝑓𝑡_𝑢𝑝𝑑𝑎𝑡𝑒(𝜙2
𝑄 , 𝜙2

𝑄′ , τ3) 
12   # 𝑠𝑜𝑓𝑡_𝑢𝑝𝑑𝑎𝑡𝑒(𝜋𝜃,  𝜋′𝜃, τ2) 
13  end if 
14 end for 

6.5.5 Experimental setup 

Our approach to training agents from demonstrations extracted from an Oracle 

focused on environments and simulators where there is no agent (or it is hidden) 

from which to extract demonstrations. Such simulators are found, for example, in 

traffic simulators, where internally vehicles have a set of hand-designed rules that 

they comply with in order to follow imposed traffic rules. For this purpose, in this 

study, it was decided to use the SUMO traffic simulator. 

In addition, to provide robustness to the proposed algorithm, it was decided 

to train a new AIM by RL, using TD3fOD. Therefore, this new algorithm was named 

RAIM over TDF3fOD (RAIMfOD). For the design of RAIMfOD and its training, a 

computer with a 16-core Intel processor was used, along with an Nvidia RTX 

2080TI GPU. RAIMfOD was programmed with Python 3.7 and the DL framework 

Pytorch 1.5.0. 
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RAIM over TD3fOD (RAIMfOD) 

TD3fOD was used to train a new AIM system. Since RL was used to train the vehicle 

control policy, this algorithm was named RAIMfOD. This algorithm was based on 

previous work [379] that showed the benefits that RL algorithms could offer for the 

development of a new AIM, however, these systems required extensive training 

time. But by using the LfOD offered by TD3fOD, the development and research of 

these RL-based AIMs could be greatly accelerated. 

Training scenario 

The training scenario consisted of a 4-branch intersection with 3 lanes in each 

direction. Right turns, left turns, and straight ahead were allowed. Each simulation 

simulated 5 minutes of vehicular traffic with a constant flow of 1200 veh/hour. A 

representation of the simulated intersection can be seen in Figure 6-14. 

As a reward signal for the RL algorithm, a signal was designed in which each 

agent (vehicle) received: a +10 (strongly positive reward) when crossing the 

intersection, a -10 (strongly negative reward) when the vehicle collided with 

another vehicle, and -timestep every time step simulated to encourage them to 

cross the intersection as fast as possible. The design of this reward signal was 

intended to find a policy that would allow vehicles to cross the intersection as fast 

as possible (reducing time loss) but without colliding with other vehicles. The 

training was performed 3 times, modifying the random seed. A summary of the 

hyperparameters used for both the simulator and TD3fOD can be found in Table 

6-9. 

 
Figure 6-14.  Representation of simulated intersection with 4 approaches and 3 
lanes/approach, where the movements go straight, turn right, and turn left were allowed. 
(Figure 4, p. 8, [405]). 
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TABLE 6-9.  Hyperparameters used in simulator and TD3fOD. (Table 1, p. 9, [405]). 

S
im

u
la

to
r Simulation timestep 0.25 segs 

Flow 1200 veh/hour 
Train duration 5 mins/simulation 

Test scenario 4 branches, 3 lanes/way, and all ways. 

Control distance 100 meters 

R
A

IM
 

Batch size 64 

TD3 Gamma 0.99 

τ3 4×10-3 

Learning rate actor 1×10-5 

Learning rate oracle 1×10-4 

Learning rate critics 1×10-4 

Weigh decay 1×10-8 

Action Range [-1, 1] 

Policy Noise 0.15 

Policy Noise Clip 0.1 

𝑁𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑒𝑝𝑜𝑐ℎ𝑠 200 

TD3 update actor every 2 

𝒟𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 220 ≈ 1×106 

𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡_𝑙𝑒𝑎𝑟𝑛_𝑒𝑣𝑒𝑟𝑦 15 

𝑁𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 5 

𝒟𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 217 ≈ 1×105 

𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑙𝑒𝑎𝑟𝑛_𝑒𝑣𝑒𝑟𝑦 15 

𝑤𝑎𝑟𝑚𝑢𝑝_𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 100 

𝑝 0.995 

𝑡ℎ 250 

Testing scenario 

RAIMfOD and TD3fOD were tested against simulated traffic for 14 hours following 

the time distribution of the simulated flow shown in Figure 6-15. The test scenario 

differed from the training scenario in both simulated flow and duration. In this 

case, this scenario presented a flow distribution by sections that presented 

multiple variations from low flows (500 veh/h), medium flows (1000 veh/h), and 

high flows (2000 veh/h), as well as symmetric or asymmetric traffic flows with 

respect to the North/South (N/S) and West/East (W/E) origin branches. 

The intersection control algorithms with which RAIMfOD was compared 

were: No control, stop signal, fixed cycle time (FT) traffic light (with various 

durations studied: 30 s., 60 s. and 90 s.), an advanced traffic-light based control 

algorithm (iREDVD [313]) and the previous RAIM proposal [379]. 

The metrics studied to compare the performance of all algorithms were: 

travel time, waiting time, time loss due to congestion, and pollution and 

consumption metrics (CO, CO2, HC, PMx, NOx, and fuel and electricity). The 

distribution of vehicles used was as follows: 35% diesel cars, 35% gasoline cars, and 

30% electric cars. 
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Figure 6-15.  Flow test scenario distribution representation. (Figure 5, p. 9, [405]). 

6.5.6 Results 

This section will show the results obtained during the training of RAIMfOD in the 

training scenario, as well as the comparison of the performance offered with other 

control algorithms in the testing scenario. 

Training scenario 

The metrics analyzed in the training scenario were overall reward and time loss. 

Time loss was due to driving below the ideal speed at which the vehicle would 

travel if there were no intersection, sampled each simulated time step, and defined 

as shown in Equation 6-4. 

 Timeloss =  timestep ×  (1 – 
𝑠𝑝𝑒𝑒𝑑

𝑖𝑑𝑒𝑎_𝑠𝑝𝑒𝑒𝑑
) (6-4) 

The training results can be seen in Figure 6-16. Figure 6-16 a shows the 

average reward metric per simulation and Figure 6-16 b shows the lost time metric. 

In Figure 6-16, the high performance that TD3fOD was able to offer in several 

aspects can be seen. The first is the increase in training speedup that TD3fOD 

offers. If we compare RAIMfOD with the original RAIM it is evident that the 

training speedup is between x3-x4, reducing the number of simulations needed in 

that range to achieve similar or even better results. If time loss metrics are taken 

into account, RAIMfOD was able to reduce time loss to less than 20 seconds after 

200 simulations. However, the original RAIM required more than 1500 simulations 

to achieve the same, even allowing to obtain preliminary results much earlier, 

reducing the number of simulations by x7. With the reward metric, this same 

superior performance is observed, obtaining excellent results in 7 times fewer 

simulations. 

On the other hand, we can see that the variance of the results obtained with 

RAIMfOD is much lower than that of the original RAIM, indicating that the policy 
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learned during training was much more stable, performing more reasonable 

actions. In the metrics we can see differentiated the three phases of the TD3fOD 

training: 

1 Between simulation 0 and 100 yielded the pre-training stage and it can be 

seen that the results are noisy, indicating the filling of the Imitation and RL 

replay buffers. 

2 From simulation 100 to simulation 250, approximately, the pre-training 

stage ended and training with TD3fOD began. This start can be seen in the 

change in the trend of the metrics analyzed at the beginning of this stage. 

In this range of simulations, the smooth transition in “soft-copy” between 

Oracle learning and TD3 RL was taking place, with the simulator 

performing most of the actions and the TD3 actor acting as “sticky action”. 

3 From simulation 250, curves τ1 and τ2 intercepted and most of the actions 

were performed by TD3 actor, which allowed to discover a better control 

policy to further optimize the results. This behavior highlighted the 

excellent performance offered by LfOD, allowing to reach a policy that 

outperforms the one offered by the expert through a smoothed step from a 

policy pre-trained by an Oracle, to the policy learned by RL. 

 

 
(a) 

 

 
(b) 

Figure 6-16.  Training results: (a) Evolution of episode reward, the more, the better; (b) 
Time Loss evolution, the less, the better. RAIM with TD3fOD was able to learn a robust 
policy faster than the original RAIM. We plot the smoothed mean with an exponential 
moving average and 90% confidence interval across 3 seeds. (Figure 6, p. 10, [405]). 

 

 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 161 

Testing scenario 

The testing scenario allowed us to compare the performance obtained by 

RAIMfOD, compared to other control algorithms. In this way, we were able to 

demonstrate the capacity of generalization and adaptation to new scenarios that 

the policy learned by TD3fOD possessed. Thus, we demonstrated the advantages 

offered by RL and LfOD. The testing scenario was run 10 times, and then the 

average and std. were used to compare the performance. The results obtained are 

shown in Table 6-10. In this table it can be seen that RAIM with TD3fOD and 

original RAIM obtain very similar results, demonstrating that both algorithms find 

solutions with similar performance, but thanks to LfOD, RAIMfOD finds a policy 

much earlier, with a much lower variance of the results, as could be seen in Figure 

6-16. 

The results shown in Table 6-10 show a reduction in time loss between 95% 

and 86%, with waiting time reduction between 97% and 93%. This can be 

summarized as a reduction in travel time between 72% and 53%. Focusing now on 

the emission of pollutant gases, a significant improvement is achieved in all 

metrics, all of which can be reduced by more than 50%. Finally, considering the 

fuel and electricity consumption of vehicles, a reduction of between 29% and 5% 

is achieved for combustion vehicles, and between 34% and 24% for electric 

vehicles. 

The results demonstrated the enormous potential of LfOD, as well as the use 

of RL-based AIM systems for autonomous vehicle control. 

 

TABLE 6-10.  Testing scenario results. (Table 3, p. 7, [405]). 

Algorithm 

Travel 

Time 
(s) 

Waiting 

Time 
(s) 

Time 

loss 
(s) 

CO 

emiss. 
(g) 

CO2 

emiss. 
(g) 

HC 

emiss. 
(mg) 

PMx 

emiss. 
(mg) 

Nox 

emiss. 
(mg) 

Fuel 

cons. 
(ml) 

Elect. 

Cons. 
(W) 

T
ra

d
it

io
n
al

 

No 

control 

121.42 

± 11.41 

83.32 ± 

17.53 

91.44 ± 

23.96 

2.47 ± 

1.65 

111.78 

± 68.32 

13.97 ± 

7.65 

5.21 ± 

1.11 

375.87 ± 

51.54 

41.24 ± 

10.32 

33,97 ± 

3,21 

Stop 

Signal 

107.53 

± 8.94 

72.65 ± 

12.42 

78.15 ± 

19.85 

1.74 ± 

0.99 

81.70 ± 

32.44 

11.65 ± 

6.01 

3.52 ± 

0.99 

272.65 ± 

37.95 

35.33 ± 

8.99 

35,44 ± 

2,88 

TL30 
86.85 ± 

4.43 

50.07 ± 

15.21 

55.46 ± 

17.83 

1.08 ± 

0.64 

69.45 ± 

23.64 

7.32 ± 

3.23 

2.61 ± 

0.86 

194.99 ± 

31.43 

30.55 ± 

7.66 

32,39 ± 

2,97 

TL60 
81.69 ± 
4.87 

45.72 ± 
12.65 

50.07 ± 
12.32 

1.40 ± 
0.75 

82.82 ± 
33.55 

8.62 ± 
2.31 

2.85 ± 
0.89 

211.53 ± 
32.32 

33.96 ± 
7.32 

32,03 ± 
3,02 

TL90 
91.52 ± 

9.87 

52.69 ± 

16.98 

61.46 ± 

19.26 

1.33 ± 

0.83 

79.15 ± 

38.52 

8.76 ± 

2.78 

3.36 ± 

0.92 

231.53 ± 

37.45 

31.42 ± 

8.31 

36,64 ± 

3,04 

iREDVD 
72,06 ± 

6,75 

27.12 ± 

9.98 

32.25 ± 

15.23 

1.49 ± 

0.43 

81.34 ± 

23.42 

9.00 ± 

3.05 

3.18 ± 

0.67 

221.94 ± 

33.95 

35.60 ± 

9.85 

36.50 ± 

2.87 

RAIM 
36,91 ± 

9,86 

2.31 ± 

2.05 

6.21 ± 

3.22 

1.10 ± 

0.88 

65.52 ± 

33.88 ±  

7.55 ± 

2.03 

2.74 ± 

0.55 

124.48 ± 

24.92 

29.69 ± 

4.32 

26.40 ± 

2.66 
RAIM over 

TD3fOD 

33,24 ± 

3,21 

1.86 ± 

0.99 

4.21 ± 

1.21 

1.02 ± 

0.23 

52.54 ± 

10.21 

6.79 ± 

1.68 

2.47 ± 

0.21 

136.85 ± 

14.33 

28.88 ± 

1.27 

24.03 ± 

1.09 

           

Improvement           

Abs 
[-88.19, 

-38.82] 

[-81.46, 

-25.26] 

[-87.23, 

-28.04] 

[-1.45, 

-0.06] 

[-58.24, 

-16.91] 

[-7.18, 

-0.53] 

[-2.74, 

-0.14] 

[-239.02, 

-58.14] 

[-12.36, 

-1.67] 

[-12.61, 

-8.01] 

% 
[72.62, 

53.87] 

[97.77, 

93.14] 

[95.40, 

86.95] 

[58.70, 

5.56] 

[53.01, 

24.35] 

[51.40, 

7.24] 

[52.59, 

5.36] 

[63.59, 

29.82] 

[29.97, 

5.47] 

[34.42, 

24.98] 

The improvement shows the range between [best-case, worst-case]. It is shown as an absolute 
value (abs) in the corresponding units and percentage value (%). [avg. ± std. of 10 simulations]. 
For all metrics, the lower the better. TLXX means Traffic Light with total cycle duration XX segs. 
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6.5.7 Conclusions 

The eventual success of future autonomous vehicles will depend on advances in 

driving systems. RL has proven capable of outperforming other traditional vehicle 

control systems, however, RL systems require extensive training. LfD provides 

tools capable of finding control policies in a much more efficient manner. 

However, not all training environments have an expert from which to extract 

demonstrations. Therefore, in this paper, we propose the use of an Oracle trained 

by IL that can be used to extract demonstrations and thus teach from a 

demonstration to an agent by RL. This original approach allows leveraging the use 

of LfD in environments where there is no expert to get feedback from. In this way, 

LfD can be used to train an agent in a much faster way, able to obtain a superior 

policy than the expert could offer and with a low variance in the results. 

The algorithm modified in this study to leverage the demonstrations offered 

by the Oracle was TD3, and following the nomenclature used in the previous 

algorithms proposed for LfD, it was named TD3 from Oracle Demonstrations 

(TD3fOD). The modifications made in TD3 were: i) incorporation of an Oracle 

trained by IL from the states extracted from the simulator, ii) inclusion of several 

parameters for a smooth and progressive transition between LfOD and RL, and iii) 

use of two repetition buffers, one for the demonstrations to train the Oracle and 

another for the RL, in addition to the use of PER to speed up learning. 

TD3fOD was implemented in the SUMO traffic simulator to accelerate the 

learning of an autonomous vehicle control system at traffic intersections, i.e., an 

AIM. The only AIM utilizing RL we know was RAIM [379], and for this reason, this 

algorithm was used over TD3fOD (RAIM over TD3fOD, RAIMfOD). 

The results obtained in the training scenario showed that TD3fOD achieved 

significantly faster learning compared to TD3, allowing to find quicker control 

policy, speeding up the training between x3 and x4. In addition, the policy found 

outperformed the one offered by Oracle (hidden expert policy) and offered a 

significantly lower variance, allowing more robust results to be obtained. 

When looking now at the RAIM over TD3fOD, in the testing scenario, it can 

be noted that the RAIM over TD3fOD allows obtaining results that even improve 

those obtained by the RAIM, improving in all metrics, and obtaining a lower 

variance. These results highlight the advantages offered by LfOD. RAIM over 

TD3fOD allows a reduction of waiting time between 97% and 93%, allowing a 

reduction of up to 50% in the emission of polluting gases, when compared to other 

traditional vehicle control techniques such as traffic lights, as well as other 

advanced traffic lights techniques such as iREDVD. Finally, regarding fuel 

consumption, combustion vehicles reduce their fuel consumption by up to 29% 

and electric vehicles by up to 34%. 
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6.6 AIM5LA: A Latency-Aware Deep Reinforcement Learning-Based 
Autonomous Intersection Management system for 5G 
Communication Networks 

6.6.1 Introduction 

Having developed the framework on which the control systems of connected 

autonomous vehicles would rely, this research developed a mechanism capable of 

considering the latency of 5G communication systems in AIMs. Due to the lack of 

works studying the impact that the communication network can have on the 

decentralized control of CAVs by AIMs, it was decided to investigate a novel 

latency-aware DRL-based AIM for the 5G communication network, which was 

named AIM5LA [415]. 

AIM5LA was the first AIM to take into account the latency inherent in the 5G 

communications network to achieve a robust and resilient multi-agent control 

policy using deep reinforcement learning. In addition to taking into account the 

experienced latency history, AIM5LA predicted the future latency behavior of each 

vehicle to provide enhanced security and improve traffic flow. 

Within the related literature, the most similar articles are [416]–[419], where 

the work done by Zheng et al. in [417] stands out. In this study, the authors 

presented an AIM that was able to consider the latency of the network they used 

for vehicle communication. This AIM was based on a set of strict rules and the 

results showed that when the traffic was medium-high (> 360 veh/h), or there was 

asymmetric traffic, the results obtained by the proposed AIM were worse than 

when working with traffic lights. Other interesting works are shown in[418], [419]. 

In this case, another system capable of considering the latency of the wireless 

network used for vehicle communication is proposed. In this work, the authors 

designed an AIM based on FCFS as a heuristic to select the passing priority. 

However, both AIMs were based on fixed control rules that did not allow adapting 

the control policy, nor continuous learning. Moreover, the proposed systems were 

only tested in scenarios where the traffic density was extremely low (< 300 veh/h). 

None of the works found work with advanced mobile wireless communication 

networks, such as 5G, but use WiFi or Bluetooth networks. 

It is clear that, so far, work on AIMs has focused on improving vehicular flow 

as well as reducing wasted time, but very few have considered the influence of 

latency inherent in the wireless communication systems used to communicate 

CAVs and AIMs. Therefore, we believe that addressing the study of latency in AIMs 

using advanced multi-agent DRL-based approaches could offer a great advantage 

over other techniques. Specifically, in this study, AIM5LA was able to learn 

autonomously without the need of any control rule and be able to obtain advanced 

control techniques that could offer high security and the possibility to learn from 
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the environment under control to perfectly adapt its behavior to the conditions 

and properties. 

To the best of our knowledge, this was the first latency-aware AIM trained 

entirely by deep reinforcement learning. By latency-aware, I mean that AIM5LA 

was able to learn a control policy through DRL that was able to cope with constant 

changes in communication latencies and thus internally model the behavior of 

CAVs as a function of their latency and adapt the control of these CAVs to avoid 

collisions. 

By taking communication latencies into account, AIM5LA prevents an 

unexpected delay in communication from causing a CAV to receive a command 

later than desired, leading to unexpected situations, including collisions. 

A representation of an AIM can be seen in Figure 6-17. Note that AIM refers 

to the control algorithms of the CAVs and IM to the node in charge of the 

communication between the CAVs and the AIM. 

 

 
Figure 6-17.  Example of autonomous intersection management (AIM). The Intersection 
Manager (IM) communicates with the Connected Autonomous Vehicles (CAVs) through 
a wireless communication network and guides them on the action to be taken by each 
CAV. The AIM runs inside the IM. (Figure 1, p. 2, [415]). 
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6.6.2 AIM5LA 

AIM5LA is a major improvement over its predecessor adv.RAIM [379]. In this case, 

it includes the following improvements and modifications with respect to 

adv.RAIM: 

1. Included the previous latency experienced by the ego-vehicle to be 

controlled in the previous interval. 

2. Used a novel latency prediction module that predicts the latency 

experienced by the ego-vehicle during the next control interval, based on a 

Transformer deep neural network and the history of latencies experienced, 

as well as the number of AVs to be controlled simultaneously. 

3. An LSTM coding network was used to consider the latency experienced by 

other VAs at the intersection. 

4. Finally, the set of messages, the time intervals of each message, as well as 

the communication protocol to implement AIM5LA were proposed. 

Once these modifications were included, the architecture of the AIM5LA 

controller was as shown in Figure 6-18. 

As can be seen in Figure 6-18, AIM5LA includes a latency prediction module 

composed of a Transformer-based network [420] (referred to as "Deep 

Transformer" in Figure 6-18). This module is responsible for predicting the latency 

that the ego-vehicle would experience in the next time interval based on the history 

of latencies experienced by that vehicle and the number of AVs at the intersection 

(as we will see later, the number of AVs with a 5G communication module affects 

the latency). 

On the other hand, there is the latency encoder module, composed of a 

stacked LSTM network. This network handles encoding the previous latencies of 

the other vehicles, in order to take into account these behaviors during the ego-

vehicle control. 

Finally, the message exchange protocol necessary for the operation of 

AIM5LA is proposed. By means of this message exchange protocol, AIM5LA can 

calculate the latency existing in the communication channel with each of the 

CAVs. All calculations and times are based on the adv.RAIM control interval that, 

every 250 ms, updates the action to be performed by each vehicle. This protocol 

includes the following messages: 
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Figure 6-18.  AIM5LA architecture with latency forecaster module based on Deep 
Transformer model and Latency encoder based on Stacked LSTM network. (Figure 2, p. 4, 
[415]). 

Probe: 

The probe message is sent by the IM at each intersection and contains information 

related to the IM (communication characteristics, geographical location, etc.) and 

the timestamp used to estimate the communication channel latency. This 

timestamp is the internal clock time of the IM before the message is sent. This 

message is periodically transmitted during the broadcast period for safe 

management without saturating the communication channel. Based on the control 

intervals of other works [368], [398], and adv.RAIM [379] development experience, 

the corresponding period was 250 ms. This means updating the vehicle's state 

(speed, acceleration, route, etc.) every 250 ms (4 times per second). As we saw in 

the previous study, reducing the update time (for example, 100 ms) increased the 

operating load and limited the system's real-time operation. On the other hand, if 

the update period is long (for example, 500 ms), the time elapsed between the two 
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updates is too long and there is a control error, and the security of the system is 

compromised. 

When each vehicle receives a probe message, it checks that its geographical 

location and route match the managed IM and responds to that message with a 

request message. This periodicity allows all CAVs to be managed consistently and 

individually in a sequential manner, as well as secure and fast management, 

without saturating the processing or communication channel. 

Request: 

The CAVs send these messages to the IM to indicate that they want to be controlled 

at the next control interval (250ms). The CAV waits a random time t to send the 

request message. This random time t is used to reduce the possibility of message 

overlap when attempting to access multiple vehicles to 5G URLLC channel 

resources and to exclude this overlap from the latency calculation. After a series of 

preliminary tests in the Simu5G simulator [421], we found that the optimal value 

of the random time t corresponds to a continuous uniform distribution with a 

minimum value of 0 ms and a maximum value of 50 ms. This reduces the possibility 

of overlap with other CAVs, while allowing all control requests to be processed in 

real-time. 

The request message contains the vehicle identifier, along with the expected 

random time t to send the control request message, which is appended to the 

resulting IM control message. In addition, it contains the internal parameters 

required for coordinated control. These are geographic location (x, y), speed, 

acceleration, traffic lanes (left, center, right), routes of interest (crossing, left turn, 

right turn), vehicle type, physical characteristics (width, length, weight), technical 

characteristics (maximum speed, maximum acceleration, etc.). 

This message can be used to calculate the latency of the wireless channel. 

When the IM receives a request message from a CAV, it must compare the 

timestamp contained in the message with the internal timestamp to calculate the 

latency along the entire IM-CAV-IM path. In addition, the calculated latency 

history allows evaluating the latency behavior as well as the jitter. Lastly, the 

capture time of the internal parameters (position, speed, road, etc.) of each vehicle 

is excluded from the link latency calculation thanks to the random time t foreseen 

for sending the request message. 

Action: 

This message is sent to each CAV managed by the IM and indicates the action to 

be taken at that time until the next control interval. This message may include 

speed, acceleration, steering position, geographic route to follow, speed and 

acceleration profile, and more. The calculation of this action takes into account the 
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possible latencies of the wireless communication channel and the effect of other 

CAVs at the intersection. In this case, the AIM5LA indicates the ego-vehicle driving 

speed in the following control intervals. 

The message exchange diagram is shown in Figure 6-19. The time allotted to 

listen to the request messages is 100 milliseconds. This value takes into account the 

maximum of 50 ms expected to respond to the probe message and the possible 

latency in higher saturation scenarios scenario [421], [422]. In order not to miss the 

request, the upper limit was set to 100 ms. In this figure, from the point of view of 

the AIM, after sending the probe message (at time T1), enough time is given to reply 

to the CAVs (t_V1, t_V2, and t_V3) taking into account the latency and random 

time t. 

Therefore, AIM can calculate the average latency 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑖+1
𝑉𝑥  of the vehicle 

𝑉𝑥 for the next time interval 𝑇𝑖+1 as shown in Equation 6-5. Where 𝑇_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑥 is 

the timestamp at which the request message is received from vehicle 𝑉𝑥; 𝑡𝑉𝑥 is the 

random time 𝑡 that vehicle 𝑉𝑥 has waited to send the request message; and 𝑇𝑖 is 

the timestamp at which the AIM sent the probe message. 

 

 
Figure 6-19.  Proposed message diagram for AIM5LA. In this example, we need to control 
three vehicles. Probe messages are broadcast messages. (Figure 3, p. 5, [415]). 

 

 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑇𝑖+1
𝑉𝑥 =

𝑇_𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑉𝑥  −  𝑡𝑉𝑥 − 𝑇𝑖
2

 (6-5) 
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From that point on, the AIM will start processing the request to get the best 

possible actions that the CAVs should perform during the next control interval. It 

keeps it up to date with all other sources of information, such as cameras, people 

counters, noise sensors, etc. Up to 75 ms are allocated for this stage. This time is 

based on the time required to perform the inference of the DL models employed, 

as well as the remaining time of the self-imposed control period (250 ms – 100 ms 

of the probe+request messages). Due to the use of concurrent computing, 

knowledge distillation, and half-precision operations, the actual drawing time is 

expected to be much shorter than at this time. 

Finally, the actions to be taken in the next time interval are sent to each CAV. 

This operation lasts up to 75 ms. This is the remaining time of the control interval 

period (250 ms control interval – 100 ms of probe+request – 75 ms of processing). 

Then the process starts again, but this time T2 (= T1 + 250 ms [control interval]). 

6.6.3 Experimental Setup 

In this section, we will see the testbed developed, as well as the different 

experiments performed. 

Testbed 

To evaluate the performance of AIM5LA and the proposed message protocol, 

several experiments were designed. The first experiment was used to optimize the 

latency prediction module in a simple urban scenario using the Simu5G 5G 

simulator [421]. 

Then, a complex urban scenario used to train AIM5LA using DRL was 

designed. In this way, AIM5LA was able to find an advanced control policy that 

took into account the latency of wireless communication. 

Finally, a third experiment was designed to show the performance of AIM5LA 

in a different urban scenario, never seen by the algorithm during the training 

phase. This experiment aimed to demonstrate that AIM5LA found a robust control 

policy, despite facing unknown traffic and latency situations. 

AIM5LA employs DRL, in addition to other advanced techniques and 

algorithms such as TD3 [388], PER [53], and curriculum learning [389] to accelerate 

training and maximize the learned knowledge, to find the control policy that 

allows it to control CAVs safely. 

The 5G simulator Simu5G 1.1.0 [421] was used to simulate communication 

channels and message exchange protocols with OMNeT++ 5.6.2 [306] and INET 

4.2.2 [307]. Simu5G is an OMNeT++ library for fully evaluating the performance of 

5G networks. The 5G mobile protocol is a well-designed and studied protocol with 

the expected ultra-low latency (1 ms.), so it was decided to investigate the latency. 
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SUMO 1.8.0 was used together with TraCI for vehicle behavior simulation and 

control. 

Python 3.8.10 and PyTorch 1.9.0 [349] and CUDA [423] along with the DRL 

framework were used to develop AIM5LA, using an Intel 8-core/16-thread 

processor (i7-11700k) as hardware. Nvidia RTX 3080 graphics card. 

Experiments 

First, we optimized the latency prediction module in Experiment #1. This 

experiment consisted of a simple two-lane, traffic light-controlled intersection 

with a 60-second cycle time, and an incremental number of vehicles. By varying 

the number of vehicles, we were able to analyze latency as a function of the number 

of 5G devices [421], [422]. 1, 4, 16, 16, 16, 64, 128, and 256 vehicles were simulated in 

each run. The simulations were run 10 times, and in each run, the vehicles took 

random routes (turn right, go straight, or turn left). The communication latency 

between the vehicles (nrCar in Simu5g) and the 5G base station (gNodeB in 

Simu5g) was measured, obtaining the average latency and the standard deviation. 

The gNodeB was located at the intersection edge, at 20 meters height. To 

compute the latency, the above message exchange protocol was implemented in 

Omnet++, in which the gNodeB periodically (every 250ms) sent the probe message 

which, when received by the CAVs, was randomly responded with a request 

message after waiting a random time t. As shown in the previous section, the 

random time t followed a uniform distribution with a minimum value of 0 ms and 

a maximum value of 50 ms. Each simulation ran for 300 seconds, the first 250 

seconds of the simulation were used as the training dataset and the last 50 seconds 

were used as the test dataset, splitting the dataset 83%/17%. 

The latency prediction module is composed of a transformer-based network 

(specialized for time series or text analysis) as well as 3 fully connected layers (FC) 

DNN with 64, 16, and 1 neurons each. The transformer network considers h 

historical latencies (h in Figure 6-20) to predict the expected latency in the next 

timestep. This value of historical latencies was optimized during the experiments. 

Furthermore, since the latency may depend on the number of CAVs (5G devices) 

at the intersection, this parameter was concatenated with the expected future 

latency predicted by the transformer network and used as input to the FC DNN. 

The representation of the predictor architecture is shown in Figure 6-20. The 

results of this optimization can be seen in the next section. 
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Figure 6-20.  The latency prediction module architecture consisted of a transformer 
network and three fully connected layers. The input size of the transformer network 
depended on the size of the considered window (h), which determined how many previous 
latencies were considered for prediction. The output was combined with the variable 
number of simulated (controlled) vehicles and the results were fed into the FC DNN. 
(Figure 4, p. 6, [415]). 

Experiment #2 was developed to optimize the AIM5LA control algorithm 

using DRL. This scenario included an intersection with AIM responsible for 

controlling the CAVs through the intersection. The scenario was composed of four 

branches (north, south, east, and west) with a length of 200 meters, three lanes per 

direction, and the possibility of left turn, straight ahead, or right turn. The CAVs 

requested AIM control at a distance of 100 meters from the intersection. A 

representation of the simulated scenario is shown in Figure 6-17. To obtain 

different situations challenging the control algorithm, the flow diagram of the 

simulation is shown in Figure 6-21 a. It shows the number of simulated vehicles per 

lane per simulated hour for the North (N), South (S), West (W), and East (E) 

branches. On the opposite branches (NS and WE), the flow is symmetrical. The 

reward function is defined in adv.RAIM [379]. We performed three optimization 

runs and the results showed the moving average of the mean and the standard 

deviation. 

Finally, Experiment #3 included a Manhattan grid consisting of 100 

intersections (10 × 10) to demonstrate the performance of AIM5LA. Each 

intersection had a separate AIM controlling the vehicles passing through it. The 

intersections were 250 meters apart and the configuration is similar to that of 

training Experiment #2 (4 branches, 3 lanes, left, straight, and right allowed). In 

addition, to account for unique situations, other flow behaviors were modeled as 

shown in Figure 6-21 b. This scenario allowed demonstrating the capabilities of 

AIM5LA in a situation never seen before. A depiction of the simulated scenario can 

be found in Figure 6-22. 
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(a) 

 
(b) 

Figure 6-21.  Vehicle flow rate per branch: (a) Experiment #2; (b) Experiment #3. (Figure 
6, p. 7, [415]). 

 

 
Figure 6-22.  Simulated topology for Experiment #3: 10×10 Manhattan network with 250 
meters between each intersection. (Figure 5, p. 7, [415]). 

SUMO provides a complete set of metrics after each simulation. The metrics 

analyzed include time loss due to congested intersections, number of collisions, 

average waiting time, and various pollutant gas metrics (CO2, PMx), as well as fuel 

and electricity consumption. Although some of the metrics shown are not directly 

optimized during training, they are indirectly optimized through the overall 

optimization process. 

The performance of AIM5LA was compared with that of other AIM 

algorithms such as adv.RAIM [379], the one published by Andert et al. [418], and 

two preliminary versions of AIM5LA: using only the latency of the ego-vehicle at 

the previous time point (denoted AIM5LA_v0.1); and AIM5LA_v0.1 + the latency 
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prediction module (denoted AIM5LA_v0.2). It was also compared with the results 

obtained with traffic light-based control techniques; in particular, fixed time 

control (FX) systems with different cycle lengths (30, 60, and 90 seconds) and 

advanced intelligent traffic light control technology (iREDVD) [313]. A fixed traffic 

signal system assigns a fixed green time to each branch of an intersection where 

the right-of-way (green light) is applied. This priority passes through all branches 

with a fixed cycle time. 

6.6.4 Results 

In this section, the results are shown and discussed. 

Experiment #1 – Forecast module optimization 

After running Experiment #1, Figure 6-23 shows the mean latency value and its 

standard deviation as a function of the number of simulated vehicles. These results 

show that the latency value is highly dependent on the number of vehicles, and if 

we compare the scenario of 1 vehicle with the scenario with 256 vehicles simulated 

simultaneously, the latency value can increase up to a factor of 10. This increase in 

latency can be due to many factors such as: saturation of the communication 

channel, reduction of the available bandwidth, overlapping of requests with other 

devices, etc. A summary of the results can also be found in Table 6-11. 
 

TABLE 6-11.  Results of Experiment #1. (Table 2, p. 7, [415]). 

Number of vehicles Average latency STD latency 

1 1.51 0.48 
4 2.43 0.61 

16 4.85 1.05 
64 6.48 1.93 
128 10.24 1.95 
256 15.63 2.12 

 

 
Figure 6-23.  Latency vs Number of vehicles in Experiment #1. Plots the mean and standard 
deviation values for each group (1, 4, 16, 64, 128, 128, 256 simultaneous vehicles). (Figure 7, 
p. 7, [415]). 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 174 

The latency temporary evolution for a random vehicle in each of the 

simulated scenarios can be seen in Figure 6-24. From this figure, the dependence 

of the number of AVs on the experienced latency can be observed. Furthermore, 

one can see that the more devices simulated at the same time, the higher the 

variance of the latency (~jitter). 

After simulating the behavior of the CAVs and obtaining the observed 

latency, we had a dataset that was employed to train the latency prediction 

module. To split the dataset, the first 250 seconds of latency were used as the 

training dataset, and the last 50 seconds were used as the validation dataset. Figure 

6-25 shows the latency behavior for one vehicle in the 4-vehicle scenario, as well 

as the division of the dataset into training (< Message #1000, blue line) and test (>= 

Message #1000, red line). 
 

 
Figure 6-24.  Time evolution of latency for a random vehicle in each simulation group. The 
legend shows the number of vehicles simulated at the same time. (Figure 8, p. 7, [415]). 

 

 
Figure 6-25.  Example of dataset division for a vehicle in the scenario of 4 simultaneous 
vehicles; Up to latency sample (#Message) 1000 was used to comprise the training dataset, 
blue line. From latency sample (#Message) 1000 was used for the validation dataset, red 
line. (Figure 9, p. 8, [415]). 
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The training and testing results can be found in Figure 6-26. It has plotted 

the root mean square error (RMSE) metric [43] as a function of the historical 

latency window size (h in Figure 6-20) used in the transformer-based module. 

Additionally, are shown both when the number of vehicles parameter (w/ nvehs) 

was considered and when it was not considered (w/o nvehs) as an input parameter 

to the FC DNN of the latency forecasting module. 

From these results shown in Figure 6-26, it can be extracted that the optimal 

historical latency window size (h) was 10 samples since they presented the smallest 

RMSE with the smallest window size. Therefore, for the latency prediction module, 

10 previous samples were considered for latency prediction at the next time instant, 

as well as the number of simultaneous vehicles. With this configuration, the mean 

value and standard deviation in terms of RMSE were 0.4551 ± 0.0264 in the training 

set and 0.3702 ± 0.0301 in the validation set. 

To visually illustrate what these results mean, in Figure 6-27 we depict the 

behavior of the predictor module during both the training and validation phases. 

These results were notably accurate, being able to strongly predict the latency 

value in both the training and validation datasets. Figure 6-27 presents the result 

for the 4-vehicle scenario (Figure 6-27 a) and the 128-vehicle scenario (Figure 6-27 

b). 

 
Figure 6-26.  RSME of the latency forecasting module for the training and validation 
datasets as a function of the size of the historical latency window considered (h). The 
results are presented with the variable vehicle number (w/ nvehs) and without it (w/o 
nvehs) as input parameters in the latency prediction module. (Figure 10, p. 8, [415]). 
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(a) 

 
(b) 

Figure 6-27.  Training and validation of latency forecast module. RMSE: 0.4551 ± 0.0264 / 
0.3702 ± 0.0301 (training / validation). (a) 4 vehicles scenario; (b) 128 vehicles scenario. 
(Figure 11, p. 7, [415]). 

 

Experiment #2 – Training AIM5LA 

After training the latency predictor module, in Experiment #2, AIM5LA was trained 

using DRL, employing the message exchange protocol described previously. Figure 

6-28 shows the evolution of the metrics analyzed during training: reward (Figure 

6-28 a), time loss (Figure 6-28 b), and number of collisions (Figure 6-28 c). 

Depicted are the mean (solid line) and standard deviation (shaded area) of the 

three runs. The shown plots have been smoothed using a 100-sample moving 

average for the sake of clarity. 

The training results reveal the superior performance of AIM5LA, which was 

able to eliminate the number of collisions from about simulation 106 onwards. After 

eliminating collisions (the most penalizing factor for it in the reward function), 

AIM5LA fine optimizes the control strategy and adjusts the control of the CAVs to 

reduce the time loss. This behavior can be seen in the reward metric, which showed 

a significant improvement as the number of collisions decreased, and after 

removing crashes, the reward continued to increase, albeit to a lesser extent. The 

AIM5LA optimization required 21 days (~500 hours) of simulation and training, 

run 3 times using an 8-core/16-thread Intel processor (i7-11700k) and an Nvidia 

RTX 3080 graphics card. 
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(a) 

 
(b) 

 
(c) 

Figure 6-28.  Results of AIM5LA training. Measurements show the mean (solid line) and 
standard deviation (shaded area) of the three runs. (a) Average episode reward; (b) Time 
loss; (c) Number of collisions. (Figure 12, p. 9, [415]). 

Experiment #3 – Benchmarking AIM5LA 

Lastly, in Experiment #3, the trained AIM5LA was benchmarked against other AIM 

and traffic-light based protocols. The results are shown in Table 6-12. 

AIM5LA obtained outstanding results, as it is the only AIM protocol that 

reduced collisions in the testing scenario. When considering other metrics such as 

lost time, waiting time, contamination, or fuel consumption, AIM5LA achieved 

similar performance to other AIM methods such as Andert et al. [418] or, for 

example, RAIM [379]. However, keep in mind that the performance provided by 

AIM5LA is constrained by conflict resolution, so achieving similar results adds 

significant value to our work. 

Furthermore, when we compare AIM5LA with AIM5LA v0.1 (which only takes 

into account the last latency of the ego-vehicle), it is clear that AIM5LA_v0.1 fails 

to resolve some conflicts due to the channel instability in its latency behavior, and 

the influence of other CAVs. Finally, compared to AIM5LA_v0.2 (i.e. AIM5LA_v0.1 

plus the latency prediction module), the results improve considerably, however, 

there are still some conflicts that it is not able to deal with. 
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Overall, AIM5LA performs excellently in all the measures analyzed, reducing 

the time loss by 92.25% or the waiting time by more than 99.52% compared to 

other traditional traffic light (FX) algorithms. When comparing AIM5LA with 

other advanced traffic light control methods (iREDVD [42]), the results showed 

that AIM5LA was able to significantly reduce all metrics, such as time loss (84.5%), 

waiting time (99.2%), fuel consumption (35.6%) or gas emission pollution (48.5%). 

Finally, comparing the performance of AIM5LA with other AIM methods 

such as adv.RAIM and Andert et al. we can conclude that the performance of our 

proposal is similar to these methods, although AIM5LA stands out when 

comparing the number of collisions, being the only one able to eliminate them. 

It should be noted that in the original work where adv.RAIM was proposed, 

no conflicts occurred due to the non-existence of communication latencies, as this 

was not taken into account when setting up the simulation. However, when testing 

its operation in a more realistic 5G scenario, it was observed that latent collisions 

existed (see Table 6-12), indicating the importance of this factor. 

 

TABLE 6-12.  Testing scenario results. (Table 3, p. 10, [415]). 

Algorithm 
 

Time Loss 
(s) 

Collisions 
 

Waiting Time 
(s) 

CO2 emiss. 
(g) 

PMx emiss. 
(mg) 

Fuel cons. 
(ml) 

Elect. cons. 
(W) 

FX30 79.6 ± 8.9 0 ± 0 61.3 ± 7.9 101.7 ± 15.1 78.4 ± 8.5 391.1 ± 64.5 103.4 ± 11.5 

FX60 70.1 ± 11.4 0 ± 0 50.7 ± 6.1 89.6 ± 9.8 66.9 ± 7.2 333.7 ± 42.6 99.7 ± 9.6 

FX90 72.5 ± 7.4 0 ± 0 55.6 ± 7.0 95.8 ± 8.4 72.5 ± 7.8 351.5 ± 39.9 101.8 ± 9.8 

iREDVD [313] 34.9 ± 3.3 0 ± 0 32.2 ± 4.4 53.4 ± 3.2 39.7 ± 6.1 205.2 ± 13.1 66.2 ± 4.4 

adv.RAIM [379] 5.1 ± 1.2 49.9 ± 9.8 0.3 ± 0.1 25.4 ± 2.6 18.9 ± 2.8 124.4 ± 12.3 33.7 ± 3.8 

Andert et al. [418] 4.9 ± 1.1 27.1 ± 3.1 0.2 ± 0.1 26.9 ± 2.3 17.5 ± 1.9 118.9 ± 18.7 31.6 ± 3.3 

AIM5LA_v0.1 4.1 ± 1.4 32.1 ± 4.9 0.2 ± 0.1 26.1 ± 1.2 17.8 ± 1.9 119.1 ± 15.2 30.2 ± 3.2 

AIM5LA_v0.2 4.8 ± 1.9 3.2 ± 2.6 0.3 ± 0.1 26.9 ± 1.4 18.4 ± 1.8 126.4 ± 18.4 32.3 ± 2.9 

AIM5LA 5.4 ± 1.2 0 ± 0 0.3 ± 0.1 27.5 ± 1.9 19.2 ± 2.1 131.8 ± 17.4 34.2 ± 3.6 

 

6.6.5 Conclusions 

Urban environments are challenging environments where Connected 

Autonomous Vehicles (CAVs) are concerned. In particular, intersections are very 

complex scenarios, as CAVs face the challenge of crossing several different traffic 

flows, with different actors and multiple situations. There are multiple approaches 

to try to solve this problem, such as the use of path planning algorithms or 

hierarchy-based control, however, one approach that is gaining attention within 

the scientific community is Autonomous Intersection Management (AIM). AIMs 

can control all the CAVs crossing an intersection, centralizing the control in an 

intersection manager (IM), which is a great advantage over other approaches, since 

it allows centralizing all the knowledge and taking actions jointly, allowing 

optimizing different metrics jointly. However, most AIMs presented to date ignore 
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the latency that exists in the wireless communication networks used to 

communicate CAVs with IMs. Due to the latency inherent in the 5G 

communication network, AIMs that are capable of modeling the latency of the 

wireless network are needed to improve the control of CAVs, achieving a robust 

and fault-tolerant control policy. 

To address this challenge, this paper presents a new latency-aware deep 

reinforcement learning-based AIM, called AIM5LA, for 5G wireless 

communication network. AIM5LA is a unique system that employs deep 

reinforcement learning, capable of modeling the communication delay between 

CAVs and the IM, forecasting the latency for each CAV using a Transformer-based 

deep neural network, as well as considering all CAVs simultaneously, creating an 

effective adaptive control policy, achieving seamless and resilient multi-agent 

control. 

AIM5LA demonstrates impressive results across a wide range of metrics and 

different scenarios when is compared with other AIM [418] as well as other 

advanced traffic light-based control techniques such as iREDVD [313]. The results 

show that, unlike other AIM methods, AIM5LA can eliminate accidents. 

Comparing AIM5LA with traditional traffic light-based control methods, AIM5LA 

can reduce time loss by 92% and waiting time by more than 99%. In addition, 

AIM5LA is able to reduce lost time by 84% compared to advanced adaptive traffic 

light control methods, such as iREDVD, and achieve significant reductions in other 

metrics such as waiting time (99%) and fuel consumption (35%) or pollutant 

emission (48%). 

6.7 6G Communications Network Framework in the context of 
Edge-Decentralized Cooperative Autonomous Driving Systems 

6.7.1 Introduction 

Because of the potential benefits of cooperative autonomous driving systems, such 

as AIM, and the unstoppable development of 5G/6G communication systems, a 

paper proposing a framework for solving the current problem of orchestrating 

cooperative control of autonomous vehicles using the future sixth-generation (6G) 

mobile communication network was proposed [424]. 

To this end, we suggested the group of specialized components that the 

future 6G network should integrate into its architecture to accelerate the 

development of decentralized cooperative control systems at the edge for 

Connected Autonomous Vehicles (CAVs). These systems make use of AI 

techniques and specialized AI hardware at different levels of the 6G 

communication architecture to guarantee the correct operation of the system, as 

well as its security and continuous and distributed training. This framework 
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enables the agile development of new Advanced Driving Assistance Systems 

(ADAS) and Cooperative-ADAS (C-ADAS) based on 6G and AI, as well as providing 

an efficient way to address the challenges and requirements that these new 

applications may require. 

Within the literature related to research on 6G, connected autonomous 

vehicles, and other 6G framework proposals, the following works can be 

highlighted. The University of Oulu in Finland published a white paper on 6G in 

2019 [425] identifying key drivers, research requirements, and challenges. The 

authors outline that 6G is expected to exceed terabits per second (> 1 Tbps) with 

extremely high-reliability communication (> 99.99999%) [426], ultra-low latency 

(< 0.1 ms), high-resolution location accuracy (at the centimeter level), and high-

precision synchronization between devices (within 1 μs). 

W. Saad et al. pointed out in [427] that the most important technologies for 

the effective development of 6G are THz-band communications, integrated 

terrestrial-space networks (ISTN), the use of reconfigurable intelligent surface 

(RIS), visible light communication (VLC), AI and distributed computing. On the 

other hand, the 6G roadmap proposed by Letaief et al. [428] highlights the 

importance of the use of AI in most of the communication network architecture 

levels, showing the importance that AI has had in recent years within the 

telecommunications field. 

On the other hand, Yang et al. highlighted in [429] the requirements of 6G 

and highlighted the most promising technologies that will enable the evolution 

from 5G to 6G, such as the inclusion of AI and big, the use of mmWave and THz 

band communications, and ultrafast multiband transmission. Finally, in [430], the 

authors suggested several use cases that could be offered by the future 6G 

communications network, such as augmented reality, holographic telepresence, 

and autonomous mobility, based on the use of several of the advances proposed in 

[429]. 

AI will undoubtedly be part of the future 6G communications network at 

multiple levels of the architecture, thanks to the huge advances in recent years in 

deep learning, along with natural language processing and reinforcement learning. 

These advances will enable the performance of all the existing core network 

functions, but also significantly extend the value of these networks by enabling 

completely new use cases such as cooperative vehicle control, tactile Internet, 

augmented reality, or holographic telepresence. In addition, these advances will 

make it possible to design solutions to problems that remain open today, such as 

latency prediction, intelligent noise reduction, or super-accurate positioning and 

synchronization. 
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Regarding the proposed work on the development of connected autonomous 

vehicles (CAVs) [431] using the 6G network, Zhifeng Yuan et al. evaluated in [432] 

the efficiency of a full-duplex 6G V2V communication. The results obtained using 

a simulator showed that the communication method they employed used 20% of 

the time-frequency resources. 

On the other hand, [433] demonstrated the feasibility of using 6G for 

cooperative autonomous driving by studying the performance of vehicular 

networks over 6G. In addition, he showed an AI-based approach for cooperative 

autonomous driving. 

Finally, examines the evolving technology of key enabling technologies for 

CAV deployment and explores two particular research directions: 6G for CAVs and 

CAVs for 6G. The former explores how various key enablers of 6G, such as 

terahertz, cell-free communication, edge intelligence, and artificial intelligence, 

can be used to provide key services for CAVs. The latter explores how CAVs can 

contribute to the efficient deployment and operation of future 6G systems. The 

authors argue that the marriage of CAVs and 6G networks will bring very 

important innovations to both. Therefore, joint designation of both could be a very 

effective means of achieving significant advances in either area, suggesting that 

this should be taken into account in the initial design phase of both. These 

outcomes highlight the significance of combining 6G and CAV. 

6.7.2 Key Enabling Technologies 

This section describes the basic technologies that enable the development and 

implementation of intelligent autonomous control systems for CAVs via 6G. 

Connected Autonomous Vehicles (CAVs) 

In recent years, many promising applications of CAVs have been proposed that can 

significantly improve road safety and efficiency, as well as traffic congestion and 

energy consumption, such as cooperative platooning [434], intelligent parking 

search [355], cooperative autonomous intersections [398], and cooperative multi-

source sensing [435]. 6G networks for CAV control must meet the strict 

requirements to ensure vehicle safety and connectivity already desired for 6G. 

These rigorous requirements lead to important challenges that require fresh ideas 

and new communication technologies to surpass the existing ones. 

Many studies have been conducted in recent years on Vehicle-to-Anything 

(V2X) communication paradigms, either through Direct Short-Range 

Communication (DSRC) or cellular V2X (C-V2X) [436]. The debate between these 

two communication standards currently opens up a wide range of research that 

could significantly improve both standards and address their drawbacks. While 

DSRC is the main communication standard in vehicular networks, using the IEEE 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 182 

802.11p standard, cellular networks are a functional and more accessible solution 

on the market to provide ubiquitous and reliable connectivity in urban and rural 

regions. 

DSRC employs the IEEE 802.11p standard, an evolution of the IEEE 802.11 

standard that enables wireless access in vehicular environments, emphasizing the 

PHY and MAC layers. Nevertheless, IEEE 802.11p has significant limitations 

because of random channel access, coupled with the absence of QoS guarantees, 

the potential for infinite latency on the physical channel, or the need for large-scale 

deployments of IEEE 802.11p infrastructure [437]. 

Numerous investigations have indicated that C-V2X exhibits better 

capabilities with respect to the capacity, coverage, range, scalability, number of 

supported devices, and security [438]–[441]. Moreover, C-V2X utilizes the full 

range of C-V2X services (V2V, V2I, V2P, V2N) with end-to-end application support, 

which can reduce the overall cost due to the availability of infrastructure already 

present [442]. In addition, there is significant experience in cellular technologies 

among automotive manufacturers, which will facilitate the integration of C-V2X 

chips in vehicles. Approximately 210 million vehicles worldwide are currently 

equipped with mobile communications, 81 million of which are 4G, with an 

estimated average annual growth of 30% [443]. 

Finally, one of the strengths of C-V2X is its support for multiple operating 

modes, which can cover a wide spectrum of scenarios. C-V2X can operate through 

the Uu interface using cellular networks, or through the PC5 interface for direct 

communication between C-V2X devices in the unlicensed 5.9 GHz band. The Uu 

interface is intended for V2N (Vehicle-to-Network) communication, while the PC5 

interface covers V2V, V2I, and V2P communication, which does not require a 

cellular-type infrastructure. These two interfaces can be seen in Figure 6-29. 

Based on these observations, in our opinion, 6G cellular solutions can play a 

vital role in the development of CAVs due to their multiple advantages, such as 

pre-existing infrastructure, high reliability, low latency, multiple communication 

modes, high security, and high performance. 
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Figure 6-29.  Diagram of C-V2X communication types. RSU ≡ Road-Side Unit (traffic 
lights, signals, etc.). (Figure 2, p. 5, [424]). 

 

Edge Intelligence 

The use of CAV in mobile network scenarios can benefit from Edge Intelligence 

(EI). EI enables the outsourcing of many vehicle tasks that can be processed in 

powerful edge servers co-located to the base stations to which they are connected. 

EI is conceptualized as a method of collecting, analyzing, and processing data 

as close as possible to where it is collected on the network. . Real-time applications 

are ensured by analyzing data directly at the edge via EI. With this approach, EI 

can be defined more conveniently as a "decentralized cloud". EI enables a 

technological solution that meets the physical world at the edge, creating exciting 

new possibilities in technologies such as the IoT. 

With EI, all data collected by multiple sensors in a CAV can be transmitted 

and stored directly to the Edge Nodes (ENs) of the mobile network. CAVs can 

leverage the benefits of ENs' performance in terms of speed, low latency, and high 

throughput to provide powerful and optimized analysis of collected data for real-

time multi-agent applications. As a result, vehicles using EI can achieve higher 

inference accuracy, lower latency, and better collective intelligence because they 

can interact with other vehicles connected to the same EN without the need for a 

communication link. This allows them to react in emergency situations or facilitate 

platooning to improve traffic flow, among other applications. 

Autonomous Unmanned Aerial Vehicles (AUAV) 

Unmanned Aerial Vehicles (UAVs) combined with AI could play a key role in the 

implementation and development of autonomous vehicles controlled 

cooperatively through 6G. In view of the accelerated global development of UAV 

technology, the extensive availability of high-speed and low-cost network 

infrastructure, and the diverse UAV platforms with different characteristics and 

functionalities [124], UAVs can be ideal platforms to support a wide range of 6G 

network applications. 
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There are many areas where UAVs could be applied, such as in support of 

areas where more coverage is needed or where the overhead of an area needs to be 

reduced (e.g., a higher density of network-connected devices). Furthermore, these 

UAVs could perform their role as intelligent edge nodes, alleviating the overhead 

of terrestrial base stations or offering additional facilities. Beyond that, focused on 

cooperative autonomous driving of autonomous vehicles, UAVs could help create 

real-time, high-resolution three-dimensional maps of the area they control or help 

control, collecting images, depth maps, environmental data, noise pollution, etc. 

The possibilities for UAVs in future 6G communication networks are 

unlimited and combined with improvements in UAV autonomy and increased 

UAV intelligence, the future of Autonomous UAVs (AUAVs) supporting 

communication networks in a cooperative, intelligent and proactive manner offers 

unlimited possibilities. 

6.7.3 Connected Autonomous Vehicles Framework over 6G 

This section presents the proposed framework to promote the development of 

intelligent autonomous control system applications for Connected Autonomous 

Vehicles (CAVs) on 6G. 

Autonomous Vehicles (AV) 

To develop cooperative autonomous driving with 6G, vehicles should be able to 

recognize and understand their environment and their own state (position, speed, 

route, load, etc.), communicate their perceptions, respond to coordinated external 

commands and provide information, and ensure the safety of passengers and other 

vehicles. 

In order to comprehend the environment, vehicles must be equipped with 

sophisticated sensors that provide high resolution and enhanced awareness of the 

environment, e.g., on-board cameras, RADAR, LIDAR, IMU (inertial measurement 

unit), IR/ultrasonic sensors, GPS, GALILEO, GLONASS, etc. The cameras shall 

have a high resolution covering a 360° field of view to provide a detailed view of 

the current state of the entire environment. LIDAR sensors will be able to "see" in 

emergency situations, low light, glare, etc., and measure short distances with high 

accuracy. RADAR will be able to measure long distances with high accuracy and 

range. Ultrasonic/infrared sensors can be used to detect very close objects. Finally, 

the use of multiple tracking systems, such as GPS, GALILEO, and GLONASS, will 

reduce tracking errors to a few centimeters and ensure a high degree of tracking 

reliability, which is extremely important to avoid accidents due to position errors. 

These sensors enable the vehicle to recognize its environment and react to 

external factors. For example, if an object is suddenly detected in front of the 

vehicle, the emergency steering system must automatically steer the vehicle away 
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from the obstacle to soften the impact or, if unavoidable, mitigate the 

consequences (airbag activation, emergency braking, emergency lighting, door 

unlocking, etc.). 

One of the most important features of 6G cooperative autonomous driving is 

the ability to detect and react to other vehicles or road users (such as pedestrians 

or bicyclists) in advance. AUAVs can track other road users via cameras, 6G cellular 

signals, or pedestrian-like triggers (activated by signals at traffic control points, 

such as traffic lights). It can then immediately alert the vehicle when the user's 

path may cross, and the vehicle can take this into account as if it were a cooperative 

autonomous control system. 

Therefore, besides the sensors, CAVs need a 6G communication module. This 

module will be responsible for sending and receiving information from the 6G 

network. In this case, the focus is on URLLC. In addition, this module can use 

network slicing to leverage eMBB use cases to transmit or receive video streams or 

other high-bandwidth-intensive applications. The data collected by all these 

sensors are sent to the nearest base station (usually a PicoCell base station), which 

forwards it to an iNB (intelligent-NodeB), referred to as the Vehicle Edge Node 

(VEN), located in the Vehicle Local Edge Cloud (VLEC) with higher processing 

capacity. 

For further privacy and security protection, data collected by cameras and 

sensors can be preprocessed in the vehicle to remove personal or sensitive data 

[444]. It is our belief that the vehicle has some processing capability in 

emergencies. However, to reduce vehicle energy consumption, the devices 

performing actions are disabled and only activated when no control information is 

received. When these actions are executed locally, they are locally optimal because 

they do not take into account other non-connected vehicles in their surroundings. 

Vehicle Edge Computing (VEC) and Vehicle Edge Nodes (VEN) 

Taking Mobile Edge Computing (MEC) for 5G as a reference, we propose Vehicle 

Edge Nodes (VENs) for 6G and autonomous driving, which form the Vehicle Edge 

Cloud (VEC) and are responsible for cooperative decision making for autonomous 

driving, as close as possible to the vehicle to reduce control latency and improve 

safety. Thus, VECs become Intelligent Edge Nodes (iENs) responsible for 

cooperative control of autonomous driving vehicles. In addition to 6G 

communication base stations, iENs must have specialized AI hardware (neural 

processors, GPUs, TPUs, FPGAs, ASICs, etc.) to tune and infer neural networks, as 

well as specialized databases to store the local experience of the CAVs connected 

to them, so that the autonomous driving of vehicles can be coordinated based on 

the real-time data received from the vehicles connected to each VEN. This specific 

hardware is expected to be used in the 6G network. 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 6:  Interoperability of Connected Autonomous Vehicles and ITS 

 

Antonio Guillén Pérez 2022  Page 186 

The most important data to be processed in a VEN is the data from the 

vehicles connected to each VEN, i.e., processing information from the nearest 

vehicles and controlling them. In this way, cooperative intelligence is ensured by 

combining information from multiple vehicles in the same VEN and considering 

only those vehicles that can interact with each other based on their proximity to 

the VEN (through attention mechanisms, clustering, reinforcement learning, etc.), 

ensuring that each vehicle and user is related to the cooperative control of other 

vehicles. 

One of the most challenging issues in developing efficient VEN-based 

solutions is how to deal with different users and different types of vehicle 

applications while leveraging collective intelligence. We believe that there can be 

special intelligence mechanisms that share the workload among existing VENs so 

that the focus is only on the vehicles operated by each VEC. In addition, VENs 

could use mechanisms such as network slicing to parallelize the various 

cooperative control applications they perform for vehicles. 

PicoCells 

The layer below the VECs is the communication PicoCells, which are designed for 

Massive-URLLC (mURLLC). This greatly reduces latency and improves mobile 

network coverage. In addition to traditional terrestrial PicoCells, this can include 

AUAVs and Low Earth Orbit (LEO) satellites, CAVs (with PC5 interfaces), and IoT 

devices, sensors, or nodes on the public road, such as traffic lights, streetlights, 

signs, etc. 

One of the new use cases planned for 6G will be mURLLC. This new use case 

will be an elegant convergence of URLLC and mMTC use cases and presents a 

trade-off between reliability, latency, power consumption, cost, and scalability, 

which in turn will require significant changes in network design and key 

performance indicators (KPIs) to be achieved. Thus, with mURLLC, it is possible 

to deploy high-density, low-cost devices that have very low power consumption (as 

in the case of mMTC) but meet very stringent requirements (KPI defined by 

mURLLC use case) in terms of communication, latency, packet loss, etc., which 

makes several new applications possible. Since these PicoCells do not need to 

process the information, but only forward it, they are characterized by low power 

consumption, low processing load, and low cost, which makes it possible to deploy 

them in large numbers in large cities. 

Vehicle Local Edge Cloud (VLEC) 

The group of VENs would be called the Vehicle Local Edge Cloud (VLEC). Located 

at the edge of the cloud, the VLEC would be part of the VEC and would consist of 

distributed AI between the individual VENs that comprise each VLEC. This 

distributed AI would allow ad-hoc deployment of additional VENs when needed, 
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as it is scalable and can adapt to the needs of each region, for instance by deploying 

new AUAVs to cover a specific area in case of a possible traffic overload. Thanks to 

intelligent clustering algorithms, predictive algorithms, etc., the number of VENs 

composing each VLEC can vary according to demand, allowing cooperative control 

algorithms to improve long-term trip planning and reduce congestion, travel time, 

etc. For example, the VENs on a large avenue in a city can form a VLEC. 

For cooperative vehicle control, VENs would be responsible for creating a 

shared multidimensional map of the environment they control in real-time, 

combining data from all vehicles and all data sources collected locally. Here "local" 

means that each VEN will process data from the nearest vehicle (to which it is 

connected) and share it with other VENs in the same VLEC. In addition, each VEN 

will have a local experiences database. From these local experiences, the system 

will be able to fine-tune the existing cooperative vehicle control systems to each 

geographic area, since not all intersections, roads, crossroads, junctions, detours, 

etc. are identical. In addition to fine-tuning the control algorithm, VENs will 

supervise the inference and control of the nearest vehicle. To do this, the state that 

each vehicle should have at the next interval is inferred using a local joint map. 

Central Vehicular Cloud (CVC) 

At the apex of our proposed framework is the Central Vehicular Cloud (CVC). This 

CVC would perform global-scale full training for different intelligent vehicle 

control systems, utilizing the experiences gathered by the VENs locally. In other 

words, the CVC will use a global experience database (local vehicle status together 

with a global map) to optimize each intelligent control system. Hence, insights 

gained from experience can be used optimally, resulting in a highly intelligent 

system that leverages big data. 

This CVC may consist of a single cloud or may be distributed nationwide. We 

believe that as distributed intelligence continues to advance, there should be 

multiple CVCs across the country that can learn faster, acquire more knowledge, 

and ensure resilience through the use of distributed learning (e.g., federated 

learning). 

Consequently, this CVC would include: large processing servers with AI-

specific hardware; a database to store local experiences, virtual maps, etc.; another 

database to store the internal parameters of the neural network that models each 

intelligent vehicle control system; communication systems; security systems; load 

balancing; etc. 

Multidimensional Virtual Maps 

High-definition multidimensional virtual maps (i.e., the information can come 

from multiple sensors of different nature: RADAR, LIDAR, ultrasound, cameras, 
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etc.) as a crucial task, since the accuracy of these maps, would offer high 

performance, precision, granularity, and enormous safety to the different 

cooperative vehicular control systems. If the environment to be controlled is 

virtually represented, the control task becomes down to learning the physics of the 

different vehicles and virtually emulating them for optimal control. This physics 

knowledge can be done straightforwardly using deep learning and reinforcement 

learning techniques. 

These maps could be created and used in a hierarchical way, where the higher 

we are in the architectural hierarchy, the more global the map will be, and the 

lower we are in the hierarchy, the more accurate, granular, and detailed the map 

will be. Thus, in the CVC the global map of the entire vehicle network could be 

used throughout the training and optimization process. Meanwhile, in the VENs 

there would be a very detailed local map of the regions they control that will be 

used to fine-tune cooperative control systems as well as vehicle inference. 

6.7.4 Use Case 

In this section we will explain the workflow of the proposed 6G framework, which 

bases its operation on three main components: ultra-low latency communications, 

high-reliability communications, and intelligent systems, capable of training and 

inferring the different artificial intelligence algorithms. 

The entire development of the framework has been focused on prioritizing 

and promoting the highest possible fluidity and safety, as the control system can 

be very large and complex, having to maximize the functionality of each individual 

intelligent system (cooperative vehicle control, route planning, intelligent parking 

management, and search, platooning, etc.). Therefore, we consider it very 

important that data processing and response be as fast as possible, with the highest 

level of security allowed. 

In order to provide a better overview of the workflow in the proposed 

framework, in this section, we will show the complete process from data capture 

by vehicles, data collection at the VENs, overall training of the intelligent control 

systems performed by the CVCs, fine-tuning of each model in the VENs, and 

inference and sending the control information to the vehicles through PicoCells. 

Data acquisition and forwarding to VECs 

Data acquisition would be carried out by CAVs and some PicoCells containing 

sensors such as cameras, noise sensors, pollution sensors, etc. This information 

would be sent to the nearest PicoCell, which would collect all the information 

coming from all nearby users and eliminate redundant information. With the use 

of PicoCells, latency and the sending of non-relevant information to higher nodes 

in the network could be minimized, as well as high reliability and coverage. 
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After gathering the data and eliminating redundant information, the 

PicoCells send the information to the VENs using the most reliable and fastest 

communication technology (terahertz, visible light communication (VLC), or fiber 

optics). Once the VENs have collected the data, they send it to the VLC for global 

training of the control systems. The forwarding of this information is not as critical 

as the previous one, so this forwarding could be done at the mark, periodically, or 

in packets. 

The experiences collected (status of each vehicle + sensors) by each VEN are 

stored locally in a local experience database for later use during fine-tuning. 

Global training 

Using the experiences collected by the VECs, which could be stored locally, or 

distributed among all existing CVC servers, the CVCs would globally train the 

different AI systems in charge of vehicle control (autonomous intersection control, 

autonomous vehicle control, etc.) using AI, DL, RL, distributed learning, etc. 

Moreover, given the advances in distributed learning (such as federated learning), 

the training of multiple CVCs would be very efficient and scalable. For this global 

training, the experiences collected at the global level would be used to generate a 

global map with a low level of detail to train the different intelligent systems 

efficiently and safely. 

It is important to note that once the intelligent systems are trained, a copy of 

the internal parameters modeling the different advanced control systems would be 

saved in a specialized database so that the LECs can perform a fine-tuning based 

on the global optimization performed in the CVC. 

Local Fine-Tuning 

The fine-tuning procedure is performed by each LEC for each of the control 

systems. For this purpose, each LEC would have dedicated hardware for this 

process. The procedure would consist of each LEC loading the parameters of each 

of the control systems stored in the CVC database, and from the experiences 

collected locally, a high-definition local map would be created, with a high level of 

detail. Then, each of the control algorithms would perform a fine-tuning process, 

limiting the changes that can be made to the parameters. This procedure would 

allow adjusting each control system to the particularities of each zone at the local 

level controlled by each LEC (intersections, ramps, lane widths, maximum allowed 

speed, asphalt roughness, etc.), allowing the optimal performance of each 

intelligent control system. 

LECs clusters (VLECs) would use this tuning process to fine-tune control 

systems that require the coordination of several LECs (route planning, intelligent 

parking systems, public transport route distribution, etc.). 
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Inference and sending data to CAVs 

Finally, the inference of each of the advanced control systems would be performed 

at the LECs, since they are the closest nodes to the vehicles with sufficient 

computational capacity to form the local map, store the contributed experiences, 

and compute them. The inferred control data would be sent to the vehicles through 

mURLLC communication, passing the information from the LECs to the PicoCell 

and from the PicoCell to the CAVs. 

Only in case of emergency (error in the communication systems), the CAVs 

would be able to infer at the individual level, considering their current state and 

the sensors they possess. This emergency inference would ensure the safety of all 

users, which is essential for the proper functioning of CAVs in society, although 

this inference would not be optimal as it would not be able to take into account 

the state of all vehicles and users surrounding the vehicle. 

Finally, the proposed framework is shown in Figure 6-30. 

Practical case, complex urban intersection and connected autonomous vehicles. 

To illustrate the use of the proposed framework, we have chosen a complex 

unsignalized urban intersection. There are several lanes per direction at the 

intersection, and the CAVs only follow the control of the distributed control 

system at the VEC, so there are no traffic lights to regulate the vehicle movement. 

All CAVs are connected to the central controller (VEC) located near the 

intersection, which allows coordinated control of all CAVs with the lowest latency. 

All CAVs send their data to VEC via 6G URLLC. Each VEC can train a variety of AI 

control systems (in this use case, it will be the coordinated control of autonomous 

cars). After this, the VEC will have a high-resolution map with all the local 

information needed to localize and tune the control system at the local level, and 

at the medium level, the VLECs will also tune the needed control system, located 

at a higher hierarchical level. In addition, VECs send the data to the CVC for 

training on a large scale. Finally, VEC obtains the vehicle status at the next time 

interval (because it performs the CAV control task) and sends the data to CAV. In 

addition, with AUAV, each VEC can have a PicoCell for communication and 

inference with CAV. The PicoCell can communicate with multiple CAVs and, in 

case of emergency, uses the data provided by the CAV sensor to infer vehicle status. 
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Figure 6-30.  Proposed framework. (Figure 4, p. 12, [424]). 

6.7.5 Conclusions 

With the opportunities offered by CAVs and next-generation 6G communications 

to deploy distributed control and cooperation services and systems at the seamless 

edge, in this subsection, we proposed a framework for CAVs to make use of various 

cooperative autonomous driving systems via specialized 6G nodes. This new set of 

nodes would be integrated within the 6G network architecture natively in what we 

define as VEC. The VEC would consist of nodes called VENs, which would be 

responsible for controlling the CAVs using advanced control systems. However, 

these nodes do not have enough computational capacity to train all the control 

systems per complex. Therefore, we envision the existence of one or several CVCs, 

which through collaborative and distributed learning (such as federated learning) 

perform the exhaustive training of the different intelligent cooperative control 

systems using the experiences collected globally. After this training, the NVCs 

would be able to perform fine-tuning processes to the different advanced control 

systems based on the experiences collected locally, as well as the inference of each 

of the control systems for each of the CAVs under their control. 

To take advantage of the benefits offered by cooperative control, we propose 

the existence of intelligent and dynamic clusters of VECs, called VLECs, which 
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could employ collaborative learning knowledge on a larger scale to optimize 

different scenarios that require this type of control such as large avenues, 

perimeter roads, public transportation system, alternative route discovery, etc. 

Lastly, the nodes in charge of forwarding the information to/from the CAVs 

are called PicoCells. These PicoCells are focused on the 6G mURLLC 

communication use case, with very low cost, low latency, low range, and high 

reliability, in order to deploy as many of these nodes as possible. By virtue of these 

characteristics, these PicoCells could be integrated into IoT devices, traffic signals, 

traffic lights, AUAVs, etc., and even be part of CAVs themselves, which could 

forward information from other CAVs that do not have access to another PicoCell. 

The advantage that PicoCells formed by AUAVs could offer is that they would allow 

an ad-hoc deployment in those areas where an increase of connected devices is 

foreseen, or that are necessary to alleviate the existing workload in an area or to 

extend the existing coverage. 

The main difference of this framework is that it is specifically designed for 

cooperative and distributed control of CAVs using 6G communication networks. 

In addition, it is flexible and extensible and is designed to provide multiple layers 

of control. The framework uses several sets of specialized intelligent nodes (VEN, 

CVC, PicoCells) to provide the highest level of performance and security. 

In this context, the advantage that 6G offers over 5G, and even Beyond5G 

(B5G), is the complete integration with specific hardware for processing artificial 

intelligence-based systems. We consider that these relevant technologies present 

a degree of maturity too low in 5G/B5G, or are outside the defined scope of 5G/B5G. 

Therefore, we consider that the incorporation of 6G for this framework is necessary 

for its proper development, as it requires the fusion of the URLLC capabilities of 

5G/B5G, as well as IoT mMTC, together with the AI capabilities of intelligent 

transport and control systems, as well as high-performance hardware and 

databases specifically designed for AI, all located at both the CVC and VEN)level, 

close to the CAVs, ensuring that latency would be minimal and offering high 

reliability. 

6.8 Conclusions to this chapter 

CAVs have the opportunity to dramatically improve the quality of life in congested 

urban environments. However, these benefits cannot be realized if CAVs cannot 

cope with diverse and complex traffic conditions in a seamless and resilient 

manner. The severe constraints that urban environments impose on CAVs, 

especially the high variability of environments, situations, and scenarios, adversely 

affect the availability and success of these systems. Thanks to advances in various 

components of driving and control systems, as well as the understanding and 

handling of unpredictable situations through multi-agent deep reinforcement 
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learning (MADRL) methods, we believe we are at the tipping point where these 

systems will achieve a robust and reliable response to such constraints. MADRL 

enables the development of dynamic systems capable of adapting to an infinite 

number of situations and acting collectively and proactively, anticipating 

dangerous situations and ultimately avoiding accidents and increasing fluidity. 

To leverage the potential of CAVs, we need a better understanding of CAV 

control in urban environments, and a suitable system to predict, optimize its 

performance and train the system in a wide variety of situations, and this is where 

MADRL excels. In this section, we have explored how MADRL enables the 

development of wireless-based deep control for traffic control, which shows 

promising performance in complex environments. In addition, the interoperability 

of CAVs with ITS over mobile wireless communication networks has been 

explored. 

First, a first approach to the development of an AIM using MADRL was 

developed. This first AIM was based on an ego-centric control policy and was called 

RAIM (Reinforced-AIM). That is, for each connected autonomous vehicle (CAV) 

to be controlled (ego-vehicle), RAIM calculated the speed at which it should drive 

to avoid collisions and minimize the waiting time considering the state of the ego-

vehicle and the other vehicles. The results showed high performance in urban 

scenarios of medium complexity, outperforming other AIM proposals and traffic 

light-based control systems. 

After this, the previously developed AIM was analyzed in-depth, making it 

more robust and intelligent, solving several problems it had due to its design. The 

main problem of the RAIM was that the size of the input variable depended on the 

number of vehicles to be controlled. To solve this problem, adv.RAIM adopted a 

coding network based on LSTMs. Thus, adv.RAIM had as input variables the state 

of the ego-vehicle and the output of the LSTM coding network. To this LSTM 

coding network was sequentially input the state of each CAV in the intersection 

and at the output was the coding that modeled the state of all CAVs at the 

intersection to be controlled. In this case, the results demonstrated excellent 

performance on numerous metrics, outperforming other proposed AIM and traffic 

light-based control systems in very complex scenarios. 

Due to the complexity of training MADRL systems, in the following work, it 

was decided to explore different systems to accelerate the training of new MADRL-

based systems and, consequently, of new AIM. For this purpose, it was decided to 

analyze a new training approach using demonstrations. In this case, in this 

research study, an Oracle was trained by supervised learning, extracting the 

observations from the traffic simulator SUMO. This Oracle was then used to train 

the AIM. During training, the AIM kept asking the Oracle what action to take, but 

less and less, until a point was reached where the AIM no longer asked the Oracle 
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and obtained a superior control policy to the Oracle. The results of this new 

training approach allowed the adv.RAIM to be trained 5 to 6 times faster, reducing 

the number of simulations performed and the computational cost. 

The design of all the proposed decentralized control systems requires a series 

of modules and features (hardware, databases, low communication latency, etc.) 

that make them unique within the communications network. Therefore, another 

study was to develop the necessary framework to deploy this set of systems 

(including AIM) within the future 6G mobile communications network. This study 

analyzed the 6G network as it enables ultra-low latency and high-reliability 

communication with vehicles, which is very important for AIMs. The conclusions 

allowed developing future 6G-based decentralized control systems more simply 

and efficiently, which paves the way for future improvements and 

implementations. 

Finally, due to the importance that communication latency can have on AIMs 

and the lack of works analyzing this important problem, it was decided to develop 

a latency-aware AIM for the 5G communication network using MADRL, called 

AIM5LA. By latency-aware, we mean that AIM5LA was able to model the latency 

inherent in 5G communication between the CAVs and the intersection manager 

(IM). In addition to considering the historical latency suffered by each CAV, 

AIM5LA was able to predict with high accuracy the latency that each vehicle was 

going to suffer in the next control interval. Thus, in addition to considering these 

latencies, AIM5LA considered all the CAVs to be controlled to obtain a robust and 

collision-free control policy. The results showed that AIM5LA was able to eliminate 

collisions and obtain an efficient control policy, contrary to other AIMs analyzed. 

The main conclusions of this chapter are that MADRL is an effective 

technique for the development of advanced technologies for decentralized and 

cooperative control of CAVs and that the existing state of the art in this field should 

be taken into account when designing new AIMs and decentralized cooperative 

control systems. Moreover, if analyzed in the context of wireless communication 

technologies, MADRL-based decentralized cooperative systems may be an 

excellent solution for the development of such systems in the near future, however, 

there are still tasks to be solved such as the incorporation of external systems (e.g., 

mobile devices to monitor and communicate with vehicles), the selection of 

optimal control policies, the incorporation of non-controllable external agents 

(pedestrians, cyclists, emergency vehicles), the efficient deployment of the systems 

and verification of their effectiveness, as well as the adaptation of the control 

method to a diverse range of communication networks. The results of the studies 

conducted here will contribute to the design of future decentralized control 

systems more efficiently and robustly. 
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Chapter 7:  General Conclusions and Future work 

7.1 Introduction 

The field of Intelligent Transportation Systems (ITS) is undergoing a major and 

exciting revolution as a result of huge advances in the field of artificial intelligence, 

deep learning, reinforcement learning, and the development of new technologies 

such as autonomous vehicles and advanced communication protocols such as 

5G/6G and unmanned aerial vehicles. Developments in these areas have paved the 

way for the deployment of new traffic management solutions and the future 

improvement of existing ones. To achieve this goal, it is imperative that we lay the 

groundwork for the design and constraints of future cognitive ITS. 

Achieving cognitive ITS through AI has several exciting challenges. A central 

challenge in creating intelligent cognitive ITS is how to communicate with the 

agents around them (vehicles, pedestrians, other ITS, etc.), in an intelligent and 

timely manner, to take advantage of the goodness offered by collective intelligence. 

Another central challenge in the creation of intelligent cognitive ITS is how to 

ensure maximum safety. The fundamental basis for the development of these new 

ITS is security; any failure in this will mean a drop in the confidence of these ITS. 

For the first challenge, the use of advanced communication technologies such 

as 5G-6G enables the efficient implementation of communications between 

multiple devices of different characteristics with great ease and security. In 

addition, new opportunities open up for these systems due to the significant 

decrease in communication latency. However, the implementation of 5G-6G-like 

communication between different agents and ITS requires further research and 

policy coordination to achieve optimal utilization of this technology. 

As for the second challenge, ensuring maximum security in the development 

of new cognitive ITS requires a deeper understanding of the behavioral dynamics 

of all real-world users and agents, with all that this entails. Consequently, to ensure 

maximum security, new techniques and control mechanisms are needed to ensure 

that new cognitive ITS do not ignore security-related information or communicate 

it incorrectly. This requires the learning of new behaviors, based on models of these 

behaviors, in order to optimize the learning experience for intelligent cognitive 

ITS. 

The objective of the thesis has been to contribute to the improvement of the 

cognitive capability of ITS by using cutting-edge techniques and technologies such 

as WiFi and 5G/6G communication networks, artificial intelligence, multi-agent 

deep reinforcement learning, and unmanned aerial vehicles, integrating these 

technologies in applications related to urban mobility and ITS to achieve more 

efficient and simpler solutions that can be implemented using standard 
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communication standards. In addition, the use of AI, distributed intelligence, and 

autonomous vehicles have led to more robust, flexible, and scalable solutions. 

To this end, after showing the theoretical background used during this 

dissertation in Chapter 2, Chapter 3 analyzed the use of unmanned aerial vehicles 

(UAVs) to contribute to the development of future ITS. To this end, the state of 

the art of different routing protocols, propagation models, positioning protocols, 

and mobility models were first reviewed. Then, the impact of the use of unmanned 

aerial vehicles (UAVs) on the integrated communication modules of these devices 

was analyzed. The conclusions drawn from this chapter showed the imperative 

need to develop models and protocols adapted to aerial networks formed by UAVs, 

due to their unique characteristics of mobility, energy constraints, and network 

topology. In addition, it was possible to demonstrate the great influence that the 

UAV chassis can have on the communications module, showing propagation losses 

of up to 10dB at some propagation angles. 

In Chapter 4, the methods used for counting people in indoor and outdoor 

environments using passive WiFi methods were analyzed. Using artificial 

intelligence techniques, an algorithm capable of providing excellent performance, 

exceeding 90% accuracy, was developed. Using these simple algorithms, ITS can 

use the information provided to adapt control systems and control both vehicle 

and pedestrian traffic, maximizing road safety as well as minimizing waiting times. 

However, the main drawback of such methods is the randomness of the MAC of 

the mobile devices used to differentiate pedestrians. However, the probability of a 

device modifying its MAC in a short capture interval is small [296]. 

Chapter 5 shows an intelligent use of traffic control systems based on traffic 

lights, as well as their principle of operation. In this chapter, an advanced control 

algorithm called iREDVD has been developed. This control algorithm is based on 

queue congestion control algorithms and was optimized using genetic algorithms, 

focused on performing optimization tasks where the space of variables to be 

explored is extremely large and complex. This optimization using a genetic 

algorithm allowed iREDVD to obtain excellent results when comparing its 

performance with other traffic control algorithms Based on the results obtained in 

this chapter, in the design and deployment of new traffic light control systems at 

large-scale intersections, iREDVD can offer a great advantage over other control 

systems by allowing to control traffic in a very efficient and anticipatory way 

through the deployment of low cost, low requirements, and low power IoT devices, 

outperforming not only iREDVD but also other known traffic management 

methods in all the analyzed metrics. 

Finally, Chapter 6 shows the use of Multi-Agent Deep Reinforcement 

Learning (MADRL) for the control of Connected Autonomous Vehicles (CAV), as 

well as the framework on which these control systems should be based for their 



Contribution to Enhancing the Cognitive Capability of ITS using AI 
Chapter 7: General Conclusions 

 

Antonio Guillén Pérez 2022  Page 199 

correct implementation. These decentralized cooperative control systems 

(Autonomous Intersection Management, AIM) for CAVs have the advantage of 

providing higher controllability and performance, thanks to having an agent at the 

edge of the communication network that integrates all the knowledge and states, 

and tells each CAV what action to take to maximize traffic flow, as well as to 

eliminate accidents. In other words, these MADRL-trained AIMs can provide a way 

for each CAV to coordinate its actions to maximize traffic flow and eliminate 

accidents. These control systems offer exciting possibilities for future advances in 

AIMs and cooperative vehicle control methods. In particular, they may pave the 

way for new types of automated vehicles and mobile information systems that 

provide safety and convenience to users. In this chapter, different MADRL system 

training techniques are explored, as well as a 6G framework on which these 

cooperative intelligent control systems would rely. In addition, due to the 

importance that latency can have on vehicular control, a system capable of 

adapting vehicular control to changes in 5G network latency is proposed. 

7.2 Key future research directions 

The proposals developed during this thesis make it possible for the cognitive 

capacity of intelligent transportation systems to increase enormously. However, 

due to the various challenges associated with them, there is still room for research. 

The following key research directions are highlighted: 

1. The autonomous control problem. This research direction attempts to 

model and explain the fundamental challenges in the planning, computational, 

and communication aspects of artificial intelligence-based cooperative 

autonomous control systems and their integration with real-world road traffic. For 

example, many tasks have to be defined and performed before the system can be 

considered fully autonomous. One such task is dealing with potential collisions or 

conflicts where a critical decision has to be made. For vehicles to be fully 

autonomous, several models must be developed to estimate the losses associated 

with a collision. 

2. Study of the performance and requirements of the key components of the 

communications network architecture that will allow CAVs to operate 

autonomously. This research direction aims to allow the identification of the key 

components, as well as to study their requirements for the correct deployment of 

different cooperative control systems on the ITS. In the case of CAVs, these include 

perception intelligence, control intelligence, decision making and planning, and 

network and data communication. However, although CAVs are envisioned to 

operate in the vehicle itself, there are many other parts of the vehicle that need to 

be considered, such as the surrounding road, the environment, the weather and 

the number of cars or other road users, emergency vehicles, cyclists, among others. 
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3. Different methods to solve the problem of decision-making and planning 

of aerial networks composed of unmanned aerial vehicles (UAVs) for ITS support. 

Currently, there are many challenges in aerial networks composed of UAVs, which 

are presented in multiple studies. Such challenges require solutions to decision-

making and planning problems in coordination with flight plans, mission 

planning, and air traffic optimization simulations to ensure a safe flight. Different 

ways to support decision-making, planning, and coordination of drone-assisted 

autonomous aerial vehicles in different environments are highlighted, including 

UAV operations in urban or mixed traffic agglomerations and beyond. Different 

approaches and implementation requirements are also discussed. For example, 

different systems are proposed to collect and evaluate sensor data, in addition, to 

support from ground networks, and from this information, determine decision 

making. 

4. Development of cooperative autonomous control methods for CAVs and 

UAVs for autonomous vehicle operation. This research direction aims to create 

systems capable of sensing the environment, responding appropriately to it, and 

performing decision-making. This will rely on data-driven approaches and 

automatic reasoning. The relevant research directions are further outlined in the 

following sections. 

In conclusion, the direction of future research should focus on further 

improving the performance of cooperative ITS, such as MADRL transition based 

on the capability of multiple very different agents, the use of the latest technologies 

such as 5G or 6G, high-speed networks, IoT or UAV, by continuously developing 

knowledge and understanding of the problems to be addressed, in addition to the 

continued implementation of effective control systems, thus achieving more 

efficient and simple solutions. We believe that the main focus of future research 

will be the development of control algorithms capable of learning agent and 

human behaviors, which will enable new cognitive intelligent ITS to operate in a 

context-aware, dynamic and safe way. 

.
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