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Resumen

En la altima mitad del sigle XX los computadores sufrieron una constante evelu-
cidn en rendimiento propiciada principalmente por el aumento de la escala de
integracion, que habilitaba cada vez més transistores dispomibles para incorporar
novedades arquitecténicas, o para aumentar el tamafio de las memorias en el
chip. Esta tendencia fue ya predicha por Gordon E. Moore [42], quien ya en
1865 expuso que el niimero de transistores por drea de silicio serfa deblade cada
dieciocho meses por los sucesivos avances tecneldgicos. La ofra causa importante
para el aumento del rendimiento fue el crecimiento incesante de la frecuencia
de procesamiento en cada nueva generacion de chips, haciendo la circuiteria
cada vez méas ripida. De este modo, los mictoprocesadores alcanzaron niveles
de complejidad demasiado altos requiriendo de procesos de verificacidn cada
vez mds costosos en Hempo y valor econdmico. Disponiendo de un sélo niicleo
de procesamiento, estas arquitecturas uwniprocesador estaban fundamentalmente
enfocadas a la extraceidn de paralelismo a nivel de instruccién (Instruction-Level
Parallelism en inglés, o ILP), en el que se aprovechaba al méximo la ejecucion
simultdnea de instrucciones que podian emitirse de manera independiente. Los
esfuerzos de los arquitectos de computadores para exfraer cada vez mas ILP,
originaron nuevos disefios que inclufan ejecucion fuera de orden y especulativa,
predictores de saltos muy sofisticados, cauces de gjecucion segmentados con
muchas etapas y con una anchura de emision considerable, ete. AGn asi, el be-
neficio de rendimiento obtenido se veia cada vez mds limitado por la influencia
de: las dependencias verdaderas entre instrucciones per los riesgos de datos tipo
Read-After-Write (RAW); los riesgos de control por las mstrucciones de salte; o por
los llamados riesgos estructurales, que serializan la ejecucion de insfrucciones
que presentan un conflicto en el uso de un mismo recurso hard ware como una
unidad funcienal aritmético-légica.
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A partir del presente siglo, tanta complejidad se unié al hecho de que la
frecuencia de operacién estaba alcanzando niveles en los que la temperatura
de los chips se estaba volviendo inmanejable. Por ello, se inicié un proceso de
renovacion de los procesadores en los que se redujo la frecuencia de operacidn,
pero se incorporaron varios nicleos de procesamiento en el mismo chip. Esto
condujo a un nuevo concepto de arquifectura denominada mulfiprocesador en
un sdélo chip o CMPE En los disefios de los CMPs, se primé mads la exfraceidn
del paralelismo a nivel de hilo (Thread-Level Parallelism, o TLP) que intentar
extraer mas ILE Asi, el rendimiento por ciclo de gjecucién comenzod a aumentar
de nuevo consiguiéndose superar a los mejores uniprocesadores desarrollados
hasta la fecha. A medida que mds y mads miicleos iban integrandose en los CMPs,
estos sistemas evolucionaron a lo que hoy en dia se denomina CMI's de muchos
nucleos, o murny-core CMPs. Los many-core CMPs estan alcanzande ya el centenar
de micleos de ejecucion como el procesador Tile-Gx con 100 nticleos [145]. Para
simplificar el disefic de estas arquitecturas y para hacerlas escalables, se disefian
en base a un esquema moedular, en el que se define un bloque bésico de computo
compuesto por un nicleo, niveles de caché privados y un fragmento de una
caché compartida global, ademéas de un enrufador que conecta con el resto
de bloques de cémputo. La manera en la que se conectan todos los bloques
que conforman un many-core CMP esta basade en una red escalable punto-a-
punfo como una malla 2D. Otro aspecto importante de estos sistemas es que
su programacién tiene que ser lo mas sencilla posible para simplificar 1a tarea
al programador. Lo mds conmin es que estos sistemas implementen un sistema
de memortia compartida [29]. Mediante éste, las operaciones de comunicacion
y sincronizacidn entre los hilos de ejecucion se realiza mediante operaciones de
acceso a posiciones de memoria convencionales, asi como mstrucciones especiales
para el caso de la sincronizacién como Load-Linked/Store-Conditional (LL/5C), o de
lectura-modificacidn-escritura como test&set.

Sin embargo, desde el afio 2004 se ha experimentado un proceso de dismi-
nucidn en el crecimiento constante del rendimiento principalmente por motivos
de consumo excesive de energia, tamafio de los transistores alcanzando la escala
atomica, grandes costos de disefio, fabricacién y verificacion de los chips, efe.
Lo cual ha hecho que de nuevo se reconsideren las arquitecturas actuales para
idear una manera de mejorarlas sin tales problemas inicidndose una tendencia
denominada More-than-Moore [150]. Mediante esta, los nuevos disefios arquitec-
tomicos comparten circuiteria basada en fecnologia digital CMOS y teenologia
menoes escalable pero més rdpida en transmusion de sefiales como las no digitales:
analdgica, RE u dptica.



En esta tesis hemos identificado tres de los mayores cuellos de botella para el
rendimiento y escalabilidad de las arquitecturas many-core CMP. En parficular,
los mecanismos de sincronizacién de barrera y cerrojo cuando presentan alta
contencion, es decir, cuande hay un gran nimero de hilos competiendo por el
uso de la barrera o bien por el acceso a la seccion eritica (SC) que protege el
cerrojo. Téngase en cuenta que habrd mds probabilidad de contencién conforme
mas TLP se esté extrayendo de arquitecturas many-core CMPs con cada vez
més ricleos. Ofro problema identificado es la eficiencia en el manfenimiento
de la coherencia del uso de los bloques de memoria en todos los niveles de la
jerarquia de memoria de estes sistemas de memoria compartida. Un protocele de
coherencia implementado en hardware para mayor eficiencia serd el encargade de
llevar a cabo esta tarea. A medida que el nimero de nticleos sea cada vez mayor
en las arquitecturas marny-core CMFE, mayor serd la actividad del protocolo para
garantizar la coherencia de todas las posiciones de memoria compartidas que se
utilicen para comunicar y sincronizar cada nueva generacion de many-core CMPs
con un mayor nimwero de hilos. Para paliar estas deficiencias en el rendimiento
y aprovechar mds el rendimiento de estas arquitecturas, hemos propuesto fres
mecanismos hardware que se explicardn més abajo: GBarrier, para un mecanismo
de barreras eficiente; GLock, que proporciona un manejo de la confencidn en el
acceso a las 5C protegidas por cerrojos de manera justa y eficiente; y ECONO,
un protocolo de coherencia muy simple que aporta gran eficiencia a bajo costo.
Ademads, siguiende la tendencia More-than-Moore, hemeos considerando tecnologia
analogica actual llamada G-Lines para obtener un mayor rendimiento en nuestras
propuestas. G-Lines ufilizan tecnologia analogica para fransmifir sefiales de un
sélo bit a lo large de una linea que puede abarcar la totalidad de un chip a muy
bajo costo y en un sélo ciclo de reloj. Por otro lado, también hemoes considerado
una implementacion de las mismas basadas en una metodologia estdndar de
disefio actual que se utiliza en los procedinuentos convencionales de fabricacién
de chips, a la que llamaremos simplemente Estindar.

A confinuacidn se exponen nuestras tres propuestas junto a los resultados
mas relevantes que hemes obtenido en los estudies realizades en esta tesis. Para
superar el cuello de botella que supone la gjecucién de barrera en maquinas
many-core CMP de memoria compartida, hemos propuesto GBarrier. GBarrier es
un novedoso mecanismo hardware especialmente disefiado para la ejecucién de
barreras de manera eficiente eiminande todas las inutacienes de rendinente en
las implementaciones basadas en software, e incluso en otras muchas, también
hardware, implementadas hasta el dia de hoy. En particular, nuestra propuesta
consiste en dos componentes principales. El primere es una red especializada de
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muy bajo costo integrada en el CMFP que puede ser escalada facilmente utilizando
una esquema jerdrquico. El segundo componente es un protocolo de sincroniza-
cidn muy simple que es ejecutado por los controladores de la red especializada.
Las razdén principal por la cual GBarrier es mucho mas eficiente que la inmensa
mayoria de las propuestas actuales, basadas en el uso de operaciones sobre
posiciones de memoria compartida para la sincronizacion, se debe a que parala
sincronizacidn nuestro mecanismo no afecta al sistema de memoria en absoluto.
La gran ventaja de esto es que evitamos toda la actividad de coherencia y todo el
trafico de red debido a la operacidn de barrera que las otras implementaciones
necesitan y que restringe la escalabilidad, comoe explicamos anteriormente. Nues-
tra propuesta ha sido escenificada en otros contextos de operaciéon exponiendo
como podriamos abordarlos satisfactoriamente: la sobrecarga en la integracion
de varias GBarriers en un mismo CMP; cuando no todos los hilos de ejecucion
disponibles utilizan la barrera (GBarrier para subconjuntos de todos los niicleos
del CMP); y el use de GBarrier en arquifecturas con niicleos con soporte para
muiltiples hilos simultdneos (arquitecturas SMT).

Para evaluar GBarrier, hemos consideradoe dos implementaciones para sin-
tetizar nuestra infraestructura de barrera ufilizando la teenologia de G-Lintes y
la Estandar anteriormente mencionadas. Un estudio preliminar de rendimiento
potencial de ambas revela que las diferencias en términos de consumo de drea y
de energia pueden considerarse despreciables por los minimos recursos hardware
que requiere nuestro disefio (unes pocos controladores vy cableado de anchura
de un sélo bit). La diferencia estriba en que la tecnologia de G-Lires proporciona
mayor rapidez en las transmusiones de nuestro protocolo de sincrenizacién, con-
siguiendo una barrera de menor latencia. Por otro lado con la Estédndar, nuestro
mecamsmo se podria plasmar directamente en un circuito siguiende los procesos
actuales de fabricacién de chips. Hemos integrado ambas implementaciones para
GBarrier en un entorno de simulacidn denominado Sim-PowerCMP. A partir
del cual, hemos modelado un many-core CMP de 32 niicleos de gjecucion sobre
el que ejecutfar una serie de aplicaciones paralelas para obtener el rendimiento
que ofrece nuestra propuesta (benchmarks). Asi, hemos comparado rendimiento
ufilizando la mejor barrera software hasta el momento (barrera en drbol), tres
nicleos de aplicacion (o kernels) y fres aplicaciones cienfificas. Como concha-
sidn de este estudio podemos decir que en cuanto a Hempo de ejecucion ambas
implementaciones obtienen reducciones en tiempo de gecucidn muy similares,
por fanto nuestro disefio para barrera no depende de tecnologia no estandar
para obtener una implementacion de barrera eficiente en many-core CMPs. Mds
especificamente, para los kernels y aplicaciones cientificas, las reducciones medias



en fiempo de ejecucion son del 54% y del 21%, del 53% y del 18% en frafi-
co de red. La razén es porque ruestra propuesta evita el fiempo dedicado al
mantenimiento de coherencia de las posiciones de memoria compartidas que
la implementacion software emplea, y tampoco inyecta frafico de red en la red
de interconexion principal del CMFE, evitando asi congestion de la red por este
frifico que compite por los mismos recursos de red que el trafico de peficion y
recepcion de datos de las aplicaciones paralelas ejecutadas. Por otro lado, hemos
evaluado la reduccidn del consumo de energia ufilizando para ello la métrica
energy-delay® product (ED?F), obteniendo reducciones medias del 76 % y 31 % para
los kernels y aplicaciones cientificas respectivamente.

Por otre lado, para superar los problemas de rendimiento y escalabilidad
de las operaciones de sincronizacion mediante cerrojo, hemos propuesto GLock.
Nuestra propuesta estd especialmente disefiada para cuande existe una alta
contencidn en el acceso a las SC protegidas por el cerrojo, porque en este caso,
las implementaciones tradicionales de cerrojo tiene serios limites de rendimiento
y escalabilidad. GLock estd basado en dos componentes principales. El primero
es una red especializada de muy bajo costo integrada en el CMFE, mientras que
el segundo es un protocelo de sincronizacion basado en paso de mensajes y
en transferencia de un token que serd el que defermine el hilo que fiene el
acceso exclusive a la 5C. Debido al hecho de que nuesfra propuesta se dedica
a los cerrojos altamente contendidos, su ejecucion se puede simulfanear con
otras implementaciones de cerrojos que no presentan una alta contencidn, tales
como las implementaciones fradicionales software que ufilizan instrucciones
especializadas fest-and-festéeset. Como consecuencia de un andlisis que hemos
llevado acabo scbre el conjunto de benchmarks que hemos utihizade para evaluar
nuestra propuesta, hemos obtenido que el mimero de cerrojos distintos que estdn
altamente contendidos es bastante reducide. En particular, hemos detectado un
maximo de dos cerrojos en nuestros benchmarks con alta contencidn por lo que
hemos integrado dos GLocks para la evaluacion.

La evaluacidon de GLock también se ha llevado a cabo utihizando los dos tipos
de tecnologia G-Lines y Estdndar, llegando a las mismas conclusiones que para
GBarrier, es decir, existen diferencias poco significativas en el rendimiento que
ofrecen ambas propuestas, con lo que GLock no depende de tecnologia no es-
tindar para obtener una implementacidn muy eficlente para cerrojos altamente
contendidos; la tecnologia de G-Lines proporciona la implementacién mds rapi-
da; y finalmente, la Estdndar reduce los costes derivados de la fabricaciéon del
GLock en un chip, por seguir una metodologia estdndar de desarrollo. Ambas
implementaciones han side integradas en Sim-PowerCMP para un many-core
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CMP de 32 nicleos, comparando el rendimiento de nuestra propuesta frente
a la mejor implementacion software hasta la fecha (MCS [77]), v hemos utili-
zado un conjunto significative de benchmarks basados en microbenchmarks y
aplicaciones cientificas. Las estadisticas de rendimiento ofrecen las siguientes
reducciones medias frente a MCS: en el hempo de gjecucién del 42 % y 14 % para
los microbenchmarks y aplicaciones cienfificas respectivamente; en frafico, del
76 % y 23 %; y en consumo de energia utillizando la métrica ED?F, del 78 % y 28 %,
para los microbenchmarks y aplicaciones cientificas respectivamente.

Finalmente, se ha propuesto también en esta tesis un protocelo de coherencia
para many-core CMPs denominado Express Coherence Notification, o simplemente
ECONO. En el mantenimiento de la coherencia, ECONO hace uso de mensajes
especiales que son enviados de manera atdmica y en difusién (broadeast) llamados
mensajes Afomic Coherence Notification (ACN). Estos mensajes son enviados a
través de una red dedicada de minimo coste implementada mediante tecnologia
de G-Lintes para maxima eficiencia (experimentos demuestran que la tecnologia
Estindar no es capaz de obtener gran rendimiento para envios de mensajes en
broadcast para todos los nicleos de una arquitectura many-core CMP). Para la
implementacion de ECONO, hemos obtemido una primera version, 4-fop ECONO,
que utiliza cuatro saltos en el camino critico para hacer coherente una escritura
sobre un bloque que produce un fallo de caché, y que requiere actuacion del
protocolo sobre otras copias del bloque de datos. Esta version ha sido mejorada
introduciendo el concepto de mensajes ACN imprecisos que envian en broadeast
un subcenjunto de la direccidén del bloque en cuestidn, y también hemos reducido
a fres salfos el camino crifico obteniendo la versidon 3-hop ECONQ, reduciendo
asi el trafico por la red de inferconexidn del CMP y, por tanto, el consumo de
energia.

Para evaluar las distintas implementaciones de ECONO, hemos simulado
un many-core CMP de 16 nicleos usandoe Simics-GEMS. En cuanto al maximo
rendimiento potencial, hemos obtenido que ECONO con una red especializa-
da compuesta por fres lineas globales implementados mediante teenologia de
G-Lintes, ofrece el mejor compromiso entre latencia del mensaje y costo en drea.
Por ofro lado, en cuanto a la implementacion de ECONO con mensajes ACN
imprecisos, la configuracién Index+5 es la mejor opcidn. Finalmente, hemos cuan-
Hficado los beneficios en rendimiento de las anteriores versiones de ECONO en
comparacion a dos protocolos de coherencia contempordneos: Hammer y Directory.
Las principales conclusiones de este estudio son las siguientes: nuestra propuesta
tiene el disefio méds simple, requiere una sobrecarga en area del chip similar a
Hanmmer, obtiene un rendimiento similar a Directory, v constituye la implementa-



cidn mds eficiente en términos de energia. Finalmente, dada la gran simplicidad
de nuestra propuesta, hemos identificado una serie de optimizaciones que se
podrian aplicar y que utilizan algunos protocolos actuales para mejorar el rendi-
muento, tales como filtrade de mensajes para reducir el costo energético del envio
atémico y en broadcast de los ACNs, o bien utilizar el concepto de coherencia
directa, en el que se evita dingir mensajes al directerie del protocolo, reduciendo
el nimero de saltos en el camino critico en el mantenimiento de la coherencia
enviando dichos mensajes directamente el poseedor del bloque de datos solicita-
do. Podriamos implementar esto tiltimo incluyendo en el mensaje ACN, que es
recibido de manera global, el identificador del siguiente propietario del bloque.

De todo lo anterior podemos asegurar que nuestras propuestas resuelven de
una forma eficiente los problemas de rendimiento derivadoes de implementaciones
ineficientes para sincronizacién mediante barrera y cerrojo en situaciones de alta
contencidn, y de los protocolos de coherencia que han de gestionar un mimero
mayor de compartidores de bloque, en las arquitecturas marny-core CMP.
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Abstract

Multicore architectures (chip-multiprocessors or CMPs) constitute nowadays the
best way to fake advantage of the inereasing number of transistors available in
a single die. In particular, they provide higher performance and lower energy
consumption than more complex unicore archifectures. This is due to the fact
that these architectures mainly focus on exploiting thread-level parallelism (TLF)
rather than instruction-level parallelism (ILI'). As the number of cores increases in
these throughput-oriented machines, they are referred to as many-core CMPs. To
ease the programmability task, these systems commonly adept a shared-memory
programming model in which communications and synchronizations among,
threads are accomplished by means of memorty access instructions on shared
variables. This thesis focuses on outperforming three of the major problems that
restrict efficiency and scalability in future shared-memeory tiled many-core CMPs:
the synchronization operations of barriers and locks, and the cache coherence
protocol.

Regarding barrier synchronization, traditional software-based barrier imple-
mentations for shared memory parallel machines tend te produce hot-spots in
terms of memory and network contention as the number of cores increases. To
completely remowve such negative side effects we develop GBarrier. Qur proposal
is a hardware-based barrier mechanism especially aimed at providing efficient
barriers in future many-core CMPs. To this end, our proposal deploys a dedicated
G-Lirte-based network to allow for fast and efficient signaling of barrier arrival
and departure. Since GBarrier does not have any influence on the memory systern,
we avold all coherence activity and barrier-related network traffic that traditional
approaches intfroduce and that restrict scalability. To implement GBarrier, we
consider two different fechnologies. The first is a state-of-the-art full-custom
technology, namely G-Lines, whilst the second is a cost-effective mainstream
industrial toolflow with an advance 45 nm technology, or Standard technology for
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short. Both GBarrier implementations report very similar reductions in execution
time, thus not making our propoesal so dependent on a full-custom technelogy to
achieve exfremely efficient synchronization in many-core CMPs. In particular,
through detailed simulations of a 32-core CME we compare GBarrier against
one of the most efficient software-based barrier implementations for a sef of
kemels and scientific applications. Evaluation results bring important average
reductions when the kernels and scientific applications are considered: 54% and
21% in executlon tme, respectively; 53% and 18% in network traffic, respectively;
and also 76% and 31% in the energy-delay?’ product metric for the full CME,
respectively.

With respect to lock synchronization, this is a key programming primitive for
shared -memory many-core CMPs. The problem is that, as the number of cores
increases so does the degree of contention that a single lock may exhibit, but in
this case, conventional software implementations cannot meet the desirable levels
of performance and scalability. Meanwhile, most existing hardware-supported
lock proposals require modifications at some level of the memory hierarchy, thus
degrading (o5 of applications through synchronization traffic. To overcome such
performance limitations, we propose GLock, a dedicated network infrastructure
along with a token-based message-passing protocol to provide a non-intrusive,
extremely efficient and fair implementation for highlycontended locks. As
for GBarrier, two implementations of GLock that leverage G-Lines and Standard
technologies are considered. We conclude that by leveraging both technologies
significant reductions in execution time can be obtained with a negligible per-
formance gap between them. Besides, both implementations require a minimal
power dissipation and a marginal on-chip area overhead. As a result, our GLock
proposal is not so dependent on full-custom technolegy to provide very efficient
synchronization for highly-contended locks in many-core CMPs. More specifi-
cally, when compared GLock against the most efficient software-based lock using
a sef of microbenchmarks and real applications, we obtain average reductions
of: 42% and 14% in execution time, respectively; 76% and 23% in network traffic,
respectively; and 78% and 28% in the energy-delay? product (ED?P) metric for
the full CMP, respectively.

Finally as to the coherence protocol, the design of an efficient coherence
protocol for shared-memory many-core CMPs should take into account several
aspects related to efficiency such as en-chip area overhead, energy consumption,
and performance. Nevertheless, another important metric to be considered 1s its
resulting complesity. In fact, one may opt to sacrifice some efficiency in exchange
for a simpler verification process. The problem 1s that all these requirements are
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very difficult to meet in a single coherence protocol at once. To accomplish this,
we propose Express Coherence Notification (ECONO), a cache coherence protocol
aimed at providing simultaneocusly a simple and efficient design. To maintain
coherence, ECONO relies on express coherence notifications which are broadcast
atemically over a dedicated hightweight on-chaip network. For the implementation
of this special network, differently to GBarrier and GLock, we only rely on the
state-of-the-art G-Lines technology since the Standard technelogy 1s not enough to
obtain an efficient and very fast implementation for the ECONO's notifications.
We implement and evaluate ECONO uftilizing full-system simulafion and a
representative set of benchmarks. As compared to two contemporary coherence
protocols, Hammer and Directory, ECONO has the simplest design, requires an
area overhead similar to Hammer and reports performance resulfs similar to
Directory. Particularly, ECONO achieves an average reduction of 2% in execution
fime and an average reduction of 3% in network traffic, when compared to
Directory. In addition, our experimental evaluation also leads to conclude that
ECONO is also the most energy efficient design.
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CHAPTER 1

Introduction

For the last half-cenfury, computers have been doubling in performance and
capacity every couple of years. Such phencomenal progress 1s a consequence of the
well-known Moore’s Law that has been basically sustained till 2000s thanks to the
continuous advances in semiconductor technology, to obtaining ever-shrinking
fransistor sizes, and achieving ever higher clock frequencies. This allowed
computer architects to make use of the ever-increasing amount of silicon resources
to design more and mere sophisticated and ever-faster pipelines in uniprocessor
systems, in order to better exploit the instruction level parallelism (ILF) present
in sequential programs. Nonetheless, at the beginning of this century this
successful strategy has come to an end mainly due to the thermal-power issues.
The response was a shift towards parallel architectures that mainly focus on
exploiting thread level parallelism (TLP) rather than ILP, laying the foundation
of the core era. Multicore architectures, multiprocessor in general, are systems
specially tailored to the exploitation of massive throughput by incorporating
many simpler and lower-frequency computing units. This paradigm shift towards
this throughput-onented machines brings about new fundamental challenges to
harness their ever-increasing peak potential power. Theretfore, it is imperafive
that programmers can deal with a simple and efficient programming model such
as a shared-memory programming model [29]. Nevertheless, computer architects
must struggle to mitigate some performance bottlenecks related to this intuitive
programmuing model. For instance, when considering synchromzation operations,
such as locks and barriers, or when ensuring coherence across all levels of a
memory hierarchy through a cache coherence protocel implemented in hard ware.
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1. INTRODUCTION

1.1 Towards Many-core CMPs

The steady evolufion of computing has been made possible mainly thanks to
the contribution of the three following factors: technology scaling that propitiates
opportunities for architectural innovations and advances in compilation. The technol-
ogy roadmap for semiconductor technology was already predicted by Gordon
E. Moore who stated in 1965 that the number of transistors per silicon area
would double every eighteen months due to the transistors getting smaller every
successive process technology [42]. This is commonly known as the Moore's
Law and, surprisingly, it is expected to remain valid and continue well into the
future [5,1a].

Over the years, we can identify two major different trends that have marked
and guided manufacturing of every new computing architecture at industry. The
first-stage trend that took a longer period of time was valid till approximately
year 2000 by following a virtuous cycle, by which computer architects obtained
higher performance in every new design basically by shrinking feature sizes
and increasing frequency of circuits. In this way, an increased transistor density
enabled more and more space on chip for incorporating ever complex designs
with very-deep instruction pipelines [43], highly speculative [117], out-of-order
processors [46] and larger on-chip cache hierarchies [109]. The main purpose to
do so was to increase the amount of work performed in each cycle allowing more
and more capability to execute multiple instructions from the same (sequential)
program simultaneously, ie., the exfraction of ILP. However, since year 2000
and despife new progress in integrafion technology, the efforts to design very
ageressive and very complex wide issue superscalar processors in this frend
came fo a stop. While there is sfill a little ILP left to be extracted, RAW (read-
after-write) data hazards between consecutive instruetions, contral hazards due
to branch instructions, as well as structural hazards which serialize the execution
of instructions that try to use the same hardware resource at the same time (Le.
an arithmetic and logic unit, or ALU), made impossible to increase performance
wifhout a considerable effort [72]. Moreover, even the investment of the ever
larger on-chip caches reached the point of diminishing refum [86]. As a result,
every rnew performance improvement has been empirically close to the square
root of the number of required transistors [72]. Besides, a higher and higher clock
frequency for a faster circuntry invoelves important heat problems and high energy
consumption. Moreover, the efforts to maintain manageable parameters for the
thermal-power issues such as increased threshold voltage to control leakage, or
limited supply-voltage scaling, decrease the performance benefits of fransistor
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1.1. Towards Many-core CMPs

scaling [56]. All above problems were identified as the Power, Memory, and ILP
Walls [85].

The second-stage and current frend consists of a paradigm shift towards
multi-core architectures. Instead of scaling performance by improving single core
performance as was dene in the past, the growing of performance is achieved by
putting multiple cores ento a single chip and usually connecting them threugh a
shared memory [30], thereby effectively inteprating a complete multiprocessor on
one chip. This type of systems are commonly referred to as chip multiprocessors
or CMPs. In this systems, rather than ILF, they improve system performance by
exploiting thread-level parallelism (TLF). CMPs have important advantages over
very wide-issue out-of-order superscalar processors. In particular, they provide
higher aggregate computational power, multiple clock domains, better power
efficiency, and simpler designs. Additionally, the use of simpler cores reduces
the cost of design and verification in terms of time and money.

While the mumber of cores currently offered in general-purpose CMPs has
already gone above ten (e.g. the 6-core 2-die AMD's Magny-Cours design [115],
the 18-core BlueGene/Q [114], or the 16-core SPARC T3 [73]), now that the
Moore’s Law will make it possible to double the mumber of processing cores
per chip every 18 months [86], very soon there will be available on-chip the
resources required to integrate dozens of cores or even hundreds of them. CMPs
of this kind are commonly referred to as many-core CMPs. Examples of this
rnew generation of CMPs can be the following., The 48-core Single-chip Cloud
Computer [55], an experimental research microprocessor developed by Intel in
the context of the Tera-scale Computing Research Program. The Intel Polaris [92]
which is a prototype with 80 cores. And the Tile-Gx Processor [145] from Tilera
Corporation which 13 comprised of up to 100 cores on a chip. For the success of
this kind of systems in the future, all elements that could compromise system
scalability must be aveided. One of such elements 1s the interconmection network.
As stated in [124], the area required by a shared intercormect, like a bus, as the
number of cores grows has to be increased to the point of becoming impractical.
Hence, it is necessary to turn to a scalable interconnection network.

In this thesis, we focus on tiled many-core CMDPs [93,103] which are designed
as arrays of idenfical or close-fo-identical building blocks known as tiles, that
provide a scalable alternafive to current small-scale CMP designs and help in
keeping complexity manageable. In these architectures, each tile is comprised
of a processing core (or even several cores), one or several levels of caches, and
a network interface or router that commects all tiles through a tightly integrated
and lightweight point-to-point interconnection network (e.g., a two-dimensional
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1. INTRODUCTION

mesh). Differently from shared networks, point-to-peint interconnects are suitable
for many-core CMIs because their peak bandwidth and area overhead scale with
the number of cores.

1.2 A Shared-Memory Programming Model

The different threads of a parallel program need to communicate and synchro-
nize in order fo carry out a task cooperatively to completion. For this matter,
two popular types of general-purpose communication abstractions exist, which
provide a link between the software (programming model) and the hardware
(physical implementation). Threads can exchange information by sending mes-
sages (message passing model), or by merely accessing and modifying shared
memory locations (shared memory model).

This thesis focuses on a shared memory model, as is widely regarded as
a more infuitive model than message passing for the development of parallel
programs [90] and nowadays 13 the prevalent model in most CMPs [72], and the
common belief is that future many-core CMP architectures will also implement
this memory model. Particularly, the hardware-managed, implicitly-addressed,
coherent caches memory model [75]. With this memory model, all on-chip
storage 15 used for private and shared caches that are kept coherent by hardware.
Communicafion between threads is performed by writing to and reading from
shared memory. In order to guarantee the integrity of shared data structures, most
current systems support synchronizafion through a combination of hardware
(special insfructions, such as LL/SC, or atomic read-modify-write instructions,
such as festé&sef, that operate on shared memory) and software (higher-level
mechanisms such as locks or barriers implemented atop the underlying hardware
primitives) [29].

1.3 The Slowdown in Exponential Growth of
Performance

In the near ferm, there are new challenges to tackle with in the multicore revo-
lution. It is due to the fact that, although for every technology generation the
transistor integration is doubled and the number of cores on chup grows apace, a
flattened curve for the growth of performance has been appreciated [127] mainly
due to reducing power and frequency parameters to alleviate the thermal-power
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Figure 1.1: Transistors, frequency, power, performance, and cores over time
(1985-2010). Source: D. Patterson, UC-Berkeley.

issues by adjusting to a realistic power budget and thermal envelope. Figure 1.1
depicts such a new frend observed since 2004 that shows flattening curves for
performance, frequency and power, while the number of transistors and cores
keep the expected growing. This demands new research efforts to develop new
architectural sehutions in order to continue with the exponential growth of perfor-
mance to be kept alive in the future. In an attempt to continue in that direction,
this thesis identifies two of the most severe performance bottlenecks in many-cere
CMPs, synchronization and the maintenance of cache coherence, and proposes
hardware-based infrastructures to mifigate them as the core count increases in
future developments. To gain insight into these main problems to continue with
scalable performance, the next fwo sections delve into them and introduce our
proposals.

1.4 The Synchronization Problem

By relying on a shared-memory programming model to execute parallel applica-
Hons in many-core CMPs, conventional implementations of synchronization op-
erations, such as barrier and locks, rely on shared variables which are atomically
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1. INTRODUCTION

updated. In particular, when considering global barriers and highly-contended
locks (ie. there is a significant amount of threads requesting the lock at the
same fime), without the proper hardware support, this kind of software-based
implementations canmot provide good scalability as the number of cores increases.

Regarding barrier implementations in software, as we will discuss in Chap-
ter 3, the use of shared variables implies a performance bottleneck, an ever-
growing amount of resources and high energy consumption requirements. In
more depth, the cache coherence protocol must come into play to maintain mem-
oty consistency across all levels of the memory hierarchy. In turn, coherence
activity franslates into fratfic imjection in the intercormection network that may
interfere with application-related traffic. On the other hand, the busy-waiting re-
quired to wait for the completion of the barrier synchrenization on locally-cached
shared variables has also sipmificant implications on the energy consumed by the
L1 caches.

As to the software implementations for the highly-contended locks, as we will
expose in Chapter 4, these operations are very critical to performance since lock
contention causes serialization. Therefore, an implementation based on the use of
shared variables is not efficient enough due to the performance bottlenecks, the
ever-growing amount of resources and high energy consumption requirements,
that they produce as explained above.

In this thesis we address these two problems separately. Particularly, we deal
with neither shared variables nor tratfic injection into the main interconnect to
implement these mechanisms for tiled many-core CMPs. Instead, we design a
dedicated on-chup network infrastructure to implement a very efficient hardware-
based barrier, and another one that achieves very efficient hardware support for
highly-contented locks.

1.5 The Cache Coherence Problem

The communication and synchronization operations among threads in shared-
memory parallel machines occurs implicitly as a result of reading from and
writing to shared variables. The order by which all threads see the changes in
the shared variables is defined according to a particular memory consistency
model [133]. CMPs normally include a memory hierarchy with one or more
levels of private caches to each core to avoid the increasing gap between processor
and memory speeds (i.e. the Memory Wall [149]). The reason is that the smaller
and faster private levels absorb the vast majority of memory accesses due to the
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1.5. The Cache Coherence Problem

exploitation of temporal and spatial locality that applications exhibit, thereby
reducing the average memory access lafency and nefwork traffic in the CMP's
interconnect. As a result, in a given instant of time, there could be several
copies of a particular memory location (or block) in the private caches. If a core
modifies its local copy without any further action, subsequent memory accesses
on the remaining sharers’ copies of the memory block would read or write a
stale block resulting in data incoherence. While this fask could be solved in
software by programmers (like in message-passing programming) a hardware-
based coherence protocol is commonly in charge to do that. Clearly, the main
benefit is a simplification in programming because all caches are completely
fransparent to software. Moreover, the coherence protocol precludes application’s
execution from any dafa incoherence by guaranteeing that each read fo every
memoery block returns the latest value written to it, and the semantic is that each
wrife to the same memory location appears to be seen in the same order by all
processors [87].

From all above, we can affirm that the efficiency of communication and syn-
chronization operations among threads is highly dependent upon the efficiency
of the cache coherence protocol. In consequence, a great deal of attention has long
been devoted to the development of cache coherence protocels, with a first-order
goal of achieving scalability and efficiency in each new generation of shared-
memory parallel machines. In this way, in the late 80s and the beginning of the
90s there were a number of shared memory multiprocessors with a processor
count even reaching several hundreds in a scalable and efficient manner, such as
the SGI Origin 2000 [74]. Since then, latency /bandwidth tradeoffs have brought a
broad variety of coherence proposals such as those that follow a broadcast-based
(snooping) approach, or the point-to-point based (directory) cache coherency
profocols. However, in the context of many-core CMPs, different technological
parameters and constraints must be considered. For example, cache-to-cache
miss latercies are relatively shorter and the on-chip bandwidth is much larger
than for the “off-chip” systems of the 90s. On the other hand, design decisions
are severely constrained by power dissipation.

As we will expose in Chapter 5, the design of an efficient coherence protocol
for shared-memory many-core CMDPs should take into account several aspects
related to efficiency such as on-chip area overhead, energy consumption, and
performance. Newvertheless, another important mefric to be considered is ifs
resuling complexity. In this thesis, we propose an efficient and simple coherence
protocol to meet with those requirements at once.
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1. INTRODUCTION

1.6 The G-Lines Technology

The continuous improvements in CMOS transistors following the Moore’s Law
will come to a stop in the near fuhure because of several challenges: unsustainable
power dissipation, physical limits of transistors reaching atomic scale dimensions,
process and device variability, no real performance increases with scaling, and
expensive R&D and manufacturing costs. To overcome that, chipmakers have
recently begun to reconsider the More-than-Moore trend [150], where added value
to devices is provided by incorporating functionalities that do not necessarily
scale according to the Moore’s Law. That is the reason why the future roadmap
for semiconductor technology integrates both digital and non-digital technologies
in the same chip [56]. Examples for the latter techneclogy are: analog circuits, RE
optical technology, ete.

In this thesis, we make use of a state-of-the-art analog technology, namely
Global Lines technology, or G-Lines from now on. G-Lines have already been
successtully integrated in a silicon substrate in order to enable speed-of-light
point-to-point commmmications. Chang et al. [126] and Jose et al. [9] showed early
point-to-point circuits allowing transmission-line, wave-like velocity for 10 mm
of mterconnect. Nonetheless, this initial implementation suffers from significant
overheads in ferms of power dissipation and die area. A great effort has been
devoted fo overcome such limitations. For imstance, Ifo et al. [48] extended
G-Lines to support broadeast, multi-drop and bidirectional transmissions. This
contribution enables both low-latency and multi-drop ability on a transmission
line with low-power dissipation. However, their results still exhibit several
integration density issues. Addifionally, Ho et al. [122] and Mensink et al. [39]
have shown that a capacitive feedforward method of global interconnect reduces
both power dissipation and die area overheads. In particular, they achieve nearly
single-cycle delay for long wires with voltage-mode signaling. As a result, every
G-Lirte 1s basically a shared wire that broadeasts 1-bit messages (signals from now
on) across ore dimension of the chip in a single clock cycle. A practical use of
G-Lines is presenfed by Krishna et al. [142] in the context of networks-on-chip
(NoC). Krishna et al. leveraged G-Lines using mulfi-drop connectivity and the
S-CSMA collimion detection technique to enhance a flow control mechamsm (EVC)
in terms of latency and power dissipation. In particular, these G-Lines are used
to broadeast the control signals of EVC in order to communicate the availability
of free buffers and virtual charmels much more accurately. Furthermore, the
authors employ the 5CSMA technique to caleulate how many virtual channels
or free buffers are demanded at any time in order to grant requests accordingly.
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As we will see, in this thesis we also leverage this fechnology to deploy
dedicated G-Lirne-based networks on chip, in order to implement synchromzations
and coherence protocols to overcome the previously deseribed performance
limitations in future many-core CMPs.

1.7 Thesis Motivation and Contributions

Many-core CMFPs demand new solutions te keep up with the exponential growth
in performance as historically has been made and predicted. The previous
sections have exposed some of the major actual performance limitations which
are present in this kind of systems that we have categorized in synchronization
and coherence problems (Sections 1.4 and 1.5). We have also considered to make
use of special techneology in Section 1.6 that, due to its extremely fast nature and
minimal area overhead and power dissipation, helped us provide very efficient
hardware-based implementations to overcome such performance limitations.
The main contributions of this thesis are summarized as follows:

* An efficient hardware-based barrier implemeniation, namely GBarrier, based
on two main components. First, a very lightweight dedicated en-chip
network that could be deployed in a hierarchical layout for scalability. And
second, a very simple synchronizafion protocol. By levering both full-
custom G-Lines technology and a nowadays standard toolflow to implement
our proposal, we have found significant performance improvements for
a simulated many-core CMP in terms of execufion time, network traffic
and energy consumption in comparison fo the most efficient software-
based barrier fo date. Finally, we conclude that our proposal is not so
dependent on full-custom technelogy to achieve significant improvements,
by requiring negligible on-chip area and minimal power dissipafion for
both technologies.

* An efficient hardware-based infrastructure for highly-contended locks, namely
GLock, which deploys a dedicated on-chip network and relies on a simple
token-based messaging-protocol in order to provide an extremely efficient
and completely fair lock implementation. Te implement GLock, we have also
considered two technologies: full-custormn G-Lines technology and standard
technology. Independently of the type of technology used, our proposal
achieves significant improvements in execution time, nefwork fraffic and
energy consumption when comparing this metrics with respect fo the
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most efficient software-based implementation for highly-contended locks.
Moreover, GLock requires minimal on-chip area overhead and negligible
power dissipation for both technologies.

A simple and very efficient cache coherence protocol, namely ECONG, 1s designed
for future many-core CMPs. In ensuring coherence, our proposal relies
on express coherence nofifications which are broadcast atomically over a
dedicated lightweight on-chip network leveraging G-Lines technology for
superior efficiency. While our protocol meets simplicity in its design, a
performance comparison in a simulated many-core CMP platform against
two contemporary coherence profocols, brings about a high efficiency in
terms of execution fime, network tratfic, and is the most erergy etficient
design.

All the contributions of this thesis have been published in national confer-
ences [66], [/0], relevant international peer reviewed conferences [63], [65], [64],

[67],

[71] and relevant peer reviewed journals [69], [68]. Moreover, ECONO is

currently being considered for publication in an infernational peer reviewed
conference.

1.8 Thesis Organization

The rest of this thesis is organized as follows:
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Chapter 2 discusses the many-core CMF architecture considered, delwves into
the simulation tools employed, and gives a description of the workloads
and metrics used throughout the thesis.

Chapter 3 presents and evaluates our GBarrier proposal for barrier synchro-
nization in many-core CMPs.

Chapter 4 presents and evaluates our GLock proposal for highly-contended
locks in many-core CMPs.

Chapter 5 presents and evaluates our ECONO proposal for a simple and
efficlent coherence protocol in many-core CMPs.

Chapter 6 summarizes the main conclusions of the thesis and points out
future lines of work.



CHAPTER 2

Evaluation Methodology

This chapter presents the experimental methodology that we have followed
throughout this thesis to implement and evaluate our propesals. For that, we start
in Section 2.1 by describing the target systemn that we based on to incorporate our
hardware optimizations. The simulation tools used are presented in Section 2.2
The descriptions of the benchmarks running on top of the simulation tools appear
in Section 2.3. Finally, Section 2.4 discusses the metrics and methods to quantify
the performance benefits that our proposals achieve and, at the end of this section,
we summarize in a table the main characteristics of this evaluation methodolegy.

2.1 Target System

We choose a filed CMP design as reference because its modular nature has
made it popular in several commercial many-core designs [53,54,121]. The basic
architecture 15 designed as arrays of identical or clese-te-identical building blocks
knowns as tiles, overlaid over a point-to-point intercormect typically torming a
mesh-based network-on-chip. From now on, this kind of system will be referred
to as tile-based many-core CME or simply many-core CMFP.

An example of this kind of systern 15 shown in Figure 2.1 for a 3 x3-core CMFP
with a 2D-mesh layout. We can observe that each file has a processing core,
one level of private cache, a slice of the level-two cache along with its directory
entries, and some routing logic. Considering that part of the appeal of CMPs is
their ability fo exploit TLP and provide higher throughput than a wider-issue
uniprocessor while consuming less energy per operation, we have modeled the
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Figure 2.1: 3 x3-core CMP architecture with a 2D-mesh topology.

processing cores of our CMP architecture after lightweight, in-order processors.
Split instruction and data caches are available at the private level, while the
second level is unified, physically distributed but logically shared amongst all
processing cores. Private caches are kept coherent across the unordered network
through an on-chip distributed directory protocol. The L1 caches maintain
inclusion with the L2 cache, trading off some on-chip capacity for lower design
complexity in the coherence controllers. Moreover, we use the less significant bits
of the block address to determine the home tile for every memory block.

While our proposals have been specifically designed for a many-core CMP,
different settings for this basic system have been evaluated in function of the type
of simulation tool employed as well as the optimization proposed. This is the
reason why we defer the specific details of each simulated system to the chapter
where the particular proposal is described, optimized and evaluated.

2.2 Simulation Tools

As our proposals have their own idiosynerasies and involve different optimiza-
tions in the context of many-core CMPs, we have chosen two different simulation
tools: Sim-PowerCME to implement GBarrier and GLock; and Simics-GEMS, to
implement ECONO. Moreover, we utilize a toolflow to deternune efficiency using
a current industrial standard cell design methodology.
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Figure 2.2: How partallel applications are fransformed for simulation in Sim-
PowerCMP.

2.2.1 Sim-PowerCMP

Simn-PowerCMP [3] is a detailed architecture-level power-performance simulation
tool that models tiled-CMP architectures with a shared L2 cache on-chip and
a MESI directory-based cache coherence protocol. Particularly, this simulator
is based on a Linux x86 port of RSIM [24] and models a CMP archifecture
consisting of arrays of replicated tiles connected over an on-chip network. Each
file contains a processing cote with primary caches (both instruction and data
caches), a slice of the L2 cache, and a connection to the on-chip network as shown
in Figure 2.1. Sim-PowerCMP estimafes power dissipafion by implementing
already proposed and validated power models for both dynamic power (from
Wattch [27], CACTI [52]) and leakage power (from HotLeakage [155]) of each
processing core (including the L1 caches), the shared multi-bank L2 cache, as
well as the interconnection network (from Orion [49]).

To run parallel applications on top of the Sim-PowerCMI performance simu-
lator, we have to follow a particular process that transforms a parallel application
code info a runnable code for this simulator. It is shown in the block diagram
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illustrated in Figure 2.2, As shown in the figure, the first step is to write the
applications in C with annotafions that add parallel shared memory semantics
to C. In all cases, the programs use the annotations proposed by Boyle et al. [58]
(usually known as PARMACS macros). In consequence, the m4d preprocessor
transforms the parallel programs into plain C sources substifufing the parallel
shared memory annotations into C statements or suitable library calls, using the
sef of PARMACS macros included in the RSIM distribution. We must consider
that, like R5IM, Sim-PowerCMP simulates applications compiled and linked for
SPARC V9 /5Solaris using ordinary SPARC compilers and linkers. In this way,
the Sun SFARC C compiler for Solaris is used to generate the relocatable object
files that the Sun linker links together (along with the RSIM library, C library and
math library), to create an executable SPARC application. For faster processing
and portability, the Sim-PowerCMP simulator actually interprets applications in
an expanded, loosely encoded instruction set format. For that, a predecoder is
finally used to convert the executable SPARC application into this internal format,
which is then fed into the simulator.

This performance simulator has been utilized in this thesis to implement
and evaluate the two synchronizafion mechanisms infroduced in the previous
chapter: GBarrier and GLock. For the implementation, we have extended both the
RSIM macros and the RSIM library to make visible at application-level code the
procedure calls required to use GBarrier and GLock. In addition, we have extended
the kernel of the Sim-FowerCMPF to integrate the functionality provided by them.
For the evaluation part, a number of relevant multi-threaded benchmarks listed
in Section 2.3 have been convenienfly transformed as aforementioned. Affer
running the benchmarks, the detailed statistic reports of this simulator allowed
us to determine the exact magnitude of the performance benefits that the use of
our proposals entail. Later on, in Section 2.4, we describe the mefrics, among
all those reported by Sim-PowerCMPE, that we focused on in our evaluafions.
Finally, our proposals have been evaluated against some of the software-based
synchronization primitives provided by RSIM. In this way, in case of GBarrier, we
have made use of a sophisticated binary combining-tree barrier [29]. In regards
to GLock, we have employed a test-and-testiset implementation [29] for locks
with low contention, and we have exfended the RSIM library with the most
efficient software-based implementation for highly-contended locks considered
to date (MCS Locks [76]).
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Figure 2.3: Architecture of the Simics-GEMS simulation framework.

2.2.2 Simics-GEMS

We have also used the Wisconsin Genteral Execution-driven Multiprocessor Simulator
(GEMS) simulafion envirorment [98], which 1s based on Wind River Simics
[118]. Simics is a full-system functional simulater of multiprocessor systems that
supports the SPARC instruction set architecture (ISA) amongst others, on which
we run a number of parallel benchmarks described in Section 2.3, In particular,
we use Simics 3.0.31 to boot an unmodified Solaris 10 box with 16 processors
and 4GB of memory, using the sarek target machine (Sun Fire 6800 server with
UltraSPARC-III Cu processors). Simics supplies an in-order processor model in
which all instructions take one cycle to execute. Simics then allows an external
module to register with its tinung interface, so that the latency of memory access
mstructions can be modeled with accuracy.

While Simics is responsible for the functional correctness of the simulation
framework, GEMS provides several timing modules that plug info Simics to
incorporate detailed models for the fundamental components of the system. In
particular, we used GEMS 2.1 to implement our ECONO proposal. As shown in
Figure 2.3, GEMS comprises two main modules, namely Ruby and Opal. The for-
mer models memory hierarchies and uses Specification Language for Implementing
Cache Colerence (SLICC), a domain-specifie language fo describe the behaviour
of coherence protocols in ferms of their state machine. The latter captures the
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temporal features of an out-of-order processor. A third module called Tourmaline
allows Simics to be used as functional simulator for fransactional applications,
enabling near-Simics execution speeds while preserving transactional semantics.
For the evaluafions presented in this thesis, we model a chip-mulfiprocessor
(CMP) composed by simple in-order processing cores [8], and henwe only the
Ruby module was used.

The Ruby module offers an event-driven framework to precisely simulate
a memory hierarchy that allows us to measure the effects of behavioral and
structural changes to the components that conform the memory subsystem,
namely L1 and L2 caches, and directory and memory controllers. Ruby models
the latency of each memory request received from the functional simulator
by stalling Simics until the memory hierarchy brings the requested data with
appropriate permissions to the requesting processor’s first level cache. As a
request travels across the memory subsystern, each compoenent introduces a given
delay, measured from the moment the message is picked from its input port for
processing, unfil the component gererates a response and injects it back into
the network. All the components are connected using a detailed network model
called Garnet [107], which features a state-of-the-art inferconnect that precisely
models the time required to deliver a message from one component to another.

Simics-GEMS was employed to implement our last proposal of this thesis: a
cache coherence protocol called ECONO. We decided to make use of this simula-
tion tool because SLICC considerably simplifies and speeds up the development
of the cache and directory controllers for ECONO and the different protocols
discussed in this thesis. Moreover, this simulafion tool alse provides a very
detailed report of coherence-related statistics that helped us gain insight into
where efficlency and performance degradation come from in every case.

2.2.3 Mainstream Industrial Toolflow

A Mainstream Industrial Toolflow was also used to precizsely quantify the operation
hnung and on-chip area overhead that our proposals feature when considermg a
current industrial standard cell design methodology.

Figure 2.4 ouflines a block diagram of the toolflow ufilized in this thesis.
There are six main boxes that represent the six common steps performed in
a current mainstream industrial toolflow from design specification to silicon
tabrication. As we can see on the right part of the figure, we also illustrate the
tools that allowed us to accomplish the steps in the flow they are attached to (e.g.
ModelSim is the tool for functional verification).
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Figure 2.4: Mainstream industrial toolflow.

The first step involves the codification of the design we want to physically
implement or synthesize. The language chosen for this step is the Hardware
Description Language (or HDL) called Verilog [148]. In particular, we describe our
digital system following a behavioral model rather than the lower-level Register
Transfer Language (IKTL) model shown in the figure. The KTL code is very close
to assembly language based on deseribing how data is fransformed by pure
combinational logic as it is passed from register to register!. In confrast, the
behavioral code looks very similar to C, declaring procedural blocks where both

IThe term register refers to a sequential logic component, like a Flip-Flop, which stores an
input or an output value produced during a given clock cycle by the combinational logic part of
the designed system.
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the combinational and the sequential codes are written. From the programmer
standpoint, the main difference with respect to an imperative paradigm language
such as C1is that all blocks in the Verilog code are executed concurrently. This
is due fo the fact that every block models a component of the designed system
(e.g. a counter) that runs independently because it is fed with one of the leaves
of the clock tree signal (i.e. a different leaf for every block). In Verilog there are
two kind of blocks that we must deal with. The always block, which, as the name
suggests, is executed in a loop over and over again and is used fo encapsulate
the functionality of a particular component of the system. An always block has
input and output ports to establish an interaction with the block or they can be
used to communicate with other blocks. The other type 1s the initial block, which
1s executed only once at ime zero and it commonly initializes the clock and reset
signals, and gives the initial values to the input perts that feed the afways blocks.

The second step comprehends a functional verification of the previous Verilog
codification for the desipn in order to know if all of its blocks work correctly. For
that a testbench is writtenn which generates a clock, reset a set of input signals
that sfimulafe all the blocks (i.e. it is the initial block) and gives a report of all
the output signals. The ModelSim [104] is the fool that we chose for this step,
which compiles the Verilog code at behavioral level, including the testbench, to
gererate the RTL code that is simulated to carry out the functional verification.
This tool was chosen since it includes a powerful graphical user inferface that
easily allowed us to check all the input and oufput values on a eyele-by-cycle
basis (even a more precise timing scale can be watched) in order to know if the
design meets the timing requirements (Le. it generates the right output values at
the right moment). If the design is not correct at this level, we must go back fo
the first step in the toolflow (see the figure) and iterate until a correct design is
obtained.

Once our design 1s correct at level of KIL code, we have to synthesize and to
check affer synthesization whether the tool in charge of the synthesization has
found any error in the design (e.g. the combinational part has logic that never
produces a value, or there are some unconnected ports, or the tool has produced
Latches to implement some registers rather than using the more predictable Flip-
Flops). To this end, we used the Synopsys Physical Compiler [139] synthesis tool
that takes as inputs the RTL code and the target technology library by which we
want to synthesize our design, and produces a preliminary synthesized design.
In particular, we rely on a 45 nm standard cell technology library provided by
STMicroelectronics [138]. As a result of this step, the RTL code 1s mapped to a set
of basic legic components or cells (e.g. AND gates or D-Type Flip-Flops) and the
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tool autematically inserts the necessary RC-based wires to iIntercommect these cells,
in function of the input/output port connections declared at Verilog codification.
In particular, we use the dc_shell program provided by the Synopsys Physical
Compiler. This program can be configured with an specific clock period by which
the resulting synthesizable design must operate. Moreover, after a successful
synthefization process, it produces a cell-based design (netlist) along with a
detailed report where we can see if the design can meet a parficular constraint
called slack. That is, the slack will be met as long as the time of the longest path
in the neflist between two registers in the design is less or equal to the given
clock period. Otherwise, we can either increase the clock peried or re-design the
Verilog code by, for example, including additional registers between the longest
path to minimize ifs latency. It is important fo note that at this stage of the
toolflow, the tool is not aware of wire delays and the timing {s estimated based
on the cell delays.

The neflist from the synthesis tool has to be properly placed in a given
floorplan (ie. where cells belonging to a particular component of the design
must be placed on chip). Moreover, distance-aware connections between those
components have also to be established in order to obtain minimal propagation
delays for the signals that travel over these RC-based wire connections. To this
end, we used the Cadence SoC Encounter Toeol [26]. This tool takes as input
the dimensions of the floorplan along with a topographical placement of the
components of our design to instruct where to place each of them in the floorplan.
Then, the tool estimates the shortest cormections for the placement constraints
ndicated to the tool. Moreover, the tool also routes the clock tree and the reset
signals that input all components in the design. For our designs, we assume
a single clock domain with a unique clock free for the whole many-core CMP.
Apart from the netlist enriched with all the RC-based wires (post-layout design),
this tool also dumps out a detailed description of fiming for all components in
the system including the parasitic side effects that degrade propagation latencies
for the connections between components. In addition, this tool also provide a
detailed report of the on-chip area overhead required by the synthesized post-
layout design.

The next step involves checking if the timing properties of the post-layout
design meets or not the iming constraints of the imtal design. For that, a tinung
validafion is execufed using a sign-off procedure performed by the Synopsys
PrimeTime tool [140] using ifs pt_shell program. If the timing constraints are
met, the design is ready to be directly manufactured by the industry, and it must
be also tested after fabrication to detect any possible bug in the design. Otherwise,
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a re-desipn of the system or another adjustment in the timing constraints followed
must be done by going back to earlier steps in the toolflow.

To conclude this section, we want to justity the use of this Mainstream
Industrial Toolflow in this thesis. The main reason was fo determine whether
our proposals are fully dependent on a full-custorn non-standard fechnology
to work efficiently in ferms of minimal operation latency and negligible on-
chip area overhead. As we will explain, while GBarrier and GLock could be
successfully implemented using the previously described standard methodology,
ECONO requires the use of a full-custom technology to be efficient enough for
its integration in many-core CMPs.

2.3 Benchmarks

In this section, we describe the benchmarks that we have considered in this thesis
to evaluate our proposals. It is important to note that each of our proposals
has been evaluated by ufilizing the parficular subset of the berwchmarks that
better reflect the characterization to be deone. For instance, benchmarks that show
a significant fraction of their execution fime devoted to lock synchronizations
were employed to evaluate our hardware-based lock proposal (GLock). Here, we
distinguish three types of benchmark: Microbenchmarks, Kernels and Real or
Scientific applications. Moreover, a number of synthefic benchmarks were also
used in an attempt to gain insight into the potential benefits that our proposals
could entail, although to have a clear understanding of their use, they have not
been included in this section so that their descriptions will be given later in the
corresponding chapters.

2.3.1 Microbenchmarks

To understand the basic performance capability of a parficular design, mi-
crobenchmarks are commonly used. In particular, we have implemented five
different microbenchmarks following a methodology similar to the one used
in [125,130].

Single Counter (SCTR) consists of a counter {fits in a cache line), protected
by a single lock, that is incremented by all threads in a loop.

Multiple Counter (MCTR) is made up of an array of counters (residing in
different cache lines), protected by a single lock, where each thread increments a
different counter of the array in a loop.
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Doubly Linked list (DBLL) builds a doubly linked list, protected by a single
lock, where threads dequeue elements from the head of the list and enqueue
them into the tail of the list afterwards.

Producer Consumer (PRCO) consists of a shared FIFO (bounded) array, pro-
tected by a single lock, that is initially empty. Half the threads enqueue ifems
into the FIFO that are consumed by the other half of threads. Producers have
to wait for free slots in the FIFO whereas consumers have fo wait for data fo
consume before iterating the critical section code.

Affinity Counter (ACTR) uses two locks that protect two counters accessed
consecutively by all threads. For each iteration, all threads acquire the first lock
fo update the first counter, the barrier synchronizes them, and then the second
lock is acquired to modify the second counter.

2.3.2 Kernels

Several kemels have also been considered in this thesis. This kind of workload
extract some well-defined parts of complete applications to reasen about achieved
performance by focusing on a particular behavior of an specific group of opera-
fions in the code. For instance, to evaluate the performance benefits derived frem
our GBarrier implementation, a piece of application” code that is barrier intensive
would constitute a Kemel.

FFT. The FFT kernel is a complex one-dimensional version of the radix-+/n
six-step FFT algorithm, which is optimized to minimize interprocessor commu-
nication. The data set consists of the # complex data points to be fransformed,
and another # complex data points referred to as the roots of unity. Both sets of
data are organized as /1t X +/# matrices parfifioned so that every processer is
assigned a contiguous set of rows which are allocated in ifs local memory. All
synchronization operations in the FFI's code are implemented by means of a few
barriers that do nof represent a relevant fraction of the total execufion time of
this kemel.

Livermore Loops. Livermore loops [41] have long been used as a tough
test for compilers and archiftectures. They present a wide array of challenging
kernels where fine-pgrain parallelism 1s present but it is hard to extract and exploit
efficiently. Following the recommendations given in [82], we have focused on
Kernels 2, 3 and 6 because they present a sipnificant amount of barrier operations
in their codes. In short, Kernel 2 is an excerpt from an incomplete Cholesky
conjugate gradient code. Kernel 3 15 a simple inner product. And finally, Kernel
6 is a general linear recurrence equation.
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Radix. The Radix kemel sorts a series of integers, called keys, using the
peopular radix sorting method. The algorithm is iterative, performing one iteration
for each radix r digif of the keys. In each iferation, a processor passes over its
assigned keys and generates a local histogram. The local histograms are then
accumulated into a global histogram. Finally, each processor uses the global
histogram to permufe ifs keys into a new array for the next iteration. This
permutation step requires all-to-all communications by using barriers which do
not represent a sipnificant fraction of the kernel execution time. The permutation
1s inherently a sender-determined one, so keys are communicated through writes
rather than reads.

2.3.3 Scientific and Real Applications

Finally, we have chosen several scienfific and real applications belonging to
different benchmark suites and others. From SPLASH-2 [128]: Barnes, Ocean,
Radix and Raytrace. Moreover, belonging to PARSEC benchmark suife [18],
we chose Swaptions. Other benchmarks in this group are: EM3D, Tomcaty,
Unstructured and QSort.

Barnes. The Barnes application simulates the interaction of a system of bodies
(galaxies or particles, for example) in three dimensions over a number of fime
steps, using the Barnes-Hut hierarchical N-body method. Each body 1s modeled
as a point mass and exerts forces on all other bodies in the system. To speed up
the interbody force calculations, groups of bodies that are sufficiently far away
are abstracted as point masses. In order to facilitate this clustering, physical space
is divided recursively, forming an octree. The tree representation of space has to
be traversed once for each body and rebuilt after each ime step to account for the
moverrent of bodies. The main data structure in Barnes is the tree itself, which
is implemented as an array of bodies and an array of space cells that are linked
together. Bodies are assigned fo processors af the beginning of each time step
in a partitioning phase. Each processor calculates the forces exerted on its own
subset of bodies. The bodies are then moved under the influence of those forces.
Finally, the tree is regenerated for the next time step. There are several barriers
for separating different phases of the computation and successive time steps.
Some phases require exclusive access to tree cells and a set of distributed locks 1s
used for this purpese. The comrmmication patterns are dependent on the particle
distribution and are quite irregular. No attempt 1s made at intelligent distribution
of body data in main memory, since this is difficult at page granularity and not
very important to performance.
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EM3D. This benchmark is a shared memory implementation of the Split-C
benchmark [28]. The EM3D application models the propagation of electromag-
netic waves through objects in three dimensions. The problem is framed as a
computation on a bipartite graph with directed edges from E nedes, representing
electric fields, to H nodes, representing magnetic fields, and vice versa. At each
step in the computation, new E values are first computed from the weighted sum
of neighboring H nodes, and then new H values are computed from the weighted
sum of neighboring E nodes. Edges and their weights are determined statically.
The inifialization phase of EM3D builds the graph and does some precompu-
tation to improve the performance of the main loop. To build the graph, each
processor allocates a set of E nodes and a set of H nodes. Edges are randomly
generated using a user-specified percentage that determines how many edges
point to remote graph nodes. The sharing patterns found in this application
are static and repetitive. Synchronization in this application is accomplished by
using barriers.

Ocean. The Ocean application studies large-scale ocean movements based
on eddy and boundary currents. The algorithm simulates a cuboidal basin
using discretized eirculation model that takes into account wind stress from
atmospheric effects and the friction with ocean floor and walls. The algorithm
performs the simulation for many time steps unfil the eddies and mean ocean
flow attain a mutual balance. The work performed every fime step essenfially
mmvolves setting up and solving a set of spatial partial differential equations. For
this purpose, the algorithm discretizes the continuous functions by second-order
fimte-differencing, sets up the resulting difference equations on two-dimensional
fixed-size grids represenfing horizontal cross-sections of the ocean basin, and
solves these equations using a red-back Gauss-Seidel multigrid equation solver.
Each fask performs the compufational steps on the section of the grids that
it owns, regularly communicating with other processes. Synchronization is
performed by using both locks and barriers.

QSort. The (Jsort [17] application is a well-known sorfing algorithm that is
based on the principle of resolving a problem into two simpler subproblems.
Each of these subproblems may be resolved to produce yet simpler problems. The
process is repeated until all the resulting problems are found to be trivial. These
trivial problems may then be solved by known metheds, thus obtaining a solution
of the original more complex problem. Sorting a given array of integers require
many frequent lock operations to profect the infegrity of the data structure for
every modification done in the items to be sorted.
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Raytrace. This application renders a three-dimensional scene using ray trac-
ing. A hierarchical uniform grid is used to represent the scene, and early ray
terminafion is implemented. A ray is traced through each pixel in the image
plane and it produces other rays as it strikes the objects of the scene, resulting in
a tree of rays per pixel. The image 1s partitioned among processors in contipuous
blocks of pixel groups, and distributed task queues are used with task stealing.
The data accesses are highly unpredictable in this application. Synchronization
in Raytrace is done by using locks. This benchmark is characterized for having
very short critical sections and very high contention. Barmers are not used for the
Raytrace application.

Swaptions. The Swaptions application is an Intel workload which uses the
Heath-Jarrow-Motten (HIM) framework fo price a portfolio of swaptions. The
HJM framework describes how interest rates evolve for risk management and
asset liability management for a class of models. Because HJM models are non-
Markovian the analytic appreach of solving the PDE to price a derivative cannot
be used. Swaptions employs Monte Carle (MC) simulation to compute the prices.
To do so, the program stores the portfolio in a swaptions array. Each enfry
corresponds to one derivative. Swaptions partitions the array into a number of
blocks equal to the number of threads and assigns one block fo every thread.
Each thread iterates through all swaptions in the work unit it was assigned and
calls the function HJM Swaption Blocking for every enfry in order to compute
the price. In this application there is a small fraction of execution time due to
synchronization operations comprised of a few locks.

Tomeatv. This is a parallel version of the SPECCFP95's fomcatv applica-
tion [136]. The original source was part of Prof. W. Gentzsch’s benchmark suite.
Tomcate is a highly vectorizable program for the generation of two-dimensional
boundary-fitted coordinate systems around general geometric domains such as
airfoils, cars, ete. It is based on the method intfroduced in 1974 which uses two
Poisson equations to produce a mesh which adapts to the physical region of
interest. The transformed non-linear equations are replaced by a finite differ-
ence approximation, and the resulting system is solved using successive live
overrelaxation.

Unstructured. Unstructured is a computational fluid dynamics application
that uses an unstructured mesh to model a physical structure, such as an airplane
wing or body. The mesh is represented by nodes, edges that connect two nodes,
and faces that connect three or four nodes. The mesh is static, so its connectivity
does not change. The mesh is partifioned spatially among different processors
using a recursive coordinate bisection parfifioner. The compufation contains a
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series of loops that iferate over nodes, edges and faces. Most communication
occurs along the edges and faces of the mesh. Synchremization in this application
is mainly accomplished by using barriers.

2.4 Metrics and NMethods

The evaluation of the proposals presented in this thesis has been carried out using
different metrics depending on the particular optimization we are providing,.
While each of our proposals have required a particular set of metrics, in general
we have considered the following: performance, network tratfic, on-chip area
overhead and power dissipation. The other metrics specific to each proposal will
be discussed where appropriate.

For evaluafing the performance, we measure the total mumber of cycles
employed for each application during its parallel phase, i.e., the execution time
of the parallel phase. Although the IPC (instructions per cycle) consfitutes a
common metric for evaluating performance improvements, it is not appropriate
for multithreaded applications running on multiprocessor systems [10]. This is
due to the spinning performed during the synchronization phase of the different
threads. For example, a thread can be repeatedly checking the value of a lock
until it becomes available, which increases the number of completed instructions
(and maybe the IPC) but actually the program is not making progress. On
the one hand, for our two synchronization proposals (GBarrier and GLock), in
order to better understand the reasons why we improve performance, we depict
a breakdown of the applications’ execution time in order to account for the
fraction of the execution time devoted to synchronization, memorty operations
and effective computation (i.e. arithmetic operations). On the other hand, for
our coherence protocol (ECONO), apart from estimating the execufion time
Improvements, we also analyze the coherence activity performed and assess the
reduction in L1 cache misses achieved considering each miss individually. By
doing so, we precisely understand where the improvements come from. Moreover,
another important metric here to take inte account is the number of protocol
hops. Note that, performance improvements can also be a consequence of the
number of coherence messages that are needed in the critical path of a cache
miss for solving it.

We also measure the fraffic injected in the inferconnection network by the
three proposals and, when required to reason about improvements, we expose a
decomposition of the traffic in function of the magnitude of every type of message
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transmitted: data and control messages (requests and coherence activity). In case
of the control messages 8 bytes are required while 72 bytes are employed for data
messages.

Regarding the on-chip area overhead, we show both detailed and qualitative
analysis of this metric. In the former case, we employ the statistics reported by
the mainstream industrial toolflow presented in Section 2.2.3 when synthesizing
our proposals. The latter case is a valid optien if there 15 a very clear evidence that
the magnitude of the area overhead is negligible, so that a precise quantification
is unnecessary. Thaf is the case when using the fullcustom technology of
Section 1.6 to implement our proposals. As we will see, if marginal area numbers
are estimated for a much costlier design (the on-chip network utilized in the
work where this technology is explained for the first time [143]), obviously our
proposals will require negligible on-chip area overhead.

We have also provided results in terms of the power dissipated by our pro-
posals. As for the area metric, we show both detailed and qualitative outcomes,
although in this case the detailed analysis s done for the full-custom technology.
First, we estimate the power dissipation relying on the power parameters for a
65-nm CMOS process simulated in [143]. And second, in case of our synchroniza-
tion proposals, we integrate the already commented eshmated power dissipation
in the simulation tool employed for them (Sim-PowerCMP), to obtain the total
power dissipation statistics for the full CMPE. By means of the latter results, we
have also estimated the energy efficiency utilizing the energy-delay® product
(ED?P) metric. The negligible on-chip area overheads that our proposals entail
when using the mainstream industrial toolflow led us to conclude the same for
the power dissipation.

Finally, we describe some other important aspects related to the methodology
used. All the experimental results reported in this thesis correspond to the parallel
phase of each program. In case of Simics-GEMS, we have created checkpoints
for every benchmark in which each application has been previously executed to
ensure that memory 1s warmed up and, hence, avoiding the effects of page faults.
Then, we run each application again up to the parallel phase, where each thread
is bound to a particular core. The application is then run with full detail during
the initialization of each thread before starting the actual measurements. In this
way, we warm up caches to avoid cold misses. Moreover, the different extensions
and protocols implemented for our ECONO proposal have been exhaustively
checked using a tester program provided by GEMS. The tester program stresses
corner cases of cache coherence protocols to raise any incoherence by issuing
requests that simulate very contended accesses to a few memory blocks.
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Proposal

Table 2.1: Summary of the evaluation methodology.

Simulation Tools

Benchmarks

Metrics

G Barrier

Sim-PowerCMT,
Industrial Toolflow

Ocean, EM3D, Unstructured,
Kemnel 2, Kernel 3, Kemniel &

Time, Traffic, Area,
Energy, Power

ClLack Sim-PowerCMT, Ocean, Raytrace, (Jsort, Time, Traffic, Area,
Industrial Toolflow | SCTR, MCTR, DBLL, PRCO, ACTN | Energy, Power
ECOMND | Simics-GEMS Barnes, FFT, Ocean, Radix, Time, Traffic, Area,

Raytrace, EM3D, Tomeaty,
Unsiructured, Swaptions

Power, Cache Misses

To conclude this chapter, from all the discussions given above, Table 2.1
summarizes the evaluation methodology employed in this thesis.
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CHAPTER 3

GBarrier: An Efficient Infrastructure
for Barrier Synchronization

3.1 Introduction and Meotivation

A barrieris a synchromization prinutive that enables multiple processes or threads
to wait in a particular point of execution, until all of them have reached it before
any of them can continue. A typical example of its usage is utilizing barriers to
separate the different phases commonly found in parallel applications [119]. By
doing so, the programmer ensures that the second phase does not start until all
processes or threads from the application have completed the first one.

In the confext of systems that implement a shared-memory programming
model [29], with the advent of multi-core architectures, new challenges are arising
to provide an efficient barrier implementation. This is mainly due to the fact that
differently to classical multiprocessor applications which target coarse-grained
parallelism, multi-core applications tend to exploit fine-grained parallelism, and
therefore, they may be highly sensitive to barrier performance [83].

Typical implementations of current software-based barriers (SW-barriers, from
now on) rely on busy-waifing on shared wvariables which are atomically up-
dated [76]. Newvertheless, the use of shared variables implies that the cache
coherence protocol must come in on mainfaining their consistency across all
levels of the memory hierarchy. In turn, coherence activity translates into tratfic
injection in the interconnection network. As a resulf, an ever-growing amount
of resources and energy may need to be devoted to support SW-barriers as the

59



3. GBarrier: AN EFFICIENT INFRASTRUCTURE FOR BARRIER SYNCHRONIZATION

DBarmiws

Execution Time {Cyclns)

Figure 3.1: Fraction of time due to barriers in EM3D.

number of cores in many-core CMPs increases. On the other hand, busy-waiting
on locally-cached shared variables has also significant implications on the energy
consumed by the L1 caches.

As an example, Figure 3.1 illustrates the potential performance losses suffered
in the EM3D parallel application when using SW-barriers in future many-core
CMPs (for details about the evaluation see Section 3.4). In particular, we present
the results obtained for a sophisticated binary combining-tree barrier (which
15 considered one of the most efficient SW-barriers) as the number of cores is
increased from 1 to 32. Each bar shows the fraction of the execution time due to
barrier synchronization in orange color. As can be derived from the figure, as
the mumber of cores increases so does the fraction of the execution time due fo
barrier synchronization (up to 63% for 32 cores), thereby considerably limiting
scalability.

In this chapter, we describe and evaluate an efficient barrier synchroniza-
tion mechanism specifically designed for many-core CMPs. Differently from
SW-Barriers, our proposal, namely GBarrier, has been implemented enfirely in
hardware. To implement GBarrier, we have explored two different technologies.
On the one hand, we make use of the state-of-the-art full-custom G-Lixes technol-
ogy and the 5-C5MA technique explained in Section 1.6. In short, every G-Line
enables almost speed-of-light 1-bit communications across one dimension of the
enfire chip, and the 5-CSMA technique is employed to detect the number of
sirmultanecus fransmissions over a G-Line. On the other hand, we ufilize the
mainstream industrial toclflow with standard cells in an advanced 45 nm process
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(Standard technology from now on) presented in Section 2.2.3, in onder to obtain a
cost-effective implementation for our proposal at the expense of some negligible
performance losses.

To show the benefits derived from GBarrier, we integrate both GBarrier im-
plementations info the Sim-PowerCMP performance simulator (further details
in Section 2.2.1) for a 32-core CMP layout. Moreover, we compare their perfor-
mance results against the most effieient SW-barrier considered to date (a binary
combining-free barrier) by using several kernels and scientfific applications. In
particular, performance results for the G-Lines technology show an average reduc-
fion of 54% and 21% in execution time, for the kernels and scientific applications
respectively. The latter performance results suffer from a penalization of 6.3% and
4.3% when using the other slower Standard technelogy, respectively. Nonetheless,
as we will see, the relative improvement provided by G-Lines can be considered
negligible in comparison fo the much higher execution fimes reported by the
most efficient SW-barrier implementation. In addition, given the fact that GBar-
rier does not deal with the main data networlk, it exhibits an average reduction
of 53% and 18% in network traffic, for the kernels and scienfific applications
respectively. This traffic reduction also leads to an average reduction of 76% and
31%, for the kernels and sclentific applications respectively, in the energy-delay?
product (ED?P) metric for the full CMP. Finally, we have also evaluated the area
overhead and power dissipation that each technology-aware GBarrier implemen-
tatien would entail, concluding that both of them are negligible regardless of the
technology employed.

The rest of the chapter is organized as follows. We detail the architecture,
operation, properties and costs of GBarrier, and discuss how our proposal can be
generalized to operate on different scenarios in Section 3.2, Next, in Section 3.3
we discuss some important performance implications when using our proposal.
Then, Section 3.4 shows the simulation environment used in this chapter and
analyzes the benefits brought by GBarrier in terms of reductions in execution time,
network fraffic and power dissipation. Nexf, Section 3.5 discusses the related
work on hardware barrier implementations. Finally, Section 3.6 presents our
main conclusions.

3.2 The GBarrier Synchronization Mechanism

In this section we present our proposal to build an efficient hardware infrastruc-
fure for barmier synchronization in the context of many-core CMPs. To do so,
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Figure 3.2: GBarrier architecture for a 16-core CMP with a 2D-mesh network.

we start by deseribing the architecture of the dedicated on-chip network that
our proposal entails. For simplicity, the explanation will be given assuming the
G-Lines technology with the S-CSMA technique. Later on, in Section 3.2.5 we
discuss how GBarrier would be implemented using the Standard technology. As a
case study, we choose a CMFP with a 2D-mesh data interconnection network with
K rows of C cores each (for a fotal of N = RxC cores), although our proposal
is not restricted to this topology. Next, we show how the GBarrier mechanism
would operate. After that, we describe the inferface for programmers and pro-
vide details about the implementation of the set of controllers required by our
proposal. Finally, we analyze the implementation costs and describe how our
mechanism can be generalized to operate in several scenarios.

3.2.1 Dedicated On-Chip Network Architecture

The GBarrier mechanism relies on a dedicated on-chip network as if can be
observed in the example in Figure 3.2, For simplicity, we concenfrate on a
version of the proposed network providing support for one barrier!. As shown
in Figure 3.2, the GBarrier infrastructure 1s made up of two kind of components.
G-Lines (horizontal and vertical finer black lines), that are used to fransmif the
signals required by the synchronization pretocol; and controllers (M and 5), that
actually implement the synchronization protocol.

'In Section 3.2.6 we discuss the extensions to support several GBarriers.
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As discussed in Section 1.6, every G-Line 1s a wire that enables the transmission
of one bit of information across one dimension of the chip in a single clock cycle.
Our G-Line-based network employs two G-Lines per barrier for every row and two
more for the first column. In this way, for any 2D-mesh layout with K rows and
C columms, the total number of G-Livntes per barrier that would be needed 15 equal
to 2 x (R+1] (e.g. 10 G-Lines for the 16-core CMP assumed in the example).

In addition to the G-Lines, our proposal also incorporates a set of controllers
in charge of the synchronization protocol required for a barrier synchronization.
In particular, we distimguish two types of controllers: master and slave controllers
(see M and S in Figure 3.2, respectively). Each controller is aftached fo two
G-Lintes: one of them is used to transmit signals, whilst the other is employed
to receive signals. More specifically, the G-Line used by the master controeller to
receive signals is the one used by the slave controllers to send signals, and vice
versa. Moreover, the master controller is responsible for carrying out the count
of signals transmitted from all slave controllers attached to the G-Line. To do so,
the master controller contains a device that implements the 5-C5MA technique.
Recall that, this technique implements voltage amplitude sensing to determine
the number of simultanecus fransmifters over a particular G-Line at any given
instant in time.

Finally, for design constraints [142] every G-Live can support up to six trans-
mitters and one receiver as much, resulting in a CMP configuration with up fo
7% 7 cores. However, as we will explain in Section 3.2.6, GBarrier is not restricted
to this mumber of cores and can efficiently operate with even larger core counts
by means of a hierarchical architecture.

3.2.2 Synchronization Protocol

The synchronization protocel implemented on top of the G-Line-based network
previously described relies on the exchange of 1-bit messages (signals) between
the master and slave controllers, and the use of the 5-CSMA technique in the
master controllers to count the number of signals transmitted across every G-Lire.
In our proposal, every barrier synchromzation 1s carried out by using a two-phase
protocol: the account phase and the release phase. The first phase starts when the
first thread arrives at the barrier and finishes when the last one reaches the
barrier. Then, the second phase, in which all threads participating in the barrier
are commanded to resume execufion, is inifiated. The exact inferplay among
threads, G-Lines and controllers is detailed below with an example.
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My Node O

Mh [ SentHm 2)
Mv [ ScniVi=2)
Vifag:=0

Node 2
Mh ( SontH=2)

gy Vim0
-,

Figure 3.3: GBarrier for a 4-core CMP with a 2D-mesh network showing initial
state of registers and flags.

Without lass of generality, we assume that all cores execute the same barrier
at the same time and we explain how the barrier synchronization would take
place on a 2x2 mesh layout (see Figure 3.3). We distinguish between horizontal
and vertical controllers depending on the couple of G-Lines they are attached to.
In this setting, there are four horizontal and twe vertical G-Lines. Thus, there are
two horizontal master controllers {see Mh in cores 0 and 2}, two horizontal slave
controllers (see Sh in cores 1 and 3), one vertical master controller (see Mv in
core 0) and one vertical slave controller (Sv in core 2).

As shown in Figure 3.3, each master controller employs a couple of hardware
elements during a barrier synchronization. The first is the ScntH and SentV
counters required by the horizontal and vertical master controllers respectively.
These counters keep track of the number of signals (obtained through the 5-C5MA
technique) received from the horizontal slaves (cores 1 or 3) or vertical slaves
(just one in this case), and whether the processor core the master confroller is
attached to has arrived at the barrier. The second element is the Vilag flag, which
15 used to establish a local synchromzation between horizental master controllers
and the corresponding vertical controllers (master and slaves) located in the same
core (Mh-Myv in core 0 and Mh-5v in core 2). In parficular, each SentH counter
is initialized with the number of slaves controllers in each row plus one to also
account for the local core. SentH is decremented every time a signal from a slave
controller in its row is received through the corresponding G-Line (Sh in cores 1
and 3, in the example) and also when the local core arrives at the barrier. Once
each ScntH counter reaches zero, the corresponding Vflag flag is sef. Similarly,
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Figure 3.4: Barrier synchronization under GBarrier.

the inifial value of the ScntV counter is the number of vertical slaves plus one,
and is decremented on receiving a signal from a slave controller in its column
(Sv in core 2, in the example) and when ifs local Vfiag flag is set. It is worth
noting that, as explained in Section 3.2.6.1, an initial setup is required in order
to initialize both ScentH and ScentV counters to their maximum values, In the
example of Figure 3.3, since all cores participate in the barrier, these coumters will
be inifialized to two for both horizontal and vertical master confrollers. From
now on, these values will be referred to as MAXH and MAXV for the ScntH and
ScntV counters, respectively.

Taking the initial setup shown in Figure 3.3 as the starting point, Figure 3.4
illustrates an example of how the barrier synchronization process would be
performed. It is worth noting that we are assuming theoretical synchronization
latencies that may not be reflected in the exact number of clock cyeles required
for the two physical GBarrier implementations (see Section 3.3.1).
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At cyele 0, the acconnt phase starts because all threads notify their arrival at the
barrier. To do so, the horizontal slaves (Sh) signal, through their corresponding
transmission lines, the arrival of cores 1 and 3 at the barrier. In turn, the horizontal
masters decrement their ScntH counters with the number of received signals
{ScntH:=1). Besides, each ScentH counter 1s also decremented to reflect the fact
that cores 0 and 2 have also arrived at the barrier (see SentH:=0 in the figure). At
cycle 1, once each horizontal master has detected that its local counter SentH has
reached zero, it sets its Vflag flag (Vflag:=1) In order to make the corresponding
vertical slave (5v) or master (Mv) controller to proceed with the vertical stage of
the account phase. Then, the vertical slave (Sv) signals, through its corresponding
transmussion line, the arrival of cores 2 and 3 at the barrier and the vertical master
(Mv) decrements its SentV counter (SentVi=1). Moreover, the ScntV counter
is also decremented because the cores [ and 1 have also arrived af the barrier
and the Vflag flag was set (ScntVi=0). After the ScnfV counter reaches zero,
the release phase is inifiated. To do so, at cyele 2, the verfical master unsets the
Vflag flag (Vflag:=0)), resets the local S5entV counter to its initial value (Sentl:=2)
and signals the vertical slave, through the corresponding vertical G-Line. Upon
reception of the signal, the verfical slave also resets the Vflag in order to make
the horizontal masters to proceed with the horizontal stage of the release phase.
At eyele 3, the horizontal masters initialize the local SentH counters (ScntH:=2),
and signal, through their corresponding horizental G-Lines, the completion of
the barrier synchronization to all waifing horizontal slaves. It is worth nofing
that all participating threads are spinning on a register until the whole process is
completed as will be explained in Section 3.2.3. Finally, a detailed explanation of
the implementation of these controllers is presented in Section 3.2.4.

3.2.3 Programmability Issues

The GBarrier mechanism proposed in this chapter is infended fo be used by
programmers in a transparent way. For that reason, as shown in Figure 3.5, we
propose to provide a special library-level barrier method (GL_Barrier in the figure)
that encapsulates the functionality of GBarrier and that could be used in parallel
applications ta deal with barrier operations. This barrier method uses a special
1-bit register, called bar_reg, to notity the arrival at the barrier by setting its value
to one (see the mov instruction in Figure 3.5). As explained later in Section 3.2.6,
the bar_reg register needs as many bits as the number of GBarriers provided in
hardware (one bit per barrier). In this way, several barrier operations involving
different sets of cores (the threads in each sef running one application) could
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GL_Barrier() |
asm |

# Arrival at the barrier
mov 1, bar_reg

# Wait until all cores arrive
loop :

bnz bar_reg, loop
# Resume execution

}

Figure 3.5: Encapsulating the GBarrier lunctionality into the GL_Barrier method.

take place simultaneously. In this way, the register file of each core must be
augmented with the bar_reg register and the interplay between confrollers and
these registers must be enabled, switching on the contrellers whenever the bar_reg
registers are written, and resetting the registers and switching off the controllers
once all controllers have finished the synchronization (eycle 3 in Figure 3.4). In
this way, the synchronization protocol explained in the previous section would
be invoked as a result of the activation of the bar_reg register by a processor core.
Then, each core would enter in a loop walting until the rest of cores have reached
the barrier. Onee all cores have set their corresponding bar_reg register and the
synchronization protocol has been completed, all bar_reg registers are reset by
the corresponding GBarrier’s controllers and then, all cores would leave the loop
in order to resume execution.

3.2.4 Implementation of Master and Slave Controllers

In this section, we take a closer lock at the implementation of the set of controllers
in charge of carrying out the synchronization protocol previcusly explained.

Figure 3.6 depicts the automata corresponding to each of the four controllers
aforementioned: Sh, Mh, Sv and Mv for horizontal slave and master, and vertical
slave and master controllers, respectively. Furthermore, over each transition, we
also indicate the event that mobivates the fransifion to the next state, and the
action that may produce a new event? {{ EVENT] / [ ACTION ]). As we can
observe, it can be distinguished the following events and actions:

2Events that motivate the same action are grouped by using the || symbol.
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[ Gora har_rag:=1)] [/ [ SglineH:= 0N ]

[MglineH = ON] f [bar_reg:=0]

[Viag=0]
! [ MylineH:= CN
& bar_rag:=0
& SentH:=NAXH |

[ Cora (bar_reg:=1])
|| SglineH=GMN]/!
[ {ScriH-}1
MasterH
Contrafler

[BcrmiH=0] F [Vlag:=1]

[Vitag=1] f [ SglinaW:= OM |

[Mgline¥ =GN ]/ [Viag=0]

[Wiag=1 || Sgllne¥=0QN] [
[ {Scntv--]* ]

[Scrmiv=0] !
[ Mglins¥:= ON & Vilag:= 0 & ScniV:= MAXY |

Figure 3.6: Finite state automata that implement the G-Line controllers.
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* A core writes the bar_reg register: Core(bar_reg:=1). Notice that we use := to
assign a value and = to compare two values.

= A controller sends or receives a signal through a G-Line: XglineY:=ON,
where X idenfifies the type of controller (M for master and S for slave),
and Y identfifies the G-Line (V for Vertical and H for Horizontal G-Lines
respectively). Besides, if X is equal fo 5, the event may represent the case
where several slave controllers send a signal at the same time, thus the use
of the 5-C5MA technique at the corresponding master controller would be
employed.

* A master controller updates its SentH or SentV register: SentH:=MAXH or
SentVi=MAXV, where, as above explained, the MAXH and MAXV values
correspond to the sum of the number of participant horizontal or vertical
slave controllers, plus one if the processor core the corresponding master
controller is attached fo also parficipates in the barrier. Nofe that, the
fScntH- - and (ScntV- -)* actions for a horizontal or a vertical master con-
troller indicate that the action could be repeated a number of fimes. For
example, if there are three concurrent transmissions from vertical slave con-
trollers (three SglineV=0N events), the ScntV register has to be decremented
three times {(Le. {Scatl~ = 3)).

* A controller sets or unsets the Vflag flag: Viflag:=1 or Vflag:=(}, respectively.
* Finally, no event or action: {].

Next, in order to help the reader, we give a comprehensive description of the
four automata illustrated in Figure 3.6.

As to the horizontal slave controller (see the SlaveH automaton), every hori-
zontal slave controller remains in the Inactive state until the corresponding core
arrives at the barrier. Upon arrival, the register bar_reg is written, which triggers
the event Corefbar_reg:=1), and the horizontal slave controller writes into the
horizontal G-Line (5glineH:=ON). Then, it is switched to the Wait state until the
horizontal master controller commands to resume execution by writing into its
horizontal G-Lire (the MglineH=0N event).

The horizontal master controller (see the MasterH automaton) is switched
ort when either a horizontal slave controller writes its G-Line (the S5glineH:=0N
event) or the local core has arrived at the barrier (Core(bar_reg:=1)). In both cases,
the horizontal master controller decrements the SentH register ( {SentH- -J¥) and
the MasterH automaton fransifions to the Count state. Besides, in this state the
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horizontal master controller continues with the accounting process for every of
the signals from the SlaveH controllers by updating the register ScntH. Nexf,
once ScrtH is equal to zero (all horizontal slave controllers in the same row have
arrived at the barrier and also the local core), the corresponding Vflag is set
(Vflag:=1)) to notity the corresponding vertical controller. Then, the automaton
transitions to the Wait state, in which the horizontal master controller remains
until the Vflag is reset (Vilag=0) by the corresponding vertical controller.

The vertical slave controller (see the SlaveV automaton) enters into play when
the Vflag 1s set by the corresponding horizontal master controller (Vflag=1). This
causes the transition to the Wait state at the same time that a signal 1s written into
the vertical G-Line (the Sgline:=ON). Once the vertical master controller notifies
that execution can be restarted (Mglinel'=0ON), the Vfiag is reset and the vertical
slave controller {s switched off.

The vertical master controller (see the MasterV automaton) is switched on
when either the Vflag flagis set by the corresponding horizontal master controller
(Vflag=1), or a vertical slave controller has written into its slaves’ vertical G-Line
(SglineV=0N). For both events, the register Scntl 1s decremented as explained for
the horizontal master controller. Next, once all SlaveV controllers have signaled
through the G-Lite and the Vflag is set (Le. the ScutV=0 event), the barrier
synchronization has been completed and the vertical master confroller has to
notify the rest of controllers. Te do that, the vertical master controller writes into
the corresponding vertical G-Line (Mglinel:=0N), sets the Scntl to the maximum
value and resets the Vflag flag. As a result of the MglinelV=0N event, the vertical
slave controllers also reset the Vflag flag. Then, the horizontal master controllers
signal through the unused G-Linte the completion of the barrier (MglineH:=ON),
and also sets the ScrtH counter to the maximum value. Consequently, the bar_reg
registers are reset in both horizontal master/slave controllers allowing all cores
to resume execution (see Figure 3.5).

3.2.5 Implementation Costs for GBarrier

In this section, we discuss the costs that a single GBarrier would entail depending
on the two kind of technologies evaluated in this thesis: G-Lines and Standard
technologies. As we can see in Table 3.1, we summarize the hardware components
of GBarrier assuming a 2D-mesh topology for the many-core CMPE

Regarding the G-Lines technology, we must deal with the number of G-Lines
that are used to configure the special network. As already commented on, the
G-Line-based network deploys separate sets of G-Lintes per barrier. In particular
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Table 3.1: Hardware Cost of GBarrier for a 2D-mesh CMT layout with R rows and
C columns (R<C = N cores)

#G-Lintes or #Wires | 2x (R+1)or R x (C+ 1)
Master controllers R+1

Slave controllers N-1

bar_reg Registers N

Vilag flags R

Scnt Registers R4+1

bar_rey size 1 bit

Vilag size 1 bit

Horizontal Scui size | [logz(C)] bits

Vertical Seni size [log2(R)] bits

each barrier needs a set of 2 % (R + 1] G-Lines, being R the total number of rows
in the CMP. Besides, barrier synchromization 1s achieved using a set of controllers,
which includes R + 1 master controllers and N — 1 slave controllers, where N is
the tetal number of cores in the CMF. Each of these controllers would implement
the simple synchronization protocol described in Section 3.2.2. In addition, each
horizontal master controller requires one tHag (the Vfiag flag) for establishing
the local synchronization with its corresponding vertical confroller, and also
one ScntH register. The size of the former depends on the number of GBarriers
Implemented in the system {one bit per barrier). The size of the latteris [log2(Cl]|
bits for the horizontal master controllers, being C the number of columns in the
2D-mesh topology. Moreover, [logz(R]] bits are required for the ScntV register
in the vertical master controller. Finally, the register file in each core must be
extended to provide the bar_reg register. The total mumber of bits of the bar_reg
register will depend on the total number of GEarriers implemented in the system
(one bit per barrier).

With respect to the Standard technology we must take into account that,
differently from G-Lines technology, this technology implements neither extremely
fastlinks (G-Lines) that could be shared by several slave controllers in a particular
rew /column of the CMLI, nor the S-CSMA technique, that would enable a master
controller to determine how many of its slaves have signaled in a given instant.
In particular, every G-Line has been implemented by means of a conventional
on-chip wire, although we allocate a different wire per slave controller to preclude
simultaneous signals from mutual interference. As a result, for every CMP's row
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there will be a total of C — 1 wires for the communications between slaves and
master in the gather phase, whilst a single wire per row for the release phase. The
same number of wires would be employed for the first column. This results in a
total of R x (C+1) wires (R x (C—1+1) 4+ (R — 14 1)) for this implementation
of GBarrier, as shown in Table 3.1. Additionally, we mimic the S-CSMA techmque
by instructing each master to sample its different slaves’ wires i a loop until all
expected signals have been received. The remaining hardware costs described for
G-Lirtes technology would be the same for this technology.

It is worth noting that, as analyzed in Section 3.3.2, the hardware costs
discussed above lead to a marginal area overhead and power dissipation. As we
will see, GBarrier provides also efficiency because differently from SW-barriers
and some mmplementations of HW-barriers (see Section 3.5), our proposal neither
consumes space in memory and local caches with synchronization intormation
nor involves the cache coherence protocol. In this way, GBarrier would avoid the
significant amount of traffic that those proposals would infroduce in the main
data network. This would also translate info important energy savings for the
interconnection network, as we will show in Section 3.4.3.3.

3.2.6 Generalization of the GBarrier mechanism

In this section we explain how the basic propoesal discussed until now (hardware
support for just one barrier and all participating cores) can be generalized so that
it can be successfully implemented in several scenarios.

3.2.6.1 Several GBarriers and Subsets of Cores

Up to now, we have described support for just one barrier operation among all
cores. However, our mechanism could be easily extended to support a higher
number of GBarriers. Por that, the resources required by one GBarrifer (and
detailed in Section 3.2.5) should be replicated as many times as the number of
required GBarriers. Since our proposal is specially aimed at carrying out barrier
synchronizations efficiently when a significant number of cores is involved, we
think that only a very limited number of GBarriers would be enough.

On the other hand, we have assumed that all cores in the CMP participate
in the barrier. We could also extend GBarrier to allow the case when only a
subset of them is involved. In this way, the horizontal ScntH registers and the
vertical Sentl register must be mmihalized with values according to the number of
participating threads and their exact location on the CMPE. To do that, we would
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add one OS5-accessible addifional register for every ScntV ot S5cntH register in
order to keep the current number of participating rows and cores for each of
them, that 1s, the MAXV and MAXH values, respectively. These registers, rather
than the number of columns and rows, would be used to set the mitial values for
the horizontal ScntH registers and the vertical SentV register. This inifial sefup
would be done by a system call invoked from a GL_init() method called by every
participating thread. Note that this operation adds negligible overhead since it
must only be performed once. Straight afterwards, the GBarrier execution for a
subset of cores would be identical to that Tun by the whole CMP. Even though
this design prevents threads from being migrafed from one core to another,
we strongly believe that this is not a hard constraint given the fact that thread
migration is known to be a performance bottleneck. Note that thread migration
could be supported by providing an additional mechanism to ensure that the
values of the registers can be modified atomically. Finally, if is worth noting
that our proposal is also compatible with the use of SW-barrier implementations.
This means that even the same application could make use of both GBarrier and
SW-implementations simultaneously. The latter would be the preferred choice
for small subsets of cores because in this case the benefits provided by GBarrier
would not be significant.

3.2.6.2 Larger Many-Core CMPs

In the G-Lines-based implementation technelogy for GBarrier, the master con-
trollers implement an S-CSMA techmue for counting the number of 1-bit signals
transmitted from slave controllers across the G-Line they are attached to (see Sec-
Hon 3.2.1). In particular, this techmque enables the master controllers to identify
up fto six different signals transmitted in the same clock cycle. In consequence,
every G-Line could attach up to one receiver and six transmitters, that is, one
master controller and six slave controllers, respectively. In this way, assuming a
2ZD-mesh physical layout for a CMF, our proposal 1s restricted to a 7 % 7-core CML.

To overcome this limitation, we propose to adopt a hierarchical GBarrier design
among groups of 7x 7 G-Lire-based networks (Groups from now on). For instance,
Figure 3.7 illustrates how our propoesal could be extended for a 2 %7 x7-core CML.
As we can observe, there are two Groups linked together through two additional
G-Lines. For clarity, we represent each Group as a 2x2-core CME Moreover, there
are two new controllers attached to these new G-Lintes: the Mg controller, which
is an inter-Group master controller; and the 5¢ controller, which cotresponds
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Figure 3.8 Example of barrier synchronization for a 2 x7x7-core CMP.

to a inter-Group slave confroller. The rest of controllers will be referred to as
intra-Group controllers.

The synchrenization protocel for this hierarchical GBarrier architecture would
operate by following the six steps depicted in Figure 3.8. Note that, we assume
the best-case scenario in which all cores execute the same barrier operation at
the same fime. In consequence, from the figure we can see that each intra-Group
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controller carries out the same operations as the original GBarrier implementation
performs (see Figure 3.4). In parficular, cycles 0 and 1 for the account phase,
and cycles 4 and 5 for the release phase. Nevertheless, before starting the release
phase, we have to make sure that each Growp has completed its account phase
to proceed. For thaf, we use the inter-Group synchronization befween the Mg
and 5S¢ confrollers. This synchronization starts by performing the following
inter-Group account phase. At cycle 2, the 5g¢ confroller signals, through its G-
Linte, the completion of its intra-Group account phase. Once the Mg controller has
also noticed that ifs intra-Group account phase has already been completed, the
inter-Group release phase starts. To do so, at cyele 3 the Mg controller signals the
Sg controller by using the urused G-Line, and the infra-Group release phase can
proceed for both Groups.

Note that, this new architecture and synchronization protocol do not atfect
the inferface for programmers discussed in Section 3.2.3. Besides, fo deal with
larger CMPs, we just have to extend the mter-Group network to include more Mg,
Sg controllers and G-Lines following a similar pattern as employed for intra-Group
topologies.

With respect to the Standard technology, as core count increases in the many-
core CMP, there exist new challenges that may restrict the scalability of GBarrier.
This is due to the fact that efficiency and scalability are non-trivial to materialize
when using this technology because of several challenges. First, the RC prop-
agafion delay of on-chip intercormects degrades as feafure sizes shrink, henee
making global wires increasingly slow [34,94]. Second, propagation delay of
logic confrollers required by each scheme affects their operating speed, again
making relative performance non-trivial. That is the reason why the Standard
technology is alse known as an interconnect-dominated nanoscale technology.
To overcome such limitations, we could adopt a similar hierarchical scheme as
described for G-Lines technology. By doing so, the higher the synchronization
stages the shorter the wire lengths will be obtained and then, a lower complexity
of master controllers will also be achieved due fo sampling fewer slaves. A
detailed study of this strategy can be found in [71], where we propose different
hierarchical desipms to implement hardware barriers in the context of clusterized
many-core CMPs such as the HyperCore Processor [120] or Platform 2012 [135].

Alternatively, to also achieve high scalability, our proposal could also be easily
implemented assuming the leading-edge nanophotonic technology [123].

75



3. GBarrier: AN EFFICIENT INFRASTRUCTURE FOR BARRIER SYNCHRONIZATION

3.2.6.3 Simultaneous Muliithreaded Processor Cores

The GBarrier architecture has been devised to operate on single-threaded proces-
sor cores. This section explains how to extend our proposal when simultaneous
multithreaded cores (SMT cores) are considered. In this kind of processors,
every core’s thread has ifs own register file and shares resources such as the
issue window or functional unifts ameng others. The problem in SMT cores is
that several threads all belonging to the same core would compete for the same
GBarrier’'s resources.

If all executing threads in the processor core belong to the same application,
every core’s thread would indicate ifs arrival at the barrier through its private
bar_reg register (by setting the bit associated with the barrier). Next, to activate
the core’s G-Lite controller, a simple AND-gate among all the bar_reg values
would be used. Once the result of the AND-gate is equal to one, the use of the
rest of the GBarrier’s resources (G-Lines, ScntH and SentV counters, and Vfiag
flags) would be the same as for a single-threaded processor core. On the contrary,
if the threads executing on the same core belong to different applications, they are
forced to use different GBarriers for synchronization. In this case, an additional
step would be required to selectively enable the AND-gate inputs. Finally, since
the number of threads per core is commonly very low, not only due to physical
constraints but alse to memory footprint constraints, only a few GBarriers would
suffice to deal with this worst case scenarie.

3.3 Performance Implications

In this section, we analyze GBarrier fo gain insight into ifs potential impact on
performance. First, we start by discussing some considerations taken when using
both G-Lines and Standard technologies to implement our proposal. Next, for
both implementations, we show their potential contributiens to performance in
terms of some important raw sfatistics such as on-chip area overhead, power
dissipation, maximum operating speed and minimum latencies to complete a
barrier operation.

3.3.1 Implementation Technologies

To implement GBarrier, we have leveraged two different technologies. First, we
have made use of the state-of-the-art full-custom G-Lines technology explained
in Section 1.6, Second, we have employed the standard design methodology,
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described in Section 2.2.3, to achieve a cost-effective GBarrier implementation at
the expense of some negligible degradation in performance, as we will see.

3.3.1.1 G-Lines Technology

There were several reasons why we decided to use the G-Lines technelogy to
develop our synchronization mechanism for barriers in many-core CMPs. First,
the connectivity pattern utilized to deploy the dedicated GBarrier's network (see
Section 3.2.1) is based on long 1-bif single-dimension links which perfectly fit
into the concept of G-Lirnes. Second, the promising results that could be achieved
using this technology in ferms of marginal area overhead and minimal power
dissipation. Note that, according to the results reported in [142], that show negli-
gible area overhead for a 392-G-Line network, the 32-core CMP system evaluated
in this chapter (further defails in Section 3.4.1) is made up of approximately
one-20th of the latter number of G-Lines, thereby even lower implications for
on-chip area would be obtained. This marginal area overhead will have also a
negligible impact on power dissipation. Finally, the GBarrier’'s synchronization
protocol explained in Section 3.2.2 could take advantage of the exfremely fast
fransmussions at 2.5 GHz that the use of the G-Lines technology would entail. In
this way, we can directly adopt the same theoretical synchromzation latencies for
the gather and release phases explained in that section.

3.3.1.2 Standard Technology

The GBarrier architecture has also been implemented relying on the mainstream
indusfrial synthesis toolflow with an STMicroelectronics 45 nm standard cell
technology library as that presenfed in Section 2.2.3. The main reason why we
decided to employ this technology was to provide a cost-effective implemen-
tation and to precisely quanfity the performance losses due to the use of this
intercormect-dominated nanoscale technology.

Since RC-based wires are very critical to performance degradation, we have
implemented each GBarrier’s controller by separating the delay that signals take
along the wires, from the effective computation that the controllers require to
generate their output signals. Notice that, for small many-core CMP's, the critical
path that limits the maximum operating speed in our GBarrier infrastructure is
defined by the most complex controller (l.e. the master controller that samples
signals from the highest number of slaves), but as the wire length increases
for larger CMPs, the wires could represent such crifical path. Consequently,
separating wire delays from confrollers delays become essential in order to
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Table 3.2: Raw stafistics using G-Lines and Standard technologies for a single
GBarrier in a 32-core CMPF layout.

Frequency (MHz) | Latency (cycles) | Area (pm?) | Power (mW¥)
G-Lines 2,500 4 Negligible 264
Standard 670 14 5441 Negligible

achieve maximum clock speeds. In this way, by using this technoelogy, we cannot
directly assume the synchronization lateneies achieved by using G-Lines, and a
higher number of cycles will be required for the gather and release phases. In
addition, to mininize the length of wires, we have situated the master controllers
in the central column /row of the 2D-mesh topology, rather than the first column
and first row as depicted in Figure 3.2, Note that, in case of G-Lines technology
this optimization would not be necessary since every G-Lire 1s specially designed
to implement one-cycle latency, one-bit fransmissions across one dimension of
the chip.

Finally, for a real characterization of our GBarrier proposal, our mechanism
has been synthesized by defining non-routable obstructions. Such obstructions
are placed to mimic the area of every core of the simulated system explained in
Section 3.4.1. In this chapter, we assume that this area is equal to 550 %550 ym?.
Additionally, fences are defined to limut the area where the cells of each GBarrier’s
controller can be placed. Such obsfructions and fences also ensure minimum-
length routing for the wires in order to reduce their impact on performance and
area overhead as the wire length increases.

3.3.2 Raw Performance Statistics

Table 3.2 shows the main raw performance statistics cbtained from the use of both
technologies to implement GBarrier. In particular, we illustrate the maximum
operating speed, the latencies of a barrier synchronization and also the area
overhead and power that our proposal entails.

As we can see, the maximum operating speed achieved by the G-Lines technol-
ogy 1s 3.7 fimes higher than for the Standard technelogy. Moreover, the number of
clock eyeles employed by the former technology to complete a barrier 1s 3.5 lower
than that achieved by the latter technology. The reason is that every GBarrier's
controller and wire involved take a different clock eyele in the synchronization
process. Besides, the internal communication using the Vflag flag between con-
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trollers located in the same core (e.g. Mh and Mv in Figure 3.3) requires an extra
clock eycle to achieve the maximum operafing speed. Therefore, the superior
efficiency of G-Lines technology reports roughly a thirteen times faster GBarrier
implementation.

In addition, negligible overheads in ferms of die area are reported for both
technologies. First, regarding the G-Lines technology, as discussed above, our
GBarrier infrastructure uses one-20th of the minimal area overhead reported
in [142] and then, we can assume that its on-chip area 1s negligible. And second,
for the Standard technology, an area overhead for GBarrier equal to 5,441 pm? is
required that corresponds to a negligible 0.06% of the total area employed for
the simulated 32-core CMP layout (remember that we assume that each core is
550 %550 um? in size).

The latter marginal on-chip overheads will infroduce a negligible impact
on power dissipation. To exemplify that, we esfimate the power dissipated by
the G-Lirte-based implementation. To do so, we employ the power dissipation
parameters for a 65-nm CMOS process simulated in [142]: 0.6 mIW per transmitter;
0.4 mW per receiver; and 2.4 mW per receiver that implement the 5-CSMA
technique. Moreover, according to [142] no stafic power is dissipated by the
G-Lines.

To estimate the power dissipation, we must deal with the maximum number
of transmitters and receivers in the system operating at once. From the synchro-
nization protocol already explained and illustrated in Figure 3.4, the worst case
of power dissipation per clock cyele is when all cores inifiate the gather phase
at the same time. Therefore, for the simulated 32-core CMP in Section 3.4.1,
and considering a 4 x8-core 2D-mesh layout’, there will be seven horizontal
slaves per row (l.e. 28 transmitters) signaling the arrival at the barrier, and four
horizontal master confrollers that count the latter signals through the 5-C5MA
technique (i.e. four receivers). Hence, the total power estimated will be 26.4 mW
(28x0.6 + 4x2.4). Utilizing CACTI [52], the magnitude of this dissipation 1s less
than one-11st of the power dissipated per read port in the L1 caches simulated in
this chapter (see Table 3.3).

As a corclusion, the above resulfs suggest that the fastest technology is the
most appropriate implementation to materialize GBarrier. Although synchroniza-
Hon delay would become the discriminating factor, we have also to consider the
major drawback of using G-Lines: The G-Lines technology is a full-custom technology

JFor simplicity, we assume that 8 cores per row can be materialized in G-Lines. Recall that
this technology is limited to 7 cores per row and, for example, a 6x6-core CMP layout must be
considered instead to span the simulated 20 mesh 32-core system.
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that is not cost-effective in the embedded computing domain, hence not being within reach
of a standard cell design methodology. In consequence, it would be of paramount
importance to determine the exact magnitude of such performance degradation
when using the Standard technology. In case of being neghgible, the slower tech-
nology would be the preferred GBarrier implementation. This experiment will be
conducted in Section 3.4.3.1, by comparing synchronization timings of the two
GEBarrier implementations in comparison to the best SW-barrier implementation.

3.4 Evaluation

In this section we give details of our experimental methodology and performance
results. We describe the simulation envirenment and the set of microbenchmarks
and scientific applications that we have used in Section 3.4.1. The two SW-barmer
implementations the GBarrier mechanism is compared with are presented in
Section 3.4.2. Finally, the performance results are analyzed in Section 3.4.3 in
terms of execution time, network traffic and energy consumption.

3.4.1 Experimental Setup

In order to support GBarrier, the Sim-PowerCMP [3] performance simulator
presented in Section 2.2.1 has been extended. Remember that, Sim-Power(CMP
is a detailed architecture-level power-performance simulator for filed-CMP ar-
chitectures that also estimates energy consumption for the full CMP Table 3.3
summarizes the values of the main configurable paramefers assumed in this
chapter. As can be seen, we have simulated a 32-core CMP with an aggressive
2D-mesh network built in a 45 nm process technology.

To evaluate the performance benefits derived from GBarrier, we have used
one synthefic benchmark, three kemels and three scientific applications. First,
the synthefic benchmark is intended to measure the latency of barmers them-
selves. Henee, it helps us provide some insight into the potential benefits that
our GBarrier mechanism could provide. To do that, we follow the methodology
deseribed in [29]: performance is measured as average time per barrier over
a 100,000-iterations loop of four consecufive barriers with no work or delays
between them. Second, for the kemels we have employed three kemels from
Livermore loops [41]. Following the recommendations given in [82], we focus
on Kerrels 2, 3 and 6. And third, we have considered three scientific applica-
tions: Unstructured, EM3D and Ocean. These applications were chosen since
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Table 3.3: CMF baseline configuration.

Number of cores 32
Core 3GHz, in-order 2-way model
Cache line size 64 Bytes
L1 I/D-Cache 32KB, 4-way, 2 cycle
L2 Cache (per core) 256KB, 4-way, 1244 cycles
Memory access time 400 cycles
Network configuration 2D-mesh
Network bandwidth B GB/s
Link width 75 bytes

they present a non-negligible fraction of the total execution time due to barrier
operations. We would like to point out that all experimental results reported in
this chapter are for the parallel phase of all of the benchmarks under study.

We summarize the characteristics of the set of benchmarks used in Table 3.4.
For each of them we account for the input size, the total number ot barrier
executions (#Barriers), and the estimated barrier period (the number of cycles on
average between two consecutive barrier executions). The latter is caleulated by
dividing the fotal number of execufion cycles into the fotal number of barrier
executions in every case. Nofice that, the barrier period is a simple metric that
somehow quantifies the presence of barriers in every benchmark. For example,
the Ocean application presents 364 barrier operations every 205,206 cycles on
average (see Table 3.4). Consequently, from this high barrier period, we should
not expect to obfain a significant fraction of the total execution time due fo
barriers. The latfer result also limits the potential benefits that our GBarrier
mechanism could provide. A more detailed analysis will be given below in
Section 3.4.3.

3.4.2 Barrier implementations

To quantify the benefits of our GBarrier mechanism, we consider that barriers
found in the benchmarks previously described are implemented by using two
SW-barrier implementations: a centralized sense-reversal barrier based on locks
{or C5W), and a binary combining-tree or distributed barrier (D5SW). On the cne
hand, in a CSW barrier, each core mcerements a centrahized shared counter when it
reaches the barrier, and spins until that counter indicates that all cores are present.
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Table 3.4: Configuration of the benchmarks used in this chapter

Benchmark Input Size #Barriers | Period
Synthetic 100,000 iterations 400 000 2,568
Kernel 2 1,024 elements, 1,000 iterations 10,000 3,103
Kernel 3 1,024 elements, 1,000 iterations 1,000 4953
Kernel 6 1,024 elements, 1,000 iterations 1,022,000 | 4,908
Unstructured | Mesh2K, one time step 80 H7 361
Creean 2hBx2hB orean 36 205 206
EM3D 38,400 nodes, degree 2, 15% remate, 25 steps | 198 3,673

On the other hand, in a DSW barrier, there are several shared counters distributed
in a binary tree fashion. Thus all cores are divided into groups assigned to each
leat (variable) of the tree. Each core increments its leaf and spins. Once the last
one arrives in the group, it continues up the tree to update the parent and so on
towards the root. Finally, the release phase 1s sinular but in the opposite direction
{towards the leaves).

In general, the implementation of a barrier can be split into three typical stages:
the notification stage (S1), when each core indicates its arrival at the barrier; the
busy-wait stage (52), to wait the arrival of the remaining cores; and the release
stage (53), in order to resume execufion. At first glance, our GBarrier proposal
should accelerate all the three stages because they are executed without involving
any network transaction or coherence activity. Remember that, our mechanism
operates just by means of a simple synchronization protocol implemented atop
a dedicated lightweight on-chip network, taking only four cycles (the best-case
scenario for a 7x7-core CMP and G-Lines technology) to perform a barrier
operation among all threads or cores (see Section 3.2.2). However, we could
identify two typical situations in which our proposal may entail negligible
improvement. The first situafion oceurs when a parallel application contains a
reduced number of barriers or a very high barrier period. This helped us to pick
the most sigrmificant benchmarks for our evaluation (e.g. choosing Ocean among
all of the applications from the SPLASH-2 benchmark suite). The second situation
takes place when barrier latency 1s dominated by the stage 52, For instance, this
fact may suggest that the application is under workload imbalance. We will take
into consideration these conclusions when analyzing the performance results in
the next section.
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Figure 3.9: Average times for three different barrier mechanisms.

3.4.3 Performance Resulis

The evaluation of the GBarrier mechanism has been carried out taking into account
the execution times achieved for the benchmarks shown in Table 3.4, as well as
the amount of traffic in the intercommect and the energy-delay® product (ED°P)
metric for the full CMP.

3.4.3.1 Execution Time

First of all, we consider the implementation of the GBarrier that relies on the
G-Lirtes technology. Figure 3.9 illustrates the execution fimes obtained for the
synthefic benchmark under study depending on the number of cores in x-axis
(from 4 to 32 cores). Notice that y-axis is in logarithmic scale. Remember that,
the use of this benchmark allows us to measure the latency of barrier operations
themselves. As we can observe, there are three lines depending on the three
barrier implementations explained in Section 3.4.2: CSW, DSW and our GBarrier
mechanism (GB).

From the results presented in Figure 3.9, we can derive two main appreciations.
First, the DSW implementation 1s much more efficient and scalable than the CSW
barrier. It is due to the fact that the CSW implementation employs a centralized
shared counter among all threads, which clearly becomes a bottleneck as the
number of cores increases. In contrast, DSW significantly alleviates contention by
using several shared counters distributed in a binary tree fashion. And second, it
is clear that GBarrier highly outperforms the others in terms of execution time
and scalability. On the one hand, the GBarrier mechanism drastically reduces
execution fimes of 51, 52 and 53 stages (up to four cycles for the best-case
scenario). On the other hand, we deploy a dedicated G-Line-based network to
implement barrier synchronizations thus removing any coherence activity or
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Figure 3.10: Normalized execution time over a 32-core CME

synchronization-related traffic in the interconnection network., We would like to
point out that our GBarrier implementation suffers from a slight overhead in the
fimes obtaimed (see 13 cycles in Figure 3.9). It 1s due to the overhead introduced
by the simulator when applications call our barrier implementation, because it
must be accomplished through its application library.

Figure 3.10 shows the average normalized execution times over a 32-core CMFP
layout for the rest of applications under study. In particular, for Kernels 2, 3 and
6, and the scientific applications: Unstructured, Ocean and EM3D. Furthermore,
we depict the breakdown of execution fime depending on the best SW-barrier
implementation (DSW) and our hardware barrier mechanism (GB). Execution
time is further broken down into several categories: Barrier is the time spent on
barriers (sum of the time taken in the 51, 52 and 53 stages explained above);
Write and Read are the times spent on memory accesses; Lock 1s the time for lock
synchronizations; finally, Busy 1s the time for computational work (e.g. arithmetic
operations). In addifion, we also illustrate the average times of all kernels and
applications for each barrier implementation (see AvgK and AvgA).
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Table 3.5: Speedups for the scientific applications.

Benchmark | Barrier Version | 4 ] 16 32
UNSTR DswW 332 | 5.91 | 1048 | 17.43
GB 3.33 | 6.01 | 10.68 | 17.97
OCEAN DsW 3.69 | 7.02 | 13.46 | 23.56
GB 3.70 | 7.10 | 13.98 | 25.06
EM3D DswW 336|538 7.32 | 913
GB 342 | 612 | 10.55 | 16.82

Regarding the kernels results, we can see that our proposal involves a reduc-
tion in execution time of 54% on average (see AvgK). In more depth, Kernels 2, 3
and 6 present reductions of 70%, 46% and 47%, respectively. The exact extent of
the reduction in each case depends on the barrier period that each kernel has:
3,103, 4,953 and 4,508 cycles, respectively (see Table 3.4). That is, the lower barrier
period the higher performance efficiency. For that, Kernel 2 presents the highest
reduction in execution time. Moereover, the reductions in execution time obtained
also depend on the Wrife and Read categories, since our GBarrier mechanism
operates without involving any memory-related instructions (e.g. see reduction
of Write category for Kemnel 6).

On other hand, the fraction of the execution time that barrier synchronization
consumes is lower when scientific applications are considered. In these cases,
most of the iime 15 spent on computations and memory accesses (Busy, Write and
Read categories), resulting in lower barrier pericds. As a result, lower reductions
in execution time can be observed for Unstructured, Ocean and EM3D (21% on
average). In particular, worse resulfs stemn from the applications Unstructured
and Ocean since they present a very high barrier period (67,361 and 205,206
cycles, respectively), which translates into reductions of only 3% and 6% in the
total execufion time, respectively. The excepfion is EM3D, because it presents
significant reductions in execution time (54%) due to its very small barrier period
(3,673 cycles).

Table 3.5 shows the speedup results for the scienfific applications (Ocean,
Unstructured and EM3D) when scaling the number of cores parameter with the
values 4, 8, 16 and 32. Moreover, we use two different barrier implementations:
DSW in comparison to our GBarrier mechanism (GB). From the results shown in
Table 3.5, we can extract two important observations. First, all of the benchmarks
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Table 3.6: Normalized execution times for G-Lines and Standard technologies.

KERN2 | KERN3 | KERN6 | UNSTR | OCEAN | EM3D
G-Lines 0.30 054 0.53 0.97 0.94 0.46
Standard 0.39 0.61 0.56 099 0.96 0.55

scale as the number of cores is increased. Second, the exact extent of speedups
depends on the efficiency of the barrier implementation we are using. In this
way, higher speedups are obtained when employing cur GBarrier mechanism.

According to the discussion given at the end of Section 3.3.1.2, it would be
of paramount importance determining whether the performance losses in terms
of synchronization latency derived from the use of the Standard technology can
be considered negligible. To this end, Table 3.6 shows the normalized execution
tHimes with respect to those obtained when the DSW barrier {s used, depending
on the two land of GBarrier implementations studied in this chapter: G-Lines? and
Standard technologies. From the results shown in the table, it can be derived that
average performance degradations of 6.3% and 4.3% are reported when using
the Standard technology for the kernels and scienfific applications, respectively.
These performance gap is very small if we take info account the significant
average reductions in execufion time of 48% and 16.6% (kernels and scientific
applications) achieved by the Standard technology in comparison to the most
efficient SW-barrier implementation (D5SW). Consequently, we can affirm that our
GBarrier mechanism 1s not so dependent on a full-custom technology to provide
extremely efficient barrier synchronizations.

Obviously, the performance gap between both technologies will be higher for
greater CMP layouts due fo the negative effects of the intercormect-dominated
nanoscale Standard technology. However, the use of a very lightweight intercon-
nection network, that features a hierarchical design, along with a very simple
synchronization pretocol help relieve such negative effects on performance mak-
ing the GBarrier design really scalable. In particular, in [71], where we explore
different hardware-based barrier layouts using Standard technology, impressive
results are shown for a 64-core CMF layout when comparing performance against
the best SW-barrier

*Note that, the results for the implementation that uses G-Lines ate the same as those presented
n Figure 3.10.
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Figure 3.11: Normalized execution times for the benchmarks depending on the
latency of the G-Lines (a 32-core CMP 1s assumed).

Finally, we also carried out a sensitivity analysis to evaluate the extent to
which our proposal is affected by longer link latencies when considering the
G-Line-based technology. To do so, we simulate several configurations of the
G-Line-based network with varying latencies for the links and evaluate the impact
that this has on performance. Several clock cycles may be necessary to transmit
a signal across one dimension of the chip if, for example, we consider longer
links that cannot support a propagation delay of a single clock eyele, or even if
lower clock frequencies are required to integrate our GBarrier infrastructure in
the many-core CMF. Figure 3.11 illustrates the normalized execution times when
G-Lines take from 1 (results presented in Figure 3.10) to 12 clock cyeles (see z-axis
in the figure). As we can observe, very small performance losses are derived even
when dealing with 12-cycle G-Lines. Parficularly, performance degradations of
just 5.3% and 3.6% on average in the worst case are shown for the kemels and
scientific applications, respectively. Note that the results observed for the 12-cycle
case are shightly lower than those obtained for the Standard technology previously
reported in Table 3.6. According to Section 3.3.1, the implementation based
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on Standard technology is toughly thirfeen fimes slower than the G-Line-based
infrastructure, so that the former would be roughly equivalent to a 13-cycle
G-Linte-based implementation what explains such similarities.

3.4.3.2 Network Traffic

Our proposal does not generate any coherence messages on the main data
network when performing barrier synichronizations. In the end, this translates
into significant reductions in ferms of network tratfic. Figure 3.12 shows the
total network traffic across the main data network. In particular, each bar plots
the number of bytes transmitted through the interconnection network (the total
number of bytes transmitted by all the switches of the interconnect) normalized
with respect to the DSW case. Each bar is broken down into three categories:
Coherence corresponds to the messages generated by the cache coherence protocol
(e.g. invalidations and Cache-to-Cache transfers); Reguest comprehends messages
generated when load and store insfructions miss in cache and must access a
remote directory; and finally, Reply involves the messages with data.

For the kernels, important reductions in network fraffic are achieved (53%
on average). In general, these reductions are directly related to the extents of
the improvements in execution time previously reported. Moreover, since the
simulated L2 cache is shared among the different processing cores, but if is
physically distributed between them (see Section 3.4.1), some accesses to the L2
cache will be sent to the local slice while the rest will be serviced by remote slices.
This will also affect the timings for lock acquisition and release operations. In
contrast, since our GBarrier implementation skips the memory hierarchy we have
not obtained such negative impact on network tratfic. In particular, Kernel 2, 3
and 6 show important reductions of 68%, 37% and 56%, respectively.

Finally, regarding the scientific applications, we can see a slight reduction in
network traffic (see 18% in AvgA). More specifically, the applications Unsfrue-
tured, Ocean and EM3D present reductions of 1%, 2% and 51%, respectively. As
before, there is a correlation between the fraction of the execution time devoted
to barrier synchronization and the amount of network traffic that is saved. In
this way, for Unstructured and Ocean we could expect more than 1% or 2%
reductioms in network traffic, due to the 3% and 5% reduction in execution tme,
respectively. However, we noticed that the latency of barriers for these bench-
marks 1s dorminated by the 52 stage and, as we mentioned, this implies workload
imbalance. For the case of DSW, this stage involves negligible network fratfic
because, once shared variables are loaded in cache, busy-waiting is performed
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Figure 3.12: Normalized network traffic over a 32-core CMFE.

locally. As a result, our GBarrier mechanism reports a very low traffic reduction
for both benchmarks. Finally, as we expected, EM3D presents a considerable
reduction in network traffic (51%) because of its very small barrier period.

3.4.3.3 Energy Efficiency

The use of our GBarrier mechanism leads to important reductions in execution
fime and network traffic, as explained above. In this section, we also quantify the
benefits in energy efficiency that our proposal could entail. More specifically, we
present in Figure 3.13 the normalized energy-delay? product (ED?P) metric for the
full CMP. To account for the energy consumed by the GBarrier architecture (the
G-Lines-based network described in Section 3.2.1), we extend the Sim-FPowerCMFP
with the cornsumption model of G-Lines and controllers described in previous
Section 3.3.2. As we conchude in that section, the power dissipation associated
with our two technology-aware GBarrier implementations 1s negligible, hence the
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Figure 3.13: Normalized ED?P metric for the full CMF.

power statistics presented in this section will be mainly due to the improvements
in execution time and network traffic reported in previous sections.

Asin the previous two sections, all results in Figure 3.13 have been normalized
with respect to the DSW case. As can be observed, important improverments in
the ED’P metric of the whole CMT are achieved when applying our proposal. In
particular, the GBarrier mechanism brings average improvements in ED?P of 76%
and 31% for the kernels and scientific applications, respectively. Particularly, the
Kernel 2, 3 and 6 show reductions of 90%, 68% and 71%, respectively. Addition-
ally, reductions of 6%, 10% and 79% are achieved for Unstructured, Ocean and
EMB3D.

In general, the magnitude of these savings is directly related to the extents of
the improvements in execution time and netwoerk traffic previously reported. We
have found that when GBarrier 1s employed, the number of mstructions executed
per barrier operation is drastically reduced. Note that while DSW barrier must
deal with a distributed shared counter in a binary tree fashion, GBarrier only
needs a single assignment instruction on a register fo nofify the arrival at the
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barrier (see Section 3.2.3). Obviously, less instructions executed means less energy
consumed in the processor cores.

Moreover, since we reduce the latency to notify the arrival at the barrier (51
stage), the busy-wait process (52 stage) is also shortened with GBarrier. While
busy-waiting, a processor core repeatedly accesses the L1 cache to check the value
of a shared variable. In this way, shorter busy-waiting implies less accesses to the
L1 cache, and therefore, less energy consumed in this structure. Finally, given the
fact that our proposal skips the memory hierarchy, we save all the energy derived
from coherence activity when barriers are execufed. In particular, we remove
all of the L1 cache misses related to barrier operations and the corresponding
messages fransferred across the interconnect. This brings reductions in the energy
consumed at the L2 cache banks and the interconnection network.

3.5 Related Work

To overcome the performance limitafions imposed by SW-barriers, there have
been proposed several hardware-based optimizations in the context of both
traditional multiprocessors and, more recently, CMPs. In this section, we make
an attempt at categorizing most of them in terms of the part of the system they
mprove or augment: memory-based approaches, network-based approaches and
global lines approaches.

Regarding memory-based approaches, Goodman et al. [81] proposed a set
of efficient primitives for process synchronization based on the use of synchro-
nization bits (syncbits). Syncbits are logically associated with every block in
memory to provide a simple mechamism for mutual exclusion. The T3E multipro-
cessor [131] augments the memory inferface of the DEC 21164 mictoprocessor
with a set of explicitly-managed external registers (E-registers). All remote com-
municafion and synchronization is done between these registers and memory.
Moreover, a set of 32 synchromzation units (B5Us), accessible as memory-mapped
registers, are provided per processor fo perform barrier/eureka synchroniza-
fHor. More recently, Sampson et al. [82] presented barrier filters, a mechanism
to implement fast barrier synchronization on CMPs. The key idea is that they
ensure that all threads arriving at a barrier require an unavailable cache line to
proceed. Then, the barrier filter starves their requests until they all have arrived.
Monchiero et al. [100] proposed a hardware module to optimize busy-waiting
synchronization in CMPs. This module is integrated in the memory confroller,
namely the Synchronization-operation Bufter (SB). The SB manages locally the
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polling on shared variables, aveiding traffic in the network and memory accesses.
Subsequently, Zhu et al. [152] proposed a small buffer attached to the memory
controller of each memory bank, called the Synchronization State Buffer (S5B).
This buffer provides an illusion that the entire memory is fagged at word-level
like in a full/empiy bits based system. To do this, the SSB records and manages
the states of frequently synchronized data.

Differently from these previous approaches, our proposal decouples com-
pletely barrier synchronization from any kind of memory -related activity.

Regarding network-based approaches, Hsu and Yew [151] proposed a multi-
stage shuffle-exchange network to etficiently handle synchronization tratfic of
SW-barriers by combining packets in the switches in order to relieve hot-spot
congestion from the network. Olnowich [50] presented an efficient technique
tor handling SW-barriers by using a special hardware af the network adapter
level. This architecture enables all processors to both drive and receive data at
the same time such as multi-drop bus and broadeast communications. Other
implementations are based on including a dedicated interconnection network
to carry out synchronizations. For example, the network architecture of the
Connection Machine CM-5 [21] contains a dedicated network (control netwaork)
to perform synchronizations of an entire set of processors through specific mes-
sages interchanged between outgoing and incoming FIFO queues at the network
interface level. In addifion, the Blue Gene/L [116] also confains a dedicated
interconnection network for barrier synchronization. Sartori and Kumar peinted
in [83] that although a dedicated mterconnection network manages barrier opera-
Hons efficiently, its integration in future many-core CMPs may not be a feasible
solution due fo the large on-chip area and power dissipafion that it could en-
tail. They propose three barrier implementations, that are hybrid of software
and hardware aimed at achieving closer approximation to the performance of a
dedicated interconnection network but at a fraction of the cost.

Differently from any of the above proposals, GBarrier operates independently
of the main data nefwork, thus removing all synchronization-related traffic.
Moreover, we use a very reduced number of state-of-the-art global links that
introduce negligible area overhead and power dissipation.

Finally, regarding global lines approaches, the Sequent Balance systemn [12]
uses chips attached to processors to provide support for inferrupt distribution,
low-level mutual-exclusion, and confipuration and error control (the System Link
and Interrupt Controllers, or SLICs). For thaf, two specific global lines from
the system bus are used to communicate SLICs by means of commands from a
simple message-passing protocel, not affecting bus bandwidth. SLIC commands
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implement fest&sef instructions which also give support to classic higher-level
synchronization primitives such as locks and barriers. On the confrary, our
method dees not need any command to perform synchronizations, which are per-
formed by means of signals transmitted through special global lines. Moreover,
our hardware approach 1s much more simpler than SLICs are, and it is inteprated
in the context of many-core CMPs. Beckmann and Polychronopoulos [23] pre-
sented a hardware scheme specifically designed for fast barrier synchronization
in the context of large-scale multiprocessors. This architecture is scalable and
supports a large number of concurrent barriers by replicating hardware resources.
In more detail, the actual barrier is a single-bit register BK which 1s visible to all
processors through special lines. When BR is set to 1, processors are blocked at
the barrier. When BR is set to 0, the barrier is clear and processors may proceed
to execufe. In case of a multiprocessor with I processors, there is also a P-bif
wide R register associated with the barrier register BR. Then, each processor has
its own bit from R which is set to 0 in case of arrival at the barrier The K register
is connected to a zero-detect logic, which determines when all bits of R are 0
(Le. all processors are waiting at the barmier). In latter case, BK 1s set to 0 and all
processors resume execufion. Shang and Hwang [132] presented a distributed
and hardwired barrer architecture for fast synchronization m cluster-structured
multiprocessors. Moreover, they develop a set of synchronization primitives for
explicit use of distributed barriers dynamically. To do so, they use a distributed
wired-NOR architecture to detect the asynchronous arrivals of different processes
at the barrier. Makhaniok and Miarmer [99] proposed a method to synchronize
massively parallel processes in distmbuted multiprocessor systems. This scheme
15 based on a synchremzer that uses three bus lines I, Q and R. Each synchronmza-
Hon unit 1s connected to these lines and can assert onto them its imdividual binary
signals p, q and r. Thus every line carries the wired-OR of the signals asserted
by the synchronization units, and all synchronization units read back this value.
This involves a synchronization protocol which is composed of different steps
depending on the different values of lines E () and K.

In contrast, our GBarrier mirastruchure has been specifically devised for many-
core CMPs, relies on very lightweight on-chip network and a very simple synchro-
nization protocol, which features extremely faster communications minimizing
considerably synchronization latency. Moreover, our mechanism does not entail
any wired-OR or wired-NOR logic to detect the arrivals at the barrier and a moere
scalable and distributed accounting is employed, because multiple arrivals can
be detected during the same clock cycle. Recall that, every row of the CMI has a
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master controller that independently receives and counts the signals transmitted
from its corresponding slaves.

In the context of CMP architectures, Krishnan and Torrellas [146] proposed a
hardware mechamsm to suppert communication and synchroenization of registers
between on-chip processors for an efficient consumer/producer model. Their
proposal is based on a Synchronized Scoreboard (55) that is provided per pro-
cessor. The 553 are connected with a broadeast bus on which register values are
transferred. In contrast, rather than employing a bus, our architecture employs a
more scalable communication network using dedicated state-of-the-art point-to-
point links ameng the participant cores. Besides, instead of register values, only
1-bit transmussions are needed by our synchronization protocol leading to energy
and area savings. Addifionally, Cyclops [20] is a highly parallel processor-and-
memory system on a chip (32-quad-core CMP architecture). This archifecture
implements a fast barrier operation through a special purpose register (5IR). It 1s
actually implemented as a wired OR for all the threads on the chip. Each thread
writes its SPR independently, and it reads the ORed values of all the threads’
SPRs. The register has eight bits which provides four distinct barriers (two bits
per barrier). One of the bits holds the state of the current barmer cycle whilst the
other holds the state of the next barrier cycle. All threads parficipating in the
barrier initially set their curresnt barrier bit to 1. The threads not participating in
the barrier leave both bits set to 0. Then, when a thread reaches the barmer it
writes 0 to the current bit, thereby removing its contribution to the current barrier
cycle, and one to the next bit. Hence, the barrier is completed when all current bits
become 0. Furthermore, the use of the current and rext bits are interchanged after
each execution of the barrier. Te communicate the SPRs” values, Cyclops employs
a dedicated 16-bit bus which enables the completion of a barrier operation among
all threads in only a few dozens of cycles [156].

In contrast, rather than buses, our proposal communicates signals through a
more scalable on-chip network based on 1-bit width links deployed in & hierarchi-
cal layout. Moreover, as aforementioned, our accounting process is distributed,
hence more scalable.

Finally, TLSyre [79] is a sophisticated design for barrier synchronization
that provides very efficient barriers although being fully dependent on non-
standard technology, namely Transmission Lines [15]. In particular, the process of
synchromzation is performed by allocating different radio-frequency bands from
the high-frequency part of the spectrum per barrier, thereby allowing mulfiple
groups of threads to be concurrently synchronized very quickly. While this is
a very efficient hardware design, a successtul implementation is restricted to
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leading-edge technology thus not being within reach of a standard cell design
methodology. In contrast, in light of the impressive performance results shown
in this chapter, a cost-effective implementation of GBarrier is also feasible.

3.6 Conclusions

Developing efficient barrier synchronization is recognized a big challenge as
the cote count increases in future many-core CMPs. In parficular, SW-barriers
do not keep up with compufational power that features this kind of systems,
thereby limiting efficiency and scalability, In this chapter we propose GBarrier, a
novel hardware-based barrier mechanism specifically desipned to enable efficient
barrier synchronizations in the context of future many-core CMPs.

The GBarrier mechanism here developed consists of two main compornents:
First, a very lightweight dedicated on-chip network that could be deployed in
a hierarchical layout for scalabilify. The second is a simple synchronization
protocel that, while performing a barrier synchromzation, coordinates the actions
of the controllers attached to the links of the GBarrier’s network. Differently to
traditional approaches based on the use of atomic read-modify-write instructions
operating on shared-memory posiions, our proposal does not have any influence
on the memory systerr. In this way, we avoid all coherence activity and barrier-
related network fraffic that fraditional approaches infroduce and that restrict
scalability. Additionally, we have discussed how GBarrier can be easily adapted
to different scenarios and system configurations. In particular, we have extended
our infrasfructure in order to support: several GBarriers, group of cores, larger
many-core CMPs and SMT processor cores.

We have evaluated two implementations of the GBarrier mechanism. The
first made use of state-of-the-art full-custom technology, namely G-Lines, whilst
the second is based on a mainstream industrial toolflow and standard cells.
While the on-chip area overhead and energy consumed by both implementations
can be considered negligible, the former technology has been used to report
minimum synchronization latency, whereas the latter leads to a cost-effective
mmplementation because it 1s within reach of a standard cell design methodology.

We integrate both GBarrier implementations into a detailed execution-driven
simulator of a 32core CMP Tunning a set of benchmarks (which includes a
microbenchmark, three kermels from Livermore loops and three scientific appli-
cations), in order to quantify the benefits that our proposal entails. Moreover,
we compare performance against one of the most efficient SW-barrier imple-
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mentation (a tree barrier) in terms of execution time, network tratfic level and
energy efficiericy. From this study, both GBarrier implementations report very
similar reductions in execution time, thus not making our proposal so dependent
on a fullcustom technology to achieve exiremely efficient synchronization in
many-core CMPs. In parficular, for the kernels and the scientific applications
under study our proposal brings average reductions of 54% and 21% in total
execution time, resulting in improved scalability for the applications. The fact that
our proposal does not rely on shared memory positions and the cache coherence
protocol saves a significant amount of messages on the main interconmection net-
work (reductions of 53% and 18% in network traffic are observed for the kernels
and applications, respectively). Finally, all these gains lead to improvements of
76% and 31% in the energy-delay® product (ED?P) metric for the full CMP, for
the kernels and scientific applications respectively.
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CHAPTER 4

GLock: An Efficient Infrastructure
for Highly-Contended Locks

4.1 Introduction and Motivation

Lock synchronization in parallel applications has long been devised to ensure that
a block of code manipulating a shared data structure, namely critical section (CS),
1s executed by only one process or thread at a time (L.e. the lock owner), thereby
guaranteeing mutual exclusion among processes or threads and preserving the
integrity of the shared data [40].

In shared-memory parallel systems, this kind of synchronization mechansm
commonly comprises a pair of operations. First, the lock operation that a thread
utilizes before executing the CS to request the lock ownership. And second, ence
the thread becomes the lock owner and executes the CS, the unlock operation,
that 1s executed straight afterwards the G5 in order to release the lock ownership,
so that another thread can become the next lock owner.

Typical software-based implementations for lock/unlock rely on a combination
of memory operations on shared variables that involve special instructions such
as LL/SC, or atomic read-modify-write instructions hike test&set. Nonetheless, the
use of shared variables for lock synchronization has two important implications
for performance and scalability, especially in future many-core CMPs. First, the
cache coherence protocel must come mto play in order to maintain the consistency
of shared vanables across all levels of the memory hierarchy. Coherence activity
franslates info traffic injection in the interconnection network., As a resulf, an
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Figure 4.1: FPotential benefits for Raytrace when using ideal locks.

ever-growing amount of resources may need to be devoted to support lock
synchronization as the core count inereases. Morteover, lock acquisifion and
release operations timing 1s deeply affected by the performance and scalability of
the cache coherence protocol especially under the presence of highly-contended
locks. Second, lock contention has long been recognized as a key impediment to
performance and scalability since it causes serialization [110]. Consequently, the
longer the idle time spent on lock acquisition and release operations, the larger
the parallel efficiency reduction.

As an evidence, we show in Figure 4.1 the potential benefits to performance
when lock synchronizations do not involve the cache coherence protocol and have
zero latency. To do so, the Raytrace application from the SPLASH-2 benchmark
suife [128] is Tun by using distinet lock implementations (for defails of the
evaluation see Section 4.4). In each case, we highlight in orange color the
fraction of the execution time due to the locks. Shared-memory-based locks use
test-and-test&set (see TATAS bar in Figure 4.1). In turn, ideal locks (see IDEAL
bar in Figure 4.1) do not deal with the cache coherence protocol to eliminate any
inherited performance or scalability side-effects. Besides, lock acquisition and
release operations take a single clock cycle each to minimize serialization due to
contention. As expected, ideal locks clearly outperform shared-memory-based
locks since the lock acquisition and release operations account for a significant
fraction of the execution time in Raytrace. However, a post-mortem analysis of
Raytrace lock usage reveals that only 2 out of its 34 locks are lnghly-contended. In
this sense, if all the locks other than the highly-contended ones are implemented
using regular shared-memory-based locks, a reduction in the execution time
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similar to that of ideal locks is obtaired (see TATAS-1 and TATAS-2 bars! in
Figure 4.1). The latter result suggests that only highly-contended locks can truly
benefit from a more efficient lock implementation.

In this chapter, we present and evaluate a new lock synchronization mech-
anism aimed at aceelerating highly-contended locks. Our proposal, namely
GLock, is a lightweight on-chip network infrastructure devoted to implement a
very simple token-based message-passing protocol providing extremely efficient
execution for highly-contended locks. As with the GBarrier mechanism pre-
sented in Chapter 3, we have explored two different technologies to implement
GLock., On the one hand, we make use of the state-of-the-art full-custom G-Lines
fechnology infroduced in Section 1.6, that enables almost speed-of-light 1-bit
communications across one dimension of the entire chip. On the other hand, we
employ the mainstream industrial toolflow with standard cells in an advanced
45 nm technology presented in Section 2.2.3, in order to obtain a cost-effective
mmplementation for our proposal at the expense of some negligible performance
loss.

To show the benefits derived from GLock, we integrate both GLock implemen-
tations into a 32-core CMP performance simulator [3], and we compare their
performance results against the most efficient software-based implementation
for highly-contended locks considered to date (MCS Locks). To do so, we use
several microbenchmarks and real applications from the SPLASH-2 benchmark
suite [128]. In particular, our GLock mechanism reports average reductions of
42% and 14% in execution time for real applications and microbernchmarks, re-
spectively. The synchronization improvement that brings G-Lines with respect
to the other slower standard technology implementation is again very small in
comparison to the much higher execution times reported by the most efficient
software-based implementafion. In consequence, a negligible penalization of
1.6% and 1.3% on average for the latter reductions in execution fime has been
found, respectively. Moreover, given the fact that GLock does not deal with
the main data nefwork, average reductions of 76% and 23% in nefwork fraffic
are obtained. These fraffic reductions also lead fo average savings of /8% and
28% in the energy-delay? product (ED°P) metric for the full CMP, respectively.
Finally, we have also evaluated the area overhead and power dissipation that
each technology-aware GLock implementation would entail, concluding that both
of them are negligible regardless of the technology employed.

ITATAS-X means that one (X=1) or two (X=2) of the highly-contended locks have been
implemented as ideal locks.
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The rest of the chapter 1s organized as follows. We present our GLock mecha-
nism in Section 4.2, Next, in Section 4.3 we discuss some important performance
implications when using cur proposal. Section 4.4 describes our simulation envi-
ronment and analyzes the obtained performance benefits in terms of reductions
in execution time, network traffic, power dissipation and on-chip area overhead.
Moreover, the related works about efficient lock synchronization mechanisms are
discussed in Section 4.5. Finally, Section 4.6 presents our main conclusions.

4.2 The GLock Synchronization Mechanism

In this section, we present our proposal to build an efficient synchronization
mechanism for highly-contended locks in many-core CMPs. To do so, we will
focus on describing the hardware compenents required and the synchronization
protocol employed, rather than going info any technical aspects of the two
implementation technologies used (further details in Secfion 4.3.1). In more
depth, we start by describing the dedicated on-chip network that our proposal
entails. As a case study, we choose a CMP with a 2D-mesh data interconnection
network with K rows of C cores each (for a total of N = R x C cores), although
our proposal is not restricted to this topology. Next, we show how the GLock
mechanism would operate. After that, we describe the interface for programmers
and provide details about the implementation of the set of controllers required by
our proposal. Finally, we analyze the hardware resources required by GLock and
propose how our mechanism can be generalized to operate in several scenarios.

4.2.1 Dedicated On-Chip Network Architecture

The GLock mechanism proposed in this chapter relies on a dedicated on-chip
network as can be observed in the example in Figure 4.2, For simplicity, we
concentrate on a version of the proposed network providing support for one
lock. As we can see, the network is made up of two kind of components. Links
(horizontal and vertical finer black lines), that are used to fransmit the signals
required by the synchronization protocol; and controllers (R, Sx and Cx), that
actually implement the synchronization protocol.

Every link is simply a wire that enables the transmission of one bit of infor-
mation across one dimension of the chip, employing one link per transmitter
and lock. Every link will be used to request the associated lock and grant lock
acquisifions. In this way, for any 2D-mesh layout the fotal number of links per
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Figure 4.2: GLock architecture for a 9-core CMP with a 2D-mesh network.

lock that would be needed is equal to N — 1, where N is the number of cores of
the CMP (e.g. eight links for the 9-core CMP shown in Figure 4.2). Tt is worth
noting that our proposal 1s aimed at providing this kind of hardware support just
for a very limifted number of locks, enabling the opportunity to deal with very
efficient highly-contended lock synchronizations with marginal area overhead
(see Section 4.3.1).

In addition to the links, our proposal also incorporates a set of controllers.
In particular, we distinguish two types of controllers: the local controllers (Cx in
Figure 4.2) and the lock managers (R and 5x in Figure 4.2). The local controllers send
and receive signals to and from their corresponding lock managers through their
dedicated links (e.g. C1 sends and receives signals fo/from 51). The exception
is when the local controller is located in the same core as its associated lock
manager. In this case, the functionality of the local controller is encapsulated in
the lock manager, and communicafion is performed locally by means of a flag.
For example, 51 monitors not only signals from local controllers one and two (C1,
C2) through their corresponding links, but also from the local core through an
internal flag (for clarity, this flag is not shown in Figure 4.2).

The lock managers control lock ownership by monitoring signals from either
lirnks (remote cores) or the flags (local core). Besides, lock managers are divided into
two groups: primary and secondary lock managers. Secondary lock managers (5x)
are responsible for monitoring signals from their corresponding local controllers,
whereas the primary lock manager (R) is responsible for monitoring signals from
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Figure 4.3: Logical view of the link-based network for a 9-core CMP with a
2D-mesh network.

the secondary ones. Primary and secondary lock managers communicate with
each other by means of the vertical links shown in Figure 4.2.

Finally, to have a clear understanding of our proposal, we represent the
architecture described above as the hierarchy shown in Figure 4.3. In particular,
the dedicated network that our proposal is based on can be represented as a
three-level hierarchy. The root of the hierarchy is the primary lock manager. The
secondary lock managers would be located at the mtermediate nodes. Finally, the
leaves of the hierarchy would be the processor cores (with the local controllers).
All elements are connected using links (continuous lines) or locally by means of
an internal flag (dashed lines). The flags (fx and fSx) store the signals sent by the
controllers fo the corresponding lock manager (primary and secondary). In this
way, we need flags not only to store the signals sent between Sx and the {ocal
controllers (one flag per Cx controller: f1 for C1, f2 for C2, etc.), but also to store
the signals transmitted between R and &x (one flag per Sx controller: f51 for 51,
fS2 for 52, etc.).

4.2.2 Synchronization Protocol

The synchronization protocoel implemented on top of the network previously
described is based on the exchange of 1-bit messages (signals) between the local
conttrollers and the lock managers. More specifically, the protocol uses three types
of signals to perform a lock synchronization. The REQ) and REL signals, which
are sent from the local controllers to their corresponding lock manager to ask for
the lock and to release the lock, respectively; and the TOKEN signal which is

102



4.2, The GLock Synchronization Mechanism

sent from a lock manager to a particular local controller to grant access to a lock. In
addition, these signals are also transmutted between primary and secondary lock
managers in a lock synchronization. In particular, the secondary lock managers ask
for the lock by sending the REQ signal to the primary lock manager and receive
autherization from the latter through the TOKEN signal. Similarly, after the lock
is released, a secondary lock manager notifies the primary one by means of the
REL signal.

Lock managers (both the primary and secondary ones) use a round-robin
strategy to grant the lock among those processor cores which are compefing
for becoming the next owner. Lef’s assume that all of the cores in Figure 4.3
send the RE{) signal to their corresponding secondary lock manager at the same
Hime. In this case, the TOKEN signal granfing the lock would be received by
Core0 fitst; then, onee Core( has released the lock, Corel would become the
next holder; and so on, until Core8 is reached. Next, the process would start
again from Corel if there are additional pending lock requests. Since the GLock
mechanism 1s aimed at accelerating highly-contended locks we do not expect
that the election of the strategy to grant the lock in these situations will have
any impact on performance. However, this is a key design point to ensure the
fairness expected from a lock implementation [29]. The latter is the reason why
we use the round-robin strategy.

As an example of how the synchronmzation protocel works, Fipure 4.4 presents
the case where the nine cores of the CMF depicted in Figure 4.2 try to get access to
the lock at the same time. To clarify the explanation, the arrows in the figure mark
the sense of the transmissions. Moreover, each arrow 1s labeled with the cycle in
which communication cccurs, starting with cycle 1. It is worth noting that we are
assuming theoretical synchronization latericies that may not be reflected in the
exact number of clock cycles required for the two physical GLock implementations
(see Section 4.3.1). Finally, we highlight with dark gray the flags that are written
and the core that acquires the lock in each case.

At cyele O, all cores try to get the lock (see Figure 4.4a). To do so, every local
controfler (Cx in the figure) sends the RE{) signal at cycle 1 to the corresponding
secondary lock manager (Sx in the figure). As a result, all fx tlags would be
written, and each Cx would be busy-waiting until the TOKEN signal is received.
At cyele 2, onee each Sx detects that at least one of its fi flags has been written,
REQ signals towards the primary lock manager (R in the figure) are sent in order
to write the corresponding fSx flags. At this moment, R must make a decision
about the secondary lock manager that will be granted the lock ownership. This
process 13 shown in Figure 4.4b. In this case, R would choose 51 by following the
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(d) Core2 releases the lock (p) and 52 designates Core3 as the next lock holder (p+3).

Figure 4.4: Example of lock synchronization under the GLock mechanism.
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round-robin scheduling policy already discussed and would send the TOKEN
signal at cycle 3. Af cycle 4 and based on the round-robin policy, 51 chooses
Corel and sends the TOKEN signal granting access to the lock.

Figure 4.4c shows the scenario in which an Sx can grant the lock ownership
without involving any additional notifications to R. More specifically, ence Corel
releases the lock at cycle m, its controller sends the REL signal (by writing te the
local fO flag, as we menfioned) to 51, Next, at cycle m 41, 51 grants the lock
ownership (by means of the TOKEN signal) fo the next core by following the
reund-robin policy from the active fx flags. In this case, Corel becomes the new
lock holder. In the same way, Core2 would be granted the lock in cycle 141
(m < #). Finally, In Figure 4.4d we illustrate the scenario when an i finishes its
scheduling because either it has reached the last active fx or there are no more
pending local requests for the lock. In this case, S must send the KEL signal
towards R, which will choose another available 55 lock manager from those that
activated the f5x flags. In the figure, 51 sends the REL signal to R at cycle p+1
{#n < p), which following the round-rebin policy grants the lock te 52, Finally, 52
sends the TOKEN signal giving access to the lock to Core3 at eyele p 4 3.

4.2.3 Programmability Issues

The GLock mechanism proposed in this chapter is intended to be used by pro-
grammers in a transparent way. For that, as shown in Figure 4.5, we propose to
provide special library-level lock and unlock metheds (GL_Lock and GL_Unlock in
the figure) that encapsulate the functionality of GLock and that could be used in
parallel applications to deal with contended locks. This synchronization methed
uses a couple of special 1-bif registers added to each processor core. First, the
lock_req register that is used fo request the lock and wait for lock acquisifion.
Second, the lock_rel register that is used to release the lock’.

As a result of the activation of the lock_req register by a processor core, the
synchronization protocel explained in the previous section would be invoked. In
particular, the corresponding fx flag is activated by the local controller, and the
secondary and primary lock managers start with delivering the lock ownership
(granting the token). Straight afterwards, the processor core enters in a loop
waifing for the lock ownership (see Figure 4.5). Nexf, once the lock is granted,
the lock_req register is reset by the local controller, and the core can resume to
execute the corresponding critical section protected by the lock. Onee the critical

“MNote that all pairs of flags {one per lock) could be grouped in each core using one special
lock register.
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GL_Lock{) |
asm |
# Arrival at the O5: set lock_reqg
movy 1, lock_reqg

# Busy wait until lock_req is reset
loop:
bnz lock_req, loop

}

GL_Unlock() |
asm |
# Release lock: set lock_rel
mov 1, lock_rel

}

Figure 4.5: Encapsulating the GLock functionality info the lock /unlock library-
level methods.

section 1s executed, the processor core sets the lock_rel register that will be used
to release the lock. In consequence, the local controller would deactivate the fx
flag and the lock_rel register would be reset as well.

As explained later in Section 4.2.6, the lock_req and lock_rel tegisters
need as many bits as the number of GLocks provided in hardware (one bit
per contended lock). In this way, several lock operations involving different
sets of cores (fhe threads in each set running one application) could take place
simultanecusly. To this end, the register file of each core must be augmented
with both registers and the interplay between confrollers and them must be
enabled, switching on the controllers whenever the lock_req registers are written,
and switching off the confrollers once all lock_rel registers are reset and all
controllers have unset all the fx and f%x flags.

As pointed out through this chapter, our GLock mechanism is aimed at
accelerating highly-contended locks. Obviously, the programmer is responsible
for identifying locks of this kind and using the GL_Lock and GL_Unlock metheds
previously described for them. In the literature, there have been proposed several
heuristics to detect contended locks in those cases in which it could be a tedicus
or difficult task. As an example, Tallent ef al. [110] have recently proposed
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sfrategies for gaining insight info performance losses due to lock contenfion.
Their goal was to understand where a parallel program needed improving.

As a final observation, the programmability of our GLock proposal is orthog-
onal fo the utilizafion of any opfimizations to hamess the commented process
of busy-waiting to conduct some other useful work while the lock ownership is
not granted yet. For example, similar to fry locks [95], upon a thread requests
the lock the thread could execute some altermative code, or as in [47, 78], it
could be involved some special queumyg and scheduling kernel functions in order
to deschedule the waiting thread allowing another one fo make progress until
the lock is eventually granted. Nevertheless, the implementation of these other
approaches does not fall within the scope of this thesis.

4.2.4 Implementation of GLock’s controllers

In this section, we take a closer look at the implementation of the GLock’s
controllers (see Figure 4.6). As we can see, there are three automata corresponding
to each of the three kinds of controllers aforementioned: primary and secondary
lock managers, and local controilers. Over each transition, we depict the event that
motivates the transition to the next state and the action that may produce a new
event. It follows the patterr: [ EVENT ] / [ ACTION ]9 In more depth, we
distinguish the following events and actions:

* A core wrifes the registers lock_reg or lock_rel: eg. Core(lock_req:=1).
Notice that we use := to assign a value, and = to compare two values.

= A controller fransmits a signal across a link: TinkR:=5IGNAL, where T
is the fransmitter and R refers to the receiver controller. Then, T and R
could fake the following values: L, 5 and P for local controller, secondary
and primary lock managers, respectively. Note that, if there is more than
one possible candidate to send a particular signal (e.g. in Figure 4.6a, the
primary lock manager could receive signals from a sort of different secondary
lock managers), T is defined as two letters, the first one refers to the type of
controller mvolved in the transmission (e.g. §), whilst the second one, the ¥
letter, represents any of them (e.g. see 5Y in the figure). Besides, SIGNAL
identifies the type of signal (REQ), TOKEN and REL) transmitted across the
link.

JWhen an event is marked with the » symbol, it means that multiple instances of such an
event could happen at the same time.

107



4. GLock: AN EFFICTENT INFRASTRUCTURE FoR HicHLY-CONTENDED LOCKS
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{a) Primary lock manager automaton.
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[ LockRecycla ] /
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[ LockReloase ] /
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1]
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[ff:=m0 & Fraslack !'= trus ]

I
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{b) Secondary lock manager automaton.

[Cora{log req:=1}]1/
I LlinkS *= REQ ]

Inactive

[ SlinkL = TOKEN 1 /

[Core (bog ral tm 1) ] [lag_raq =0 ]

[ Liimk% := REL &
lock ral ;=D ]

ic) Local controller automaton.

Figure 4.6: Finite state automata that implement the GLock’s controllers.
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void GrantToken () |

if

]
]

{ FreeLock == true } |
i= Lock_Chwner;
while [ i <= Num_Controllers &f& Freelock == true } |
it { Fi==1 13|
Lock_Owener= 1;
ThinkCi= TOKEN;
FreeLock= false;
]
1++;
|
if (Freelock == true} |
if (FendingRequests == false} =» LockRelease;
else == LockRecycle;

!

Figure 4.7: C++-like pseudo-code for the GrantToken function in order to assign
the token.

= A controller writes info an internal memory element: FreeLock:=true or

LockOwrner:=0. As each confroller is macde up of both combinational and
sequential logics to implement its functionality, seme memory elements are
required to hold values at every clock cycle (i.e. Flip-Flops). Examples are:
FreeLock, to specity whether the critical section is free or not; LockOwrer, for
specifying the controller that holds the lock ownership; or fY, that stores 1
or 0, depending on whether the Y controller has requested or released the
lock, respectively.

The function in charge of granting the lock: GrantToken(). For the sake of
clarity, the explanation of such a function has been moved to Figure 4.7, As
we can cbserve in this figure, in line 5 we use the F letter to refer in general
to both f and f5 flags in the automata. Moreover, in line 7, where the TOKEN
15 granted by T controller to the new owner (Ci), the pair T and Ci represents
the primary and secondary lock managers in Figure 4.6a, and the secondary
lock manager and local controller in Figure 4.6b, respectively. Besides, in lines
13 and 14, we represent two events (LockRelease and LockRecycle) that
motivate new transitions in the two automata aforementioned. Finally, the
Nurm_Controllers value refers to the number of secondary lock managers or
local controllers for primary or secondary lock managers, respectively.

A controller has to process a number of events following a specific order:
the event situated over the || symbol has to be processed prior to the event
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Table 4.1: Cost of GLock for a 2D-mesh CMP layout with R rows and C columns
for a total of R x € = N cores.

#Links N1
Primary Lock Managers 1
Secondary Lock Managers | R

Local controllers MN—1

lock_req registers M {1 bit}

lock_rel registers N {1 bit}

f5x Flags & {1 bit}

fx Flags M {1 bit}

FreeLock registers 1+ R {1 bit each}

PendingRequests registers | 14 R {1 bit each}

LockOwner registers 1{[loga[R)] bits}+R{[leg2(C)] bits each)

Lock Acquire {worst casel | 4 cycles
Lock Acquire {best casel | 2 cycles
Lock Release 1 cycle

under it. It means that when the two events situated over and under such a
symbol int the auntomata arise af the same time, the precedernce order has
to be carried cut. In addifion, if it dees not matfer what the parficular
sequential order is, we use the || symbol.

s No event or action: [].

Finally, for the sake of clarity, we omit in the automata when communication
1s performed locally by means of a flag (see Section 4.2.1). Then, we suppose that
all controllers communicate with each other by means of signals through links to
carry out the synchronization protocol.

4.2.5 Implementation Costs for GLock

In this section, we discuss the costs that the GLock mechanism would entail
considering a 2D-mesh physical layout for the CMP (see Table 4.1). First of all
there {s the number of {inks that must be used to configure the special network.
As already commented on, the on-chip network deploys separate sets of links
per lock. In particular, each lock needs a set of N — 1 links with N being the
total number of cores. In addition, lock synchronization is achieved using a
set of controllers, which includes one primary lock manager, R secondary lock
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managers and N — 1 local controllers. Each of these controllers would implement
the simple synchromzation protocol described in Section 4.2.2. The register file in
each core must be extended to provide the lock_reqand lock_rel repgisters. The
total rmumber of bits devoted to both registers is equal to 1, which will depend
on the total number of GLocks implemented in the system (one bit per lock).
Besides, primary and secondary controllers would use a set of R 1-bit fSx and N
1-bit fx flags per lock, respectively. We alse show the different internal memory
elements employed by lock managers explained above (FreeLock, LockOwner and
PendingRequests, called registers in the table), along with the respective number
of bits that they use. Finally, according to our discussion in Section 4.2.2, the
theoretical latency to acquire a lock when nobody has the lock ownership is four
cycles in the worst-case scenario, while it takes only two cycles for the best case.
To release the lock our mechanism takes a single clock eyele.

The implementation costs given above for our GLeck infrastructure are the
same independently of the two types of technology used (G-Lines and Standard).
As we will expose in Section 4.3.1, they represent a marginal on-chip area over-
head and a negligible impact on power dissipation for both technologies. Other
important benefits derived from the use of GLock are that differently from shared-
memory-based locks, cur propoesal neither consumes space in memery and local
caches with syrchronization information nor involves the cache coherence pro-
tocol. In this way, the GLock mechanism would avoid the significant amount
of fraffic that shared-memory-based locks would infroduce in the main data
network in high-contention situations. This would alse translate into important
energy savings for the main CMP’s interconnection network, as we will show in
Section 4.4.4.

4.2.6 Generalization of the GLock Mechanism

In this section we explain how the basic propoesal discussed until now (hardware
support for just one highly-contended lock) can be generalized so that it can be
successfully implemented in several scenarios.

4.2.6.1 Several GLocks

Up fo now, we have described support for just one lock operation among all
cores. However, our mechanism could be easily extended to support a higher
number of GLocks. For that, the resources required by one GLock (and detailed
in Section 4.2.5) should be replicated as many fimes as the number of required
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Figure 4.8: Different schemes to incorporate additional levels into the 1rtial three-
level hierarchy (the left-most scheme) for an RxC-core CMP with a 2D-mesh
network.

GLocks. Since our proposal is specially aimed at highly-contended locks, we
think that only a very hmited number of GLocks would be enough in most cases
(e.g. up to two for the real applications evaluated in this chapter). It is worth
noting that our proposal is alse compatible with the use of software-based lock
implementations. This means that even the same application could make use of
both GLock and software implementations simultaneously. The latter would be
the preferred choice for small subsets of cores because in this case the benefits
provided by GLock would not be significant.

4.2.6.2 Larger Many-Core CMPs

According to Section 4.2.5, our GLock infrastructure requires N — 1 links for a
2D-mesh CMP layout. Nevertheless, this method has limifed scalability and
could not deal with potentially much larger CMPs, mainly for two reasons. First,
as the number of cores increases, the maximum operating speed supported by
the GLock’s lock managers would become Increasingly slower to be able to sample
the signals transmitted across a higher number of links. And second, the longer
the link lengths, the higher the propagation delay will be, thus requiring a higher
number of clock eycles to acquire and release a lock.
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To overcome such limitations, we propose to extend the hierarchical GLock
infrastructure ouflined in Figure 4.3 by incorporating addifional levels of lock
managers info the initial three-level hierarchy, as we can observe in Figure 4.8,
The key rationale behind incorporating these new levels will be to have smaller
groups of controllers that a certain lock manager needs to momtor, thus simplifying
its internal logic, enabling the opportunity to reach higher operating frequencies
and setting up shorter links. For example, if the number of colurrms (C) 1s critical
to performance, the second scheme (from lett to right in the figure) suggests to
mcorporate a number of # terhary lock managers in order to split into n groups
the total of C local controllers in the GLock architecture (1 will depend on the
exact magnitude of C). Obviously, the more levels in the hierarchy, the more
clock cycles will be required to acquire and release the lock. Nonetheless, this
apparent drawback will be offset by the higher operafing speeds that could be
reached. Moreover, when the token is granted to a lock manager that is in charge
of local controllers (e.g. quaternary lock manager in the right-most scheme shown
in Figure 4.8), each local controller could acquire and release the lock employing
the same number of clock cycles as for the initial three-level hierarchy, thus not
requiring to take those further steps in some cases. Fnally, it 1s worth noting that
mcorporating new levels in the GLork’s luerarchy does not affect the interface for
programmers discussed in Section 4.2.3.

Alternatively, to also achieve high scalability, our proposal could also be easily
implemented assuming the leading-edge nanophotonic technology [123].

4.2.6.3 Simultaneous Multithreaded Processor Cores

The GLock architecture has been devised to operate on single-threaded processor
cores. This section explains how fo extend our proposal when simultaneous
multithreaded cores (SMT cores) are considered. In this kind of processors, every
cote’s thread has its own register file (or register renaming fable) and shares
resources such as the functional units among others. The problem in SMT cores
15 that several threads all belonging to the same core would compete for the same
GLock’s resources.

If all executing threads in the processor core belong to the same application,
every core’s thread would indicate the request to acquire the lock through its
private lock_req register as usually (by setting the bit associated with the lock).
But now, an additional step will be required to choose one of the petiioner core’s
threads as the winner to exclusively activate the core’s local controller. To do so,
we propose to include both a full bit vector in hardware that will keep frack of
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every pefition from the core’s threads to acquire the lock, and a round-robin
strategy in order to grant the right of using the local conttroller to just only one of
the core’s petitioners when the lock is released. After that, the GLock execution
would be the same as for a single-threaded processor core. On the confrary, it
the threads executing on the same core belong to different applications, they
are forced to use different GLorks for highly-contended locks. Finally, since the
number of threads per core is commoenly very low, not only due to physical
constraints but also to memory footprint constraints, only a few GLocks would
suffice to deal with this worst case scenario.

4.3 Performance Implications

In this section, we analyze GLock to deternmine its potential impact on performance.
For that, we start by describing the two types of technologies employed to
implement our GLock infrastructure. Next, for both implementations, we show
their potenfial contribufions fo performance in terms of some impottant raw
statistics such as on-chip area overhead, power dissipation, maximum operating
speed and minimum latencies for acquiring and releasing a lock.

4.3.1 Implementation Technologies

To implement GLock, we leveraged two different technoelogies. First, we have made
use of the state-of-the-art full-custom G-Lines technology explained in Section 1.6.
Second, we have employed the standard design methodology, described in
Section 2.2.3, to achieve a cost-effective GLock implementation at the expense of
some negligible degradation in performance, as we will see.

4.31.1 G-Lines Technology

As discussed in the previous chapter, there were several reasons why we decided
to use this technology to develop our synehronization mechanism for highly-
contended locks in many-core CMPs. First, the connectivity pattern utilized to
deploy the dedicated GLock’s network (see Section 4.2.1) is based on long 1-bit
single-dimension links which perfectly fit into the concept of G-Lines. Second,
according to the results reported in [142], that show negligible area overhead
tor a 392-G-Line network, the 32-core CMP system evaluated in this chapter
(further details in Section 4.4.1) is made up of ene-12th of the latter number of
G-Lirntes, thereby even lower implications for on-chip area will be obtained. This

114



4.3. Performance Implications

marginal area overhead will have also a negligible impact on power dissipation.
Finally, the GLock’s synchronization protocel explained in Section 4.2.2 could
take advantage of the extremely fast transmissions at 2.5 GHz that the use of the
G-Lintes technology would enfail. In this way, we can directly adopt the same
theoretical synchronization latencies for acquiring and releasing a lock presented
in Table 4.1.

4.3.1.2 Standard Technology

The GLock architecture has also been implemented relying on the mainstream
indusfrial synthesis toolflow with an STMicroelectronics 45 nm standard cell
technology library are presented in Section 2.2.3. While this standard design
methodelogy leads to cost-effective implementations in the embedded computing
domain, low-latency communications for the GLock’s links are non-frivial to
materialize. First, links have to be synthesized as RC-based wires® that are fully
exposed to the effects of technology scaling. More specifically, the RC propagation
delay of every wire will degrade as feature sizes shrink, making lirks increasingly
slow. For this reason, this technology 1s also known as an imterconnect-deminated
nanoscale technelogy. And second, the propagation delay also affects the internal
GLock’s logic thus reducing its maximum operating speed.

As for GBarrier in the previous chapter, it 1s worth noting that our mechanism
has been synthesized by ensuring minimum wire lengths by sifuating lock
managers in the central row /colunm of the 2D-mesh layout depicted in Figure 4.2.
In addition, we define nen-reutable obstructions that are placed to minmic the area
of every core (550550 um?) of the simulated system explained in Section 4.4.1.
Additionally, fences are defined to limit the area where the cells of each GLock’s
controller can be placed. Such obsfructions and fences also ensure minimum-
length routing for the links in order to reduce their impact on performance and
area overhead as the wire length increases.

Due to the fact that RC-based links are very crifical fo performance degra-
dation, we have implemented each GLock’s confroller by separating the delay
that signals take along the wires, from the effective computation that the con-
trollers require to generate their output signals. Notice that, for small many-core
CMPs, the critical path that limits the maximum operating speed in our GLock
infrastructure is defined by the most complex controller (ie. the lock manager
which communicates with a higher number of controllers), but as the wire length
increases for larger CMPs, the wires could represent such a crifical path. Con-

*We use the terms links and wires interchangeably.
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Table 4.2: Raw stafistics using G-Lines and Standard technologies for a single
GLock in a 32-core CMP layout.

Freq. (MHz) | Latency (cycles) Area (um?) | Power (mW)
G-Lines 2,500 Acquire: 4 {warst), 2 (best} | Megligible 28
Release: 1
Standard 714 Acquire: % {warst}, 5 {best} 6,269 Neglizible
Release: 3

sequently, separating wire delays from controllers delays becomes essential in
order fo achieve maximum clock speeds. In this way, by using this technology,
we cannot directly assume the theoretical synchronization latencies presented in
Table 4.1, and a higher number of cycles will be required to acquire and release
the lock.

4.3.2 Raw Performance Statistics

Table 4.2 shows the main raw performance statistics obtained from the use of
both technologies to implement GLock. In particular, we illustrate the maximum
operating speed, the latencies of the lock acquisifion and release (assuming
that the lock is free) and also the area overhead with an estimation of power
dissipation that our proposal entails.

The maximum operating speed achieved by the G-Lines technology is 3.5
times higher than for the Standard technology. Moreover, the number of clock
cycles employed by the former teclmology to acquire and release a lock is half
of those achieved by the latter fechnology. The reason is that every GLock’s
controller and link involved take a different clock cycle in the synchronization
process. Therefore, the superior efficiency of G-Livtes technology reports roughly
an eight times faster GLock implementation.

Due to the very lightweight infrastrueture deployed fo implement GLock,
negligible overheads in terms of die area are obtained for both technologies.
Regarding the G-Lines technology, as atforementioned, our GLock infrastructure
requires cne-12th of the number of G-Lines reported in [142] thus leading to even
lower implications for on-chip area. Moreover, as to the Standard technology, an
area overhead for GLock equal to 6,269 um? is teported that correspends to a
negligible 0.07% of the total area employed for the simulated 32-core CMF layout
(remember that we assume that each core {s 550 x550 um? in size).
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The latter marginal on-chip overhead must alse lead to a neglignble impact on
power dissipation. We demoenstrate this by estimating the power dissipation for
a worst-case scenario in which the maximum number of GLock’s transmitters and
receivers are operating at once. As an example, we detailed the power eshimation
considering the G-Lines-based implementation for GLock. According to the GLock’s
synchronization protocol already described (see Figure 4.4), this situation arises
when all cores request the lock ownership at the same time, In this way, for the
simulated environment described later in Section 4.4.1, where we considered a
4 x 8-core CMP®, there will be a total of seven local controllers per tow (i.e. 28
fransmitters) transmitting the 28 REQ signals towards the corresponding four
secondary lock managers, which in turn store those signals in the corresponding
fX flags (i.e. 28 receivers are required). For the power estimation, we assume
the same power dissipation parameters for a 65-nm CMOS process simulated
in [142]: 0.6 mW per transmitter; and 0.4 mW per receiver. Moreover, according
to [142] no static power is dissipafed by the G-Lines. Hence, for the number of
fransmitters and receivers discussed before, the total power estimated 13 28 mW
(28x 0.6 + 28 (.4). Tt is worth noting that, utilizing CACTI [52], the magnitude
of this dissipation is less than one-10th of the power dissipated per read port in
the L1 caches simulated in this chapter (see Table 4.3).

As a conclusion of this section, the above results suggest that the fastest
technology is the most appropriate implementation fo maferialize GLock. Al-
though synchronization delay would become the discriminating factor, we have
also to take into account that the G-Lines technology is not within reach of a
standard cell design methodology. In consequence, it would be of paramount
importance to determine the exact magnitude of such performance degradation
when using the Standard technology. In case of being negligible, the slower
technology would be the preferred GLock implementation. This experiment will
be conducted in Section 4.4.4.1, by comparing synchronization inungs of the two
GLock implementations in comparison to the best software-based mmplementation
for highly-contended locks.

SFor simplicity, we assume that 8 cores per row can be materialized in G-Lines. Recall that
this technology is limited to 7 cores per row and, for example, a 6x6-core CMP layout must be
considered instead to span the simulated 20 mesh 32-core system.
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Table 4.3: CMF baseline configuration.

Number of cores 32
Core 3GHz, in-order 2-way model
Cache line size 64 Bytes
L1 I/D-Cache 32KB, 4-way, 2 cycles
L2 Cache (per core) 256KB, 4-way, 1244 cycles
Memory access time 400 cycles
Network configuration 2D-mesh
Network band width BGB/s
Link width 75 bytes

4.4 Evaluation

In this section we give details of our experimental methodology and performance
results. For that, the raw performance statistics already discussed in Section 4.3
have been integrated into the simulation environment described in Section 4.4.1.
In the latter section, we also describe the sort of benchmarks and their main
characteristics utilized to evaluate GLock, and a post-morten analysis is carried
out in Section 4.4.2 to precisely quantify the exact degree of contention of locks
in every benchmark., Moreover, Section 4.4.3 describes the most efficient software
implementation for highly-contended locks that GLock is compared against.
Finally, Section 4.4.4 shows performance results in terms of execution time,
network traffic and energy consumption.

4.4.1 Experimental Setup

As GLock has been specifically tailored to work in the context of many-core CMFPs,
we have integrated our proposal into the Sim-PowerCMP performance simulator
described in Section 2.2.1. In particular, Table 4.3 shows the values of the main
configurable parameters assumed in this chapter. In short, we have simulated a
32-core CMP architecture with an aggressive 2D-mesh network built in a 45 nm
process technology.

Tor evaluate the performance benefits derived from GLock, five microbench-
marks and three real applications are used. On the one hand, the microbench-
marks that we have employed are: SCTR, MCTR, DBLL, PRCO and ACTR.
Section 2.3 describes each of them. They were chosen because of exhibiting
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different highly-contended access patterns to shared data that can be commonly
found in parallel applications. On the other hand, regarding real applications,
we have considered Qsort sorting algorithm as well as two programs belonging
to the SFLASH-2 benchmark suite [128]: Ocean and Raytrace. These applications
were chosen since they present a significant lock synchronization overhead due
to the existence of highly-contended locks®. In fact, these locks are accessed
following similar patterns to those of the microbenchmarks, We summarize the
characteristics of the microbenchmarks and applications used in this chapter
in Table 4.4. For each of them we account for the input size, the total mumber
of different locks, the number of these locks that are highly-contended (H-C
Locks), and point out the highly-contended lock access patterns in terms of the
microbenchmarks they are similar to.

It is important to note that only contended locks are implemented using
the GLock mechanism. For the rest of the locks, we rely on a straighttorward
implementafion called Simple Lock, that atomically foggles a boolean flag fo
acquire and release the lock (further details in Section 4.5), that is enhanced
with the test-and-test&set optimizafion. This includes the locks used in the
applications’ library of cur simulator to implement barriers. Apart from not
being application-level, these locks do not exhibit high confenfion levels since
our simulator provides applications with an efficient tree barrier implementation
(up fo two threads requesting every lock). In this way, barriers are not atfected
by our proposal. Finally, all experimental results reported in this chapter are for
the parallel phase of all of the benchmarks previously described.

4.4.2 Post-morten Analysis of Benchmarks

To determine the contenfion of locks, we performed a post-mortem analysis of
the benchmarks under study where locks use the Simple Lock algorithm enhanced
with the test-and-test&set optimization. Every time a core tries to acquire a
lock, we register the number of concurrent requesters (group of acquiring cores
or grAC ranging from 1 to 32) on a cycle-by-cycle basis until the lock is granted
to the core. In this way, we can precisely compufe each lock’s contention rate
as the mumber of cycles where the number of concurrent requesters is equal to
each grAC divided by the total amount of cycles where the number of concurrent
requesters belongs to the range [1,32]. Thatis, the lock’s contention rate (LCR) of a
particular lock (Lock) for each grAC (i € [1,32]) weuld be defined by Equation 4.1.

5In this thesis, highly-contended locks are those locks accessed by all threads simultaneously
or very close in time.
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Table 4.4: Configuration of the benchmarks and lock-related characteristics.

Benchmark | Input Size Locks | H-C Locks | Access Pattern
SCTR 1,000 iterations | 1 1 -

MCTR 1,000 iterations | 1 1 -

DBLL 1,000 iterations | 1 1 -

PRCO 1,000 iterations | 1 1 -

ACTR 1,000 iterations | 2 2 -

RAYTR teapot 34 2 SCTR

OCEAN 258x258 ocean | 3 1 SCTR

OSORT 16,384 elements | 1 1 PR{CO
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Figure 4.9: Lock contention rate.

Cycles( Lock, gr AC;)
;il Cycles(Lock, grAC: )

LCRgac, =

(4.1)

In Figure 4.9, the lock’s contenfion rate for all of the benchmarks (x-axis)
is shown. In parficular, we show the lock’s contention rate (y-axis) for all of
the possible values of grAC (z-axis). Moreover, we decompose the resulfs for
each benchmark on a per-lock basis”. To do that, we assume that Equation 4.2

7Although Raytrace has 34 locks, we only include the results for the two most highly-
contended locks (RAYTR-L1 and RAYTR-LZ) and aggregate the rest (RAYTR-LR).
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is safisfled and redefine Equation 4.1 as Equation 4.3. That is, every lock’s
contention rate has also been estimated depending on the amount of clock cycles
it uses. From this, we can easily identify in Figure 4.9 those locks that present
high contention, and these that although exhibiting high contention are executed
during a negligible amount of clock cycles. Due to their very low impact on
execution time, the latter kind of locks would be implemented by using the Simple
Lock algorithm enhanced with the test-and-test&set optimization.

Locks 32
LCRyenchmark = E E LFCRgrACJ- =1 (4-2)

=1 j=1
Cyecles(Lock;, grAC)

y focke Z§2=1 Cycles(Locky, grACe)

LiCRyac, =

(4.3)

As expected, the microbenchmarks exhibit a very high lock’s contention rate
when grAC is close to the fofal number of cores. The exception is the ACTR
microbenchmark which presents a moderate homogeneous level of contention
across all the grAC range. This is mainly due to the barrier syrchronization
interleaved between the two lock acquisition operations. The real applications
also report a behavior similar to that of the ACTR microbenchmark. In this case
the reasoen 1s their much coarser granularity which spreads the acquire operations
throughout the parallel phase. Finally, it is worth noting that Ocean and Raytrace
just have one and two highly-contended locks, respectively.

4.4.3 Lock Implementations

To fairly quantify the benefits of our GLock mechanism, we consider the case
that highly-contended locks found in the benchmarks previously described are
implemented by using MCS Locks. As we will explain in Seetion 4.5, MCS Locks
are one of the most etficient software algorithms for lock synchronization. In
particular, MCS5 Locks gracefully manage high-confention sifuations by having
a distributed queue of waiting lock requesters. On the other hand, for the rest
of locks (non-contended ones), we employ the Simple Lock algorithm enhanced
with the test -and-testéset optimization due to it has been shown to lead fo
lower latencies when threads try to acquire a lock without competition. Finally,
since the number of highly-contended locks is commonly very small in real
applications (up to two in the applications evaluated in this chapter), we assume
that two GLocks are provided at hardware level.
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Figure 4.10: Normalized execution time.

4.4.4 Performance Resulls

The evaluation of the two GLock implementations presented in Section 4.3.1
has been carried out taking into account the execution fimes achieved for the
benchmarks shown in Table 4.4, as well as the amount of traffic in the interconnect
and the energy-delay? product (ED?P) metric for the full CMP.

4,441 Execution Time

First of all, we comsider the implementation of the GLock that relies on the G-Lines
technology. Figure 4.10 shows the execufion fimes that are obtained for the set
of benchmarks under study when either GLock or MCS Locks are employed for
the highly-contended locks (GL bars and MCS bars respectively). In particular,
execution times have been normalized with respect to those obtained when MCS
Locks are used. Addifionally, each bar shows the fraction of the execufion fime
due to lock and barrier synchromzations (Lock and Barrier categories respectively),
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memory accesses (Memory category) and computation (Busy category). Finally,
average execution times are shown in separate bars for the microbenchmarks
(AvgM) and applications (AvgA).

Regarding the microbenchmarks, we can observe that our proposal presents
an average reduction of 42% in execution time (see AugM). The exact extent of
the reduction in each case depends on both: the number of highly-contended
locks that each nucrobenchmark has (see Table 4.4), and also the contention rates
exhibited by each lock (see Figure 4.9). In particular, our proposal is applied
in SCTR, MCTR, DBLL and PRCO to their single contented lock, resulting in
reductions ot 33%, 39%, 34%, 25% in execution time, respectively. On the other
hand, two contended locks are found in the ACTR microbenchmark, which
increases the benefits of our proposal (reductions of 81% are obtained). This
high reduction 1s also explained since ACTR presents a much lower contention
rate. In particular, in Figure 4.9 we can observe that SCTR, MCTE, DBLL and
PRCO present a confenfion rate close to 80% when considering grACs higher
than 20 cores. In contrast, ACTR presents an aggregate confenfion of only 20%
for the same grACs. As we mentioned, MCS Locks become inefficient for the low
contention case, which accentuates even more the differences between MCS Locks
and our proposal.

A more in depth analysis reveals that the former reductions come from two
kind of effects that the GLock mechanism has. First, the time taken to acquire and
release the lock is drastically reduced as derived from the improvements shown
in the Lock category. And second, the fact that our proposal removes from the
main data network all extra coherence traffic that a shared-memory-based lock
implementafion would infroduce, also has an etfect on the Barrier category for
the ACTR microbenchmark.

On other hand, the fraction of the execution fime that lock synchronization
consumes is lower when real applications are considered. In these cases, most
of the time is spent on computations and memory accesses (Busy and Merory
categories). This explains the lower reductions in execution time observed for
Raytrace, Ocean and Qsort (14% on average). Moreover, since (sort presents
higher contention rates than Raytrace (aggregate contentions of 60% and 29%,
respectively, for grACs higher than 20 cores), the MCS Locks become more efficient
which translates into lower performance differences between MCS Locks and the
GLock mechanism.

Table 4.5 shows speedup results for the real applications (Raytrace, Ocean
and Qsort) when scaling the number of cores parameter with the values 4, 8,
16 and 32, Moreover, we use two different lock implementations for the high
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Table 4.5: Speedups for the real applications.

Benchmatk | Lock Version 4 & 16 32
EAYTR MCS 391 | 753 | 13.61 | 20.69
L 393 | 7.97 | 1567 | 28.78
OCEAN MCS 370 | 712 | 1348 | 23.62
CL 380 | 7.32 | 1393 | 25.66
SORT MCS 3.67 | 649 | 968 | 11.38
CL .69 | 605 | 292 [ 1240

contention case: MCS Locks (MC5) and our GLock mechanism (GL). From the
results shown in Table 4.5, we can extract two important observations. First, all
of the benchmarks scale as the number of cores is increased. Second, the exact
extent of the speedups depends on the efficiency of the lock implementation we
are using. In this way, higher speedups are obtained when employing our GLock
mechanism which are even very close to ideal speedups in the case of Raytrace.

According to the discussion given at the end of Section 4.3.1.2, it would be
of paramount importance determuning whether the performance losses in terms
of synchronization latency derived from the use of the Standard technology can
be considered negligible. To this end, Table 4.6 shows the normalized execution
times with respect to those obfained when MCS Locks are used, depending on
the two kind of GLock implementations studied in this chapter: G-Lines® and
Standard technologies. As we can see, very small performance degradations of
1.6% and 1.3% on average are shown for the microbenchmarks and real appli-
cations, respectively. In consequence, we can atfirm that our GLock mechanism
is notf so dependent on a full-custom technelogy to provide extremely etficient
synchronizations for highly-contended locks.

Finally, we also carried ouf a sensitivity analysis to evaluate the extent to
which our proposal is affected by longer link latendies. To do so, we simulate
several configurations of the G-Line-based network with varying latencies for
the links and evaluate the impact that this has on performance. Several clock
cycles may be necessary to transmit a signal across one dimension of the chip
if, for example, we consider longer links that cannot support a propagation
delay of a single clock cycle, or even if lower clock frequencies are required to
integrate our GLock infrastructure in the many-core CMP. Figure 4.11 {llustrates

5Note that, the results for the implementation that uses G-Lines ate the same as those presented
n Figure 3.10.
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Table 4.6: Normalized execution times for G-Lines and Standard technologies.

SCTR | MCTIR | DBLL | PRCO | ACTR | RAYTR | OCEAN | QSORT

G-Lines .67 .61 0.66 0.73 0.19 0.72 0.95 092
Standerd | 0.68 0.63 0.68 0.75 0.20 0.74 .96 0.93

the normalized execufion times when G-Lines take from 1 (resulfs presented
in Figure 4.10) to 10 clock cycles (see z-axis in the figure). As we can cbserve,
negligible performance losses are derived even when dealing with 10-cycle
G-Lines. Particularly, performance degradations of just 1.8% and 1.6% on average
in the worst case are shown for the microbenchmarks and real applications,
respectively. Note that the results observed for the 10-cycle case are very simular
to those obtained tor the Standard technology previously reported. According
to Section 4.3.1, since Standard-based implementation is roughly eight fimes
slower than a G-Lines-based infrastructure, the former would be equivalent to an
8-cycle G-Litte-based implementafion of the GLock mechanism, which explains
such similarities.

4.4.4.2 HNetwork Traffic

Our proposal does not generate any coherence messages on the main data
network when performing lock synchronizations for any of the fwo GLock im-
plementations. At the end, this translates into the same significant reductions in
terms of network fraffic. Figure 4.12 shows the total network tratfic across the
main data network. In particular, each bar plots the number of bytes transmitted
through the interconnection network (the total number of bytes transmitted by
all the switches of the inferconnect) normalized with Tespect to the MC5 case.
Each bar is broken down info three categories: Coherence corresponds fo the
messages generafed by the cache coherence protocol (e.g. invalidations and
Cache-to-Cache transfers); Regquest comprehends messages generated when load
and store insfructions miss in cache and must access a remote directory; and
finally, Reply involves the messages with data.

For the microbenchmarks, important reductions in network traffic are achieved
(76% on average). In general, these reductions are directly related to the extents
of the improvements in execufion time previously reported. Moreover, since
the simulated L2 cache is shared among the different processing cores, but it
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Figure 4.11: Normalized execufion times of benchmarks depending on G-Lines
latency running on a 32-core CMFP.

is physically distributed between them (see Section 4.4.1), some accesses to the
L2 cache will be sent to the local slice while the rest will be serviced by remote
slices. This will also affect to lock acquisifion and release operations Hmings.
In contrast, since our GLock proposal skips the memory hierarchy we have not
obtained such negative impact on network fraffic. In particular, SCTR, MCTR,
DBLL and PRCO show reductions of 81%, 99%, 72% and 46%, respectively. This
is due to the fact that almost all network traffic of these microbenchmarks is
due to lock synchronizations. The exception is ACTR, where the barrier used in
between the two phases also generates network traffic. However, since the barrier
time is approximately 20% of the lock time (see Barrier and Lock categories in
Figure 4.10), a reduction of 80% in network traffic is obtained.

Finally, regarding the real applications, we can see an average reduction of 23%
in network fraffic (see AvgA in Figure 4.12). More specifically, the applications
Raytrace, Ocean and Qsort present reductions of 23%, 1% and 45%, respectively.
As before, there 15 a correlation between the fraction of the execution ime devoted
to lock synchronization and the amount of network fratfic that is saved. For
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Figure 4.12: Normalized network traffic.

instance, Ocean presents the lowest reduction in nefwork traffic since less than
5% of its execution time (see Figure 4.10) is spent on locks.

4.4.4.3 Energy Efficiency

Finally, we also consider the benefits in energy efficiency that our proposal entails.
More specifically, we present in Figure 4.13 the normalized energy-delay? product
(ED?F) metric for the full CMFE To account for the energy consumed by the GLack
architecture (the G-Lines-based network described in Section 4.2.1), we extend the
Sim-PowerCMI with the consumption model of G-Lines and controllers described
in previous Section 4.3.2. According to our discussion in Section 4.3.1.2, the power
dissipation associated with our twoe technology-aware GLock implementations 1s
negligible, hence the power statistics presented in this section will be mainly due
to the improvements in execution time and network traffic reported in previous
sections.
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Figure 4.13: Normalized energy-delay” product (EDPP) metric for the full CMP.

As in the previous two sections, all results in Figure 4.13 have been normalized
with respect to the MCS case. As can be observed, important improvements in
the ED?T metric of the whole CMP are achieved when applying our proposal. In
particular, the GLock mechanism brings average improvements in ED?P of 78%
and 28% for the microbenchmarks and real applications, respectively. The 5CTR,
MCTR, DBLL, FRCO and ACTR mucrobenchmarks show reductions of 2%, 83%,
75%, 65% and 96%, respectively. Additionally, reductions of 50%, 10% and 25%
are achieved for Raytrace, Ocean and Osort.

In general, as commented above, the magnitude of these savings is directly
related to the extents of the improvements in execution iime and network traffic
previously reported. We have found that when the GLock mechanism is employed,
the rmumber of instructions executed per lock acquisifion and release operation
is drastically reduced. Note that while MC5 Locks must deal with a distributed
queue of walting threads requesting the lock, GLock only needs two assignment
instructions on two registers to notify the arrival to the lock and the subsequent
release operation (see Section 4.2.3). Obviously, less instructions executed means
less energy consumed in the processor cores.
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Moreover, since we teduce the latency of lock acquisitions, the busy-wait
process is also shortened with GLock., While busy-waifing, a processor core
repeatedly access the L1 cache to check the value of a shared variable. In this way,
shorter busy-waiting implies less accesses to the L1 cache, and therefore, less
energy consumed in this structure. Finally, given the fact that our proposal skips
the memory hierarchy, we save all the energy derived from coherence acfivity
when locks are execufed. In particular, we remove all of the L1 cache misses
related to lock operations and the corresponding messages fransterred across
the mterconnect. This brings reductions in the energy consumed at the L2 cache
banks and the interconnection network.

4.5 Related Work

Performance degradation of software-based schemes for lock /unleck operations
in paralle]l machines has leng been recognized as a key impediment to scalability
and high performance as the processor/core count increases. For that reason, in
the literature there have long been devised some architectural extensions that go
from simple hardware support, such as improved network/ memory controllers,
to those proposals that infegrate sophisticated interconnection networks for
conveying synchronization traffic.

A comprehensive description of the major proposals for lock /unlock op-
erafions at both soffware and hardware levels are described below. To this
end, we firstly give a review of some well-known soffware-based implementa-
Hons exposing their main performance bottlenecks in order to understand why
hardware support becomes essential. Secondly, we expose the most relevant
hardware-based schemes by comparing them against our GLock proposal.

The simplest software-based synchronization algorithms rely on atomic
read-modify-write instructions, such as test&set, fetch&roperation, swap or
compare&swap, to implement the lock and unlock synchronization prinutives [29].
For instance, Simple Lock repeatedly tries to acquire the lock by toggling a boolean
flag from false to frue with a test&set instruction. Next, the lock is released
by simply foggling the flag back from frue to false. The main drawback of this
algorithm is the continuous generation of cache-coherence network traffic while
busy waiting for lock acquisition. Te ameliorate this problem twoe optmizations,
namely test-and-test&set and exponential back-off, have been proposed. The
former issues standard loads that hit on the local cache while busy waiting for
lock acquisition. Hence, the test&set is only issued when the lock appears fo

129



4. GLock: AN EFFICTENT INFRASTRUCTURE FoR HicHLY-CONTENDED LOCKS

be free thus reducing cache-coherence network traffic. The latter inserts a delay
between consecutive attempts to acquire the lock in order to reduce contention.
Anderson [141] found that exponential back-off is the most effective form of
delay. Nevertheless, as contention increases these improvements are not enough
to guarantee scalability especially for highly-contended locks.

More elaborated algorithms such as Ticket Lock, Array-based Lock and MCS Lock
provide more scalable and fair lock implementations at the expense of increased
storage cost and higher latency for the low contention case [29]. The Ticket Lock
algorithm consists of a pair of counters, a ticket counter and a row-serving counter.
To acquire a lock a thread gets ifs tum by issuing a fetch&increment on the
ticket counter and then busy waits until the now-serving counter equals its ticket.
To release the lock a thread simply increases the now-serving counter. Array-based
Lock just replaces the now-serving counter by an array of locations. The idea
behind MCS Locks [76] 18 simular to that of Array-based Locks. An MCS Lock builds
a distributed queue of waiting threads requesting the lock. In this way, each
thread busy waits on a unique, locally accessible flag rather than competing for a
single counter. MCS Locks are considered the most efficient software algorithm
for lock synchronization [6,59,76]. In all three cases, cache-coherence nefwork
tratfic is reduced because only one thread actually attempts to obtain the lock
when it 13 released by the previous owner.

In general, simple algorithms tend to be fast under low contention and ineffi-
clent when contention 1s high. In contrast, sophisticated algorithms specifically
designed to deal with contention usually incur a non-negligible overhead when
there is little contention. For this reason, a number of hybrid approaches have
been proposed. Reactive Lock [14] is a library-based adapfive approach that
chooses the best synchronization algorithm under different levels of contention.
This technique switches between Simple Lock and MCS Lock for the low and high
contention cases, respectively. Smart Lock [59] uses heuristics and machine learn-
ing to choose the most appropriate algorithm following a specific user-defined
goal in terms of performance, energy consumption or problem-specific criteria.

A completely different software approach that is not based on atomic read-
modify-write instructions called MP-Locks is presented in [19]. With MP-Locks
synchronization operations are implemented using message passing, over the
main data network, and embedded kernel lock managers. This approach comes
in three different flavors, namely centralized, distributed and reactive that are
differentiated from each other in how the lock managers control lock ownership.
A comparisen between MP-Locks and MCS Locks reports significant performance
and scalability gains at the expense of increased software complexity and lirrited
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portability. A similar idea, proposed in the context of distributed systems, called
Token-based Locks appears in [25]. In this case, the right fo acquire a lock is
represented by a token which is unique in the whole system. Threads willing
to acquire a lock must wait for token arrival and release the token upon critical
section completion.

Remote Core Locking [80] (RCL) is an efficient software-based implementation
specially designed for highly-contended locks. RCL replaces lock acquisitions
by remote procedure calls (RPCs) to a dedicated server core in order to exploit
cache locality. The reasen 1s that when a CS accesses shared data that has recently
been accessed by another core, there will result in cache misses. So, the idea
is to avoid these cache misses. RCL enfails a tool that fransforms €5 code to
be executed as an RPC as well as a runtime for Linux OS5 that includes the
RCL code. The implementation of RCL 1s based on an array of requesting cores
{clients) cached in the server core, and devoted to establish an interaction with
the server that quifs when the server executes the CS. For a 48-core machine
significant performance improvements are shown., Nevertheless, the efficiency
of this software implementation for highly-contended locks may be hampered
by higher core counts, since dedicafing an enfire core to implement a CSis a
centralized approach that may lead to potential performance bottlenecks as the
number of clients increases. Differently, our GLock proposal does not dedicated
cotes to execufe a C5 and is based on a scalable and distributed infrastructure
to implement highly-contended locks. In addifion, our proposal neither injects
synchronization-related traffic into the main intercormect nor uses the memory
system, thereby not interfering with Qo5 of parallel applications.

Hardware support for lock synchronization has also been the target of a
number of proposals. Quene-On-Lock-Bit (QOLB) [6] is based on a distributed
queue of waiting threads requesting the lock. Unlike MCS5 Locks, in QOLB
the queue is implemented enfirely in hardware at the cache controller level.
Moreover Carter et al. [57] propose to integrate some basic atomue instructions at
the directory controller level. The Synchromzation-operation Buffer (SB) [100] 1s a
hardware module which augments the memory centreller to queue and manage
lock operations issued by the threads. (XOLB reports non-negligible performance
gains when compared to MCS Locks. In general, all of the hardware-supported
solutions require modifications at some level of the memory hierarchy. In contrast,
our propoesal, namely GLock, completely decouples lock synchronization from any
kind of memory-related activity, by deploying a dedicated lightweight on-chip
network infrastructure to implement a simple synchronization protocol aimed at
accelerating highly-contended locks.
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4.6 Conclusions

Lock contention 15 recognized as a key constraint to performance and scalability
on many-core CMPs when frying to expleit thread-level parallelism. In this
chapter we have proposed GLock, a new hardware-supported implementation for
highly-contended locks. GLock deploys a dedicated on-chip network and relies
on a simple token-based messaging-protocel in order to provide an extremely ef-
ficient and completely fair lock implementation. Even though resources required
to build this network grow with the number of supported locks, a deep analysis
of some parallel applications discloses a reduced number of highly-contended
locks in most cases, In this sense, our proposal is a hybrid approach which
combines the devised GLock mechanism with Simple Locks enhanced with the
test-and-test&set optimization. While GLock provide hghtmng-fast lock acqui-
sition and release for highly-contended locks, the Simple Locks result in the best
performance for low-contended locks.

We have evaluated two implementations of the GLock mechanism. The first
makes use of state-of-the-art full-custom technology, namely G-Lines, whilst the
second is based on a mainstream industrial toolflow and standard cells. While
the on-chip area overhead and energy consumed by both implementations are
considered negligible, the former technology has been used to report minimum
synchronization latency, whereas the latter leads to a cost-effective implementa-
tion because it is within reach of a standard cell design methodology.

We integrate both GLock implementations into a detailed architectural-level
power-performance simulafor, and discuss synchronization efficiency results
as compared to the most efficient sottware-based lock implementation. To do
sor, we simulate a 32-core CMP with a 2D-mesh data network and employ a
set of mictobenchmarks and real applications. From this study, both GLock
implementations report very similar reductions in execufion time, thus not
making our proposal so dependent on a full-custom technology to achieve
extremely efficient synchronizations for highly-contended locks. In more depth,
an average reduction of 42% and 14% in execufion time, an average reduction
of 76% and 23% in network traffic, and an average reduction of 78% and 28% in
the energy-delay? product (ED?P) metric for the full CMP are achieved, for the
microbenchmarks and the real applications, respectively.
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CHAPTER 5

ECONO: A Simple and Efficient
Cache Coherence Protocol

5.1 Introduction and Meotivation

The exploitation of thread-level parallelism in many-core CMPs is commonly
carried out by relying on an intuitive shared-memory programming model [31].
This is due fo the fact of achieving lower programming complexity which is
of paramount importance as core count, and number of concurrent threads to
manage, increases. In this memory model, communicafion and synchroniza-
Hon among threads are accomplished through memory operations over shared
memorty blocks, such as conventional loads and stores instructions, as well as
atemic read-modify-write mstructions hike test&set or fetch&add. Nevertheless, the
maintenance of coherence for such blocks across all levels of a memory hierarchy,
composed of private and shared levels of caches, requires the implementation of
a cache coherence protocol.

Strietly speaking, a cache coherence protocol ensures coherence in a shared-
memory system as long as two different invariants are maintained [31]. First,
the single-writer&rmultiple-reader invariant, where for any memory block A, at
any given (logical) time, there exists only a single core that may write to A (and
can also read if) or some number of cores that may only read A, And second,
by dividing the memory block’s lifetime into different epochs, in which either
a single core has read-write access or some number of cores (possibly zero)
have read-only access, the coherence protocol must also maintain the data-value
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invariant. The latter guarantees that the value of the memory block at the start
of an epoch is the same as the value of the memory block at the end of its last
read-write epoch.

Although scalability of coherence 1s realizable in future many-core CMPs [97],
as core count increases achieving efficiency constitufes a great challenge for
several reasons. On the one hand, the more the block sharers the costlier the
coherence activity will be required. For instance, when invalidating all the copies
of a particular cache block that 1s present in every cache, after a particular thread
suffers a wrife cache miss. On the other hand, apart from high performance,
an efficient coherence profocol should also deal with other important aspects,
including resulting complexity and requirements in terms of on-chip area and
energy consumption.

To exemplity the difficult decision-making process to address the previous
aspects at once, we choose two contemporary coherence protocols, namely Ham-
mer [2] and Dhrectory [88]. In short, Hammer ensures coherence by relying on
broadcasting coherence messages to all private caches, whereas Directory keeps
track of coherence information about sharers to send coherence messages just to
those private caches with a valid copy of the memory block. Therefore, Directory
is more efficient in terms of performance and power dissipation since it only
injects the required coherence messages into the CMP’s interconnection network.
Besides, Hammer is more efficient in ferms of on-chip area resources because
it does not devote any hardware structure to store coherence information. In
addition, ncreasing performance levels in these protocols come at the expense of
implementing sophisticated state machines with many states. This translates into
higher protocel complexity, hence making protocel design and verification much
harder [37].

In this chapter, we propose Express Coherence Notification (ECONO), a cache
coherence protocol specifically tailored to future many-core CMPs. The novelty
of our proposal resides in that it provides a very efficient operation for coherence
maintenance in terms of design complexity, on-chip area overhead, performance
and energy consumption. To accomplish this, the design of our proposal is
based on atomic broadcasts over a dedicated lightweight on-chip network, thereby
removing a considerable amount of coherernce-related traffic from the main
CMI's interconnect. As compared to Hammter and Directory, ECONO features the
simplest design, Tequires an on-chip area overhead similar to Hammer, reports
similar performance to Directory and constitutes the most energy efficient design.

The rest of the chapter is organized as follows. We describe Hammer and
Directory protocols in Section 5.2, Section 5.3 presents our proposal for a simple
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and efficient coherence protocol for many-core CMPs. Next, in Section 5.4 we
discuss some important performance implications when using our proposal. We
evaluate the benefits of ECONO in Section 5.5. The related work is described in
Section 5.6 and finally, Section 5.7 presents the main conclusions of our work.

5.2 Two Contemporary Coherence Protocols

A great deal of attention has been devoted to solve the problem of maintaining
cache coherence in an efficient marmer for shared-memory CMP systems (see
Section 5.6). In this section, we study two contemporary designs for maintaining
coherence, Hammer and Directory, and present how they manage to ensure
coherence. For the explanations, we assume a many-core CMP architecture
composed of a number of replicated tiles where each file confains a private L1
cache and a slice of a shared L2 cache (further details in Section 5.3.3). Moreover,
as baseline implementation we consider MESI state machines for the L1 caches.

5.2.1 Hammer

This is the cache coherence protocol used by AMD in their Opteron systems [2].
This protocol does not store any coherence information about cached blocks
held in the private caches and can be understood as a directory-based protocol
without directory information, or using the ternuneclogy from Agarwal et al. [1], a
DirgB protocol. To ensure cache coherence, Hammer relies on coherence messages
that are broadcast through the main CMI’s interconnection network.

In Figure 5.1, we show how Hammer would operate under two typical sce-
narios!. The first scenario is depicted in Figure 5.1a. The figure shows the case
of a parficular memory block that is being shared among different L1 caches
(mulfiple copies of the block, each one in 8 state), and a requesting core (R)
that gefs a write miss in its L1 cache and sends a wrife request (1. GetW) to the
home tile (H). In this case, the proper coherence action would be the invalidation
of all cached copies before delivering the valid home’s copy along with write
permission to the requester. Since, no coherence information about block sharers
1s stored in this protocel, this protocol broadceasts as many mvalidation coherence
messages as the number of L1 caches in the system (2. ProbeW). In this way, some
L1 caches that receive the coherence message may not contain a valid copy of the
requested block (see I in the figure). In any case, all the L1 caches respond with

'Messages depicted together with the arrows travel through the main CMP's interconnect.
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2.ProheX

{a) Invalidation of L1% sharers. {b) Data recovery from L1§ ownen

Figure 5.1: Examples of coherence scenarios under the Hamnmer protocol.

acknowledgerment messages (3.4ACKs) to the requesting core. Moreover, after the
broadcast transmussion has been completed, the home tile can send its block copy
to the requester (3.Data). Next, once the requester receives all the responses, it
sends an unblock message (4.Unblock) to the home tile so that the home can
attend other requests for the same memory block.

In Figure 5.1b, we show the actions performed in the second scenario. Here,
there exists only one modified copy of the block in a single L1 cache (ie. the
owner or M in the figure) and a requesting core that wants to write or read (see
1.GetX for the general case) the block. On the one hand, in case of a write cache
muss (Le. 1.GetW), once all coherence messages arrive at all L1 caches (2.ProbeX),
all but the owner respond with acknowledgements (3.4CKs) to the requester,
whereas the owner file sends the modified block fo the requester (3 .Data) and
invalidates ifs copy. Then, upon receiving all messages from all other tiles, the
requester sends fo the home the unblock message (4.Unblock). On the other
hand, for a read cache muss (l.e. 1.GetR), the owner would not invalidate its copy
of the memory block but a downgrade action would be carried out. As a result,
the M state of the owner’s block would change to § and then, the owrner would
become a new sharer of the block.

5.2.2 Directory

The Directory protocol assumed in this chapter is similar to the intra-chip coher-
ence protocol used in Piranha [88]. Differently from Harer, this protocol stores
coherence information about the blocks held in the private caches (e.g. through
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3.ACKE

ia) Invalidation of L1% sharers. (b) Data recovery from L1§ owner

Figure 5.2: Examples of coherence scenarios under the Directory protocol.

a full-map sharing code [91]), and manages coherence in a precise manner by
not relying on broadcasting for every coherence action performed. Following the
termuinology from Agarwal et al. [1], this protocel can be classified as a Dir,NB if
every directory entry can store the identity of up to # sharers (being # the number
of private caches in the system). For instance, using a full-map sharing code, »
would be equal to the number of L1 caches in the system ({.e. a bit-vector with
one bit per L1 cache). To illustrate how Directory operates fo ensure coherence,
we use the two scenarios previously deseribed for the Hammer protocol.

On the one hand, when there are multiple sharers of a memory block and a
requesting core wants to write into it (see Figure 5.2a), the requester gets a write
cache miss and a write request is sent fo the home tile (1.GetW). But now, the
coherence information stored in Directory prevents from sending unnecessary
invalidation messages towards those L1 caches that do not have a valid copy of
the block (2. INVs), hence saving traffic in the main CMP's interconnect, power
dissipation and also latency of cache misses. As we can observe, the rest of the
process is the same as shown for the Hammer protocol.

On the other hand, when there is only a single valid copy of the block in a
private cache (see Figure 5.2b), Directory recovers the data for the requesting core
following a more efficient strategy. Unlike Hammer, rather than sending broadcast
messages to all the L1 caches, Directory benefits from the coherence information
stored for the parficular memory block and then, the home tile forwards the
coherence message just fo the cormresponding block owner (2. Fwd). In this way,
the owner sends the data to the requester (3.Data) and, differently from Hantmer,
no acknowledgement message is required from the remaining L1 caches. Once
the data arrives at the requester, it sends the umblock message to directory as for
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the Hammer protocol. Finally, in a read cache miss, the operation would be the
same as before but a downgrade action would be performed.

5.3 ECONO Coherence Protocol

In this section, we present the Express Coherernce Notification protocol (ECONO from
now on), our proposal for a simple and very etficient cache coherence protocol
in many-core CMPs. ECONO does not keep frack of any sharing information
and, to ensure coherence, it relies on extremely fast atomic broadcasts that are
transmitted over a lightweight dedicated on-chip network.

The ratienale behind our decisions for the design of our proposal comes from
the following observations. First, we decided to include atomicity as part of the
normal operafion of our coherence protocol. In consequence, we could obtain
simpler protocol specifications which is of paramount importance to reduce
design complexity and protocol verification [37]. Second, to develop a cost-
effective coherence protocoel, we took advantage from the minimal area overhead
required by the Hammter protocol, that dees not devote any hardware structures
to keep frack of coherence informaftion about cached blocks. This is the reason
why our proposal also makes use of broadeasting to accomplish the eoherence
actions. Consequently, following the terminology from Agarwal ef al [1], like
Hammer, our proposal can be also classified as a DirgB profocol. And third, we
decided to convey all broadeast messages through a dedicated on-chip network in
order to avold compreomusing QoS of applications. It 1s worth noting that, neither
Hanmmer nor Directory, nor the vast majority of the protocol designs operate in this
way. Moreover, due to the fact that coherence messages are commonly very short
(ie. the combination of the requested block’s address and operation code could
be enough), ECONQO’s network features a very lightweight and low-bandwidth
infrastructure to minimize its impact on on-chip area as much as possible.

5.3.1 Baseline Operation

To illustrate how ECONO operates, we assume the same CMP architecture used
tor the descriptions of Hammer and Directory in previous Section 5.2, Moreover,
as a baseline implementafion, we make use of a very simple reguest-response
operation mode in which home tiles do not delegate coherence responses to L1
caches (i.e. no forward messages, that would increase complexity at the L1 caches,
and directory controllers are employed). Additionally, every coherence message
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ia) Invalidaton of L1$ sharers. (k) Data recovery from L1$ owner

Figure 5.3: Examples of coherence scenarios under the baseline ECONOQ protocol.

atomically broadeast (Afomic Cokerence Notification message, or ACN message
for short) contains all the information required for the coherence operation: the
address of the requested block and the type of the ACN message (e.g. invalidation
or downgrade). Finally, to illustrate how our proposal would operate, we utilize
the same two scenarios previcusly employed for the explanations of Hamier and
Directory.

For the first scenario, where we deal with a write cache miss and there are
mulfiple sharers of a memory block (see Figure 5.3a), a coherence operafion
similar o what is done in Hammer should be performed due to the fact that
ECONO does not store any coherence informafion about cached blocks (no
directory exists). However, unlike Hamirer, our protocol operates much more
efficiently 1n this case for two reasons. First, rather than transmutting in broadcast
as many invalidation messages as L1 caches in the system, ECONO sends a single
ACN message over the special on-chip network. And second, no acknowledgment
messages are Tequired because we guarantee that the ACN message arrives at
all L1 caches after a cerfain amount of fime. To accomplish that, the special
network was built fo enable this type of efficient transfers (further details in
Section 5.3.3.2), and every transference is performed atomically with respect to
any other coherence operation in the system to impede delays. For that, before
starting a coherernwce action, the particular home file must acquire the use of
ECONO's network In mutual exclusion (see action 2. a in the Figure 5.3a). Then,
the ACN message 15 fransmitfed in broadeast to invalidate all the L1 caches
(action 2.b). Next, after a certain amount of time (the time required to reach
all the L1 caches), the home knows that all cached blocks have been removed
and it can release ECONO's network (action 2.¢). Besides, the home sends its
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copy of the memory block to the requester (3.Data). Upon receiving the data,
the requesting core transmits the unblock message to the home tile (4. Unblock)
as explained for the other two protocols.

In Figure 5.3b, we show the actions performed in the second scenario. Re-
member that, there exists only one modified copy of the block in a single L1
cache and a requesting core that wants to write or read the block. As we can
observe, the process would be the same as before but now, the owner would
invalidate (for a write miss) or downgrade (for a read nuss) its copy and it would
sentd the block to the home tile (3 .Data). Next, the home would send the block
to the requester (4.Data). Finally, the requester would send the unblock message
to the home (5.Unblock).

An inifial analysis of the baseline ECONO operation reveals the following
conclusions. First, the use of ACN messages should report important benefits in
terms of network traffic, since neither acknowledgements nor multiple coherence
messages are injected info the main inferconnection network. Second, it also
should provide benefits in execution tfime because, as explained above, the ACN
operation is performed very fast and besides, removing all the latter coherence
messages from the interconnect should lead to lower periods i blocking states at
home tiles. And third, the use of atomic coherence messages helps to simplify the
protocol mainly for two reasons. On the one hand, atomicity prevents from con-
sidering non-trivial situations where there exists coherence interferences among
conflicting requests. On the other hand, it also simplifies protocol verification
because serializing coherence actions ensures forward progress that prevents
from pathological livelocks or possible starvafion scenarios. Consequently, we
can affirm that our proposal 1s simpler than Hammer and Directory, and also more
efficient in ferms of network traffic since we remove an important amount of
coherence-related traffic from the main infercormection network. However, at
this point it is difficult to affirm that we also outperform both protecels in terms
of execution fime, because we cannot defermine the exact impact on execution
time of contention when using ECONO’s network, and the effect of senalization
in the coherence operations. Later on, we will quantify these issues along with
others such as power dissipation and on-chip area overhead to complete all the
different aspects considered in Section 5.1.

5.3.2 Extensions to the Baseline ECONO

The baseline ECONO implementafion previously presented makes use of the
request-resportse operation mode. As explained above, this invelves up to four hops
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Figure 5.4: Format of the ACN messages for both implementations of ECONO.

in the critical path of a cache miss (see Figure 5.3b). We call this implementation
4-hop ECONO. Like Hammer and Directory, we could reduce the number of hops
tfo three by using forward messages from the home files to the owner caches
(see Figures 5.1b and 5.2b). In this way, the owner cache would be in charge
of sending the data directly to the requester in exchange for a slight higher
complexity in the L1 caches. In Section 5.5, we will also evaluate this alternative
implementation of ECONOQ protocol, namely 3-fuwop ECONO.

Moreover, we could have opted to reduce the blocking periods at the home
tiles by removing unblock messages, however we did not choose this option and
preferred the use of unblock messages mainly for two reasons. First, the umblock
message is required for non-ordered intercennection networks, like the 2D-mesh
network assumed in this chapter (further details in Section 5.5.1), in order to
handle races in a simple way [32]. And second, the unblock message transmutted
towards the home file ensures that no subsequent ACN operation to the same
block address is performed in the interim. Therefore, we avoid dealing with
possible data races between different ACN messages to the same block address.
For instance, in Figure 5.3a when the 3 .Data message has not arrived yet and a
subsequent ACN message is received.

The final group of extensions comes from modifications to the ACN messages
fransmitted. Figure 5.4a illustrafes the format of an ACN message. As we can
see, it is made up of two different fields: the kead, that is used to identify the

141



5, ECONC: A SIMTLE AND EFFICIENT CACHE {COHERENCE PROTOCOL

type of action to be applied (e.g. invalidation); and the payload, that stores the
information required fo identify the cached blocks that will be atfected by the
coherence action (e.g. the block address).

Regarding the baseline 4fop ECONO, according to Section 5.3.1, the fread field
needs to cover two coherence actions: invalidation and downgrade. In particular,
we have also considered two subtypes for the invalidation case? depending on
whether the action Invelves a single owner (M in Figure 5.3b), or multiple sharers
(3 in Figure 5.3a). Note that, like in Directory, the home tile readily would identify
both cases by means of different states at the L2 cache. Therefore, to cover all
possible cases, this fleld contains two bits.

On the other hand, the payload field contains the block address of the ACN
operation. This configuration is called BlockAddress and is outlined at the tfop
of Figure 5.4b. While this 1s the most precise way to perform a coherence action,
since the block address unequivocally identifies every copy in the L1 caches, we
could consider a smaller number of bits in order to reduce propagation latency
of the ACN messages. For example, every ACN message could contain a subset
of the entire block address that would identify the cache entry where the block
would be (L.e. the index). Nenetheless, the problem with this configuration, called
Index and shown in the center of Figure 5.4b, would be when the L1 caches
do not follow a direct-mapped scheme. For instance, in a N-way set-associative
scheme, up to N cached blocks could be invalidated which may enfail extra L1
cache misses that would degrade performance.

To alleviate such an issue, we propose two different optimizations. The
first optimization will be referred to as Index+ExtraBits and is depicted at the
bottom of the Figure 5.4b. Here, apart from including the index field, we could
incorporate some extra bifs taken from the block address to check against the
same bits stored in the tag address of every L1 cache entry. So, the more extra bits
included the lower probability of invalidating wreng cached blocks. As a second
optimization, we propose to apply two types of filters at the L1 caches aimed at
reducing the number of cached blocks affected by the imprecision that the ACN
messages entail. On the cne hand, the state filter, that prevents from invalidating
cached blocks with irrelevant stable states: in downgrade or invalidation actions
on owners' caches, stable states different than M or E; and for invalidations of
multiple sharers, stable states other than 3. On the other hand, the sharing filter,
that would exclude all private blocks in the particular L1 cache enfry from the
coherence operations. Additienally, ECONO only maintains coherence for shared

2This will be necessary o support the state filter explained below.
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blocks, which are the blocks that truly need coherence. In this chapter, to identify
private blocks, we assume an OS-based classification similar to what is done
in [13].

As to the 3-fiop ECONO, the head field needs to cover three coherence actions.
First, invalidation, which is used to invalidate all shared copies in the systemn
(e.g. for a write cache miss in Figure 5.3a). Second, ferward-downgrade, which 1s
used to downgrade the owner’s copy and forward the data to the requesting core
(for a read cache miss in Figure 5.3b). And third, forward-invalidate, where the
owner forwards and invalidates its copy (for a write cache miss in Figure 5.3b).
Consequently, in 3-hop ECONQ, the head requires two bits. Finally, for the payload
field, we will only consider an ACN message in which the block address is
used along with the requester’s ID fo identity the destination of the forward
message. This configuration will be referred to as ID+BlockAddress and 15 shown
in Figure 5.4c. The number of bits required by the ID is equal to the log, (#Tiles)
(e.g. four bits for the 16-tile configuration assumed in this chapter). Besides, in
this ECONO implementation, we will not make use of shorter and imprecise
ACN messages. Imprecise forwards would be very difficult to manage because
there may be forwards to wrong owners, forwards to the correct owner on wrong
blocks, or even data responses to wrong requesters from correct or wrong cwners.

5.3.3 Physical Implementation

ECONO protocol has been designed and implemented considering the target
many-core filed-based CMP architecture presented in Section 2.1. In short,
this system is composed of a two-level hierarchy including one private level
of instruction and data caches, and a logically-shared physically-distributed L2
cache. Moreover, a 2D-mesh layout 1s used for the CMFP’s interconnect. Figure 5.5
illustrates this system including some of the components required by ECONO
that we described below.

Ditferently from the two other proposals presented in this thesis, GBarrier
(Chapter 3) and GLock (Chapter 4), in this chapter we will consider an implemen-
tation of ECONO based on the full-custom G-Lines technology. An experimental
analysis using the other type of technology considered in this thesis, the Standard
orte, Tevealed that this is not efficient encugh to provide neither lightweight
Infrastructure nor very fast broadeast operations for our coherence protocol. Not
surprisingly, other recent broadcast-based coherence protocols for many-core
CMPs [44, 154] (further details in Section 5.6) come to the same conclusion,
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Figure b.5: Extra HW resources per Tile: C, T and R controllers.

though they discard the Standard technology in favor of another state-of-the-art
technology based on new advances in nanophotonic transmissions [123].

The physical implementation for the ECONO protocoel relies on very simple
hardware extensions to the CMP system in terms of a few controllers per tile
and the use of a very lightweight dedicated on-chip network to convey the ACN
messages. Moreover, to ensure atomicity in the fransmission of such messages,
another lightweight dedicated on-chip network is devoted based on the GLock
infrastructure presented in Chapter 4. As we will explain, these hardware exten-
sions modify neither the processor core nor the main interconnection network at
all, and they require enabling a couple of interfaces between cache controllers
and the ECONQ architecture to communicate with each other.

5.3.3.1 Controllers

Figure 5.5 shows the three types of controllers per tile required by our proposal:
T, R and C confrollers. These confrollers can be classified into two groups de-
pending on the functionality they provide. The first group consists of the T
and R controllers, that will operate as fransmitters and receivers of the ACN
messages over ECONO's network, respectively. Since the home tile broadcasts
these messages to all L1 caches, T 1s implemented in the L2 controllers, whereas R
1s implemented in the L1 controllers. The second group refers to the C controllers
that will be devoted to guarantee the atomic transmission of the ACN messages.
More specifically, C will be in charge of requesting, acquiring and releasing the
ECONUO's network ownership to transter the message in mutual exclusion. Due
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{a) CecMetuark k) GLack
Figure 5.6: Dedicated networks required for a 9-tile CMP.

to the fact that this task is performed at the home banks, as we can observe in
Figure 5.5, the C controllers are implemented as part of the L2 cache controllers.

9.3.3.2 Dedicated On-Chip Networks

The two on-chip networks required by our coherence protocol have been de-
veloped considering the most efficient G-Lines technology. In this way, both
infrastructures must be composed of long 1-bit wires (i.e. a G-Line) to intercon-
nect all the different controllers previously described. To simplify the design,
we decided to employ a 2D-mesh topology for both networks because if is the
topology used in the main CMP’s interconnect.

Figure b.6 illustrates both networks for a 3 x3-tile CMP system, where every
circle represents a tile, thick gray lines constitute the main 2D-mesh interconnect,
and finer lines are our networks with their respective controllers depicted as
boxes. As we can observe, each of the two groups of controllers presented above
operates over a different on-chip network: the G-Line-based express coherence
network (GecNetwork), for T and R controllers; and the GLock’s network, for C.

Regarding the GecNetwork (see Figure 5.6a), it interconnects all T and B con-
trollers and enables broadcasts of the ACN messages by using horizontal and
verfical lines following a three-phase scheme. First, a parficular T controller
writes a message into its horizontal line. Then, the horizontal line in which T is
attached to broadeasts the message to all the R controllers attached to the same
line. Second, a vertical line is devoted to broadcast this message to the remaining
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horizontal lines. And third, these horizontal lines broadcast the message to the
rest of R confrollers. Notice that, acquiring network ownership guarantees that
just a single home tile will be able to fransmit a message, what prevents from
any inferference among ACNs and establishes a deferministic way fo estimate
propagation latency.

The GLock architecture shown in Figure 5.6b will guarantee exclusive access to
the GecNetwork for a particular home tile, Since there may be multiple home tiles
competing for network ownership, it would be necessary to use a fair and efficient
mechanism to resolve possible scenarios under high degree of contention. Due
to ifs similarity fo the problem of efficiently managing highly-contended locks
in parallel applications, we adapt our GLock proposal presented in Chapter 4
to manage confention at L2-bank level (ie. every home ftile). This adaptation
was sfraightforward because it simply requires a change in the elements that
activate the GLock: L2 banks rather than processor cores. The hardware resources
of the GLock infrastructure will be taken into account when analyzing the fotal
hardware cost of ECONO's infrastructure in Section 5.4.2.

5.4 Performance Implications

In this section, we analyze ECONO fo defermine ifs pofenfial impact on execu-
tion fime and required hardware resources considering area overhead, power
dissipation and scalability.

9.4.1 ACN Latency

The performance of ECONO is highly dependent on the efficiency of the atomic
broadcast operations to transmit the ACN messages it triggers in order to ensure
coherence. As explained in Section 5.3.1, three different steps are required
to transmit an ACN message: the GecNetwork acquisifion; the ACN message
transfer; and the GecNetwork release. Due to the fact that the first and last steps
are accomplished by the GLock mechanism, according to the raw performance
statisties reported in Section 4.2.5, the GLock takes: 4 or 2 eyeles (worst or best
case) for the first step; and 1 cycle for the last one.

Regarding the second step, Figure 5.7 depicts the transfer delays (y-axis)
depending on message sizes (x-axis) and number of G-Lines used in the GecNet-
work (bandwidths ranging from 1 to 7 bits per clock eycle). The total number
of bits required by the different message sizes takes into account the simulated

146



5.4. Performance Implications

"| ¥ z . 3lililnnui|4 *5 ﬁ,----u--?
40
35
ml‘""“
a—— 25 Tl panen? i
"] ottt
o 20 —
% 15 .
" 1“ ...l!l"""'“ R — Lo PR Iu‘l' L r,.,w'-ﬂr-r“
L L el T Mnp o = -‘ﬁ‘lﬁ“-‘:l-lIIIlllﬂ- ERSmmmEy
E 5 L VT TEmEEEAE
~ a
TNMYeeN o g RIrenEeRRNRIRRRERARS
Py 3 i 3
i = E 3
Messzage Size (bits) m ]
[=]

Figure 5.7: Propagation delays for ACN messages using different G-Lines for the
GecNetwork.

parameters for the CMP system detailed in Table 5.2, The timing values plotted
in the figure come from the 3-phase broadcast scheme discussed in Section 5.3.3.2
to transmit an ACN message. To accelerate the process, we implement a pipeline
strategy by overlapping transmissions of different parts of the message along
with the three different phases of the broadeast. In this way, the estimafion of
propagation delays was computed by means of Equation 5.1, where MessageSize
corresponds to the mumber of bits to transfer, and G-Lines sterns from the number
of 1-bit-width G-Lines employed.

PropagationDelay = {W-‘ 2

G-Lines (5-1)

From Figure 5.7, we can derive two important conclusions. First, as expected,
the greater the message size is, the longer the lafency is. Second, there exists a
tradeotf between bandwidth and on-chip area overhead of the GecNetwork. For
instance, the 7-G-Line GecNetwork achieves the lowest propagation delays but
it involves the greatest area overhead. As we can observe, the use of three fo
severt G-Lines achieves almost negligible relative improvements (5 clock cycles
in the worst case), but it obtains important area savings when choosing the
smaller number of G-Lines. Consequently, we evaluate our ECONO miechanism
considering a 3-G-Line GecNetwork infrastructure.
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5.4.2 Hardware Resources

Table 5.1: Hardware cost of ECONO architecture for a 2D-mesh CMP layout.

1-bit GecNeiwork G-Lines VC+1
Controllers: Ts+0s | C + C
GLock G-Lines C -1
Controllers x/E +C

The hardware cost of our proposal for the target 2D-mesh CMTI layout consid-
ered in this thesis comes as consequence of these two components: the GecNetwork
(Figure 5.6a) and the GLock (Figure 5.6b). Table 5.1 details the number of G-Lines
and Controllers that both components require. In particular, assuming 1-bit G-
Lines, and being C the total number of cores or tiles, the GerNetwork needs a set of
v'C +1 G-Lines (see the four G-Lines in Figure 5.6a) as well as C T controllers plus
C R controllers (see the eighteen confrollers shown in Figure 5.6a). In general,
for a P-G-Line GecNetwork the latter numbers must be multiplied by a factor of
P. Besides, from the analysis carried out in Section 4.2.5, the set of G-Lintes and
Controllers for the GLock would be C — 1 and +/'C + C, respectively.

To provide some insight into the magnifude of the hardware cost exposed,
we consider the 16-file CMP later evaluated in Section 5.5. Therefore, the total
number of G-Lines required for ECONO would be equal to 30 (15 for 3-G-Line Gec-
Network plus 15 for GLock architecture), whereas the total number of controllers
would be equal to 116 (96 and 20, respectively). As reported in [142], a 392-G-Line
network shows very small area implications, so we can assume that our proposal
introduces negligible area overhead.

5.4.3 Power Dissipation

Since the ACN messages are always broadeast, the total power of our proposal
is dominated by the dissipation of the GecNetwork. The GLock is much more
energy efficient because it only requires the tfransmission of a single 1-bit message
towards the next home tile that acquires the GeceNetwork ownership. However,
we will take into account a worst-case scenario in which all home files request
the GecNetwork ownership af the same fime. For the estimation of the power
dissipated by ECONO, we employ the power dissipation parameters for a 65-nm
CMOS process simulated in [142]: 0.6 mW per T confroller; and 04 mWW per R
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controller. Moreover, according to [142] no static power is dissipated using the
G-Line circuitry.

Omn the one hand, for the power dissipated by the GLock, we must deal with the
worst-case scenarie described above. In particular, there could be up to three local
controllers per row requesting lock ownership (i.e. 12 transmitters for the whole
CMPF) and four secondary leck managers, where each one keeps track of the three
signals fransmitted by its three local controllers (ie. 12 receivers for the whole
CMP). Thereby, the total power estimated is equal to 12 mW (12x0.6 + 12x0.4).

On the other hand, regarding the power dissipafion derived from the
GecNetwork, we firstly determine the maximum number of transmitfers and re-
celvers operating at once when the ACN message 1s being transmitted. Therefore,
considering a 1-G-Line GecNetwork and the pipeline-based three-phase strategy
to broadcast every message explained in Section 5.4.1, there will be a maximum
number of 5 T confrollers and 19 R controllers in a given clock eycle. More
specifically: 1 T confroller and 3 + 1r R confrollers in the horizontal G-Line; 1r
T confroller and 3¢ R confrollers in the vertical G-Line; and 3r T confrollers and
12 R controllers for the rest of horizontal G-Lines (the v suffix stems from the
and T confrollers that would work as repeaters in the vertical G-Line ouflined
in Figure 5.6a). Therefore, the total power estimated for the GerNefwork will be
10.6 mW per clock eyele (5 x 0.6 419 x 04). In particular 31.8 mW, if we consider
the 3-G-Line GecNetwork required by ECONO.

In consequence, the total power dissipation required by ECONO in the worst-
case scenario will be equal to 43.8 mW (12 mW for the GLock and 31.8 mW
dissipated by the GecNefwork). Utfilizing CACTI [52], the magnitude of this
dissipation 1s approximately one-7th of the power dissipated per read port in the
L1 caches simulated in this chapter (see Table 5.2).

5.4.4 Scalability

Both the GecNetwork and the GLock infrastructures are built upon a G-Line-based
fabric. Asin [142], every G-Lire can support up to seven controllers resulting in a
CMP configuration with up to 7 <7 cores. We would like to point out that our
mechanism is not restricted to that CMP layout and could be easily extended to
suppoert a higher number of cores. In particular, we could adopt a similar strategy
to that discussed for GBarrier and GLock in Chapters 3 and 4, respectively. More
specifically, we could increase the scalability of ECONO by using either longer-
latency G-Lintes, or different groups of G-Line-based nefworks linked together
through additional G-Lines following a hierarchical layout.
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Table 5.2: CMF baseline configuration.

Number of cores 16
Core 3 GHz, in-order, single-issue
Cache line size 64 Bytes
L1 I/D-Cache 32 KB, 4-way, 2 cycles
L2 Cache Bank 512 KB, 8-way, 12+4 cycles
Memory access time 250 cycles
Network configuration 2D-mesh
Data message size 72 bytes
Control message sizes 8 bytes
Network handwidth A8 GB/ s
Flit size 16 bytes
Linlk bandwidth 1 flit/eycle

Alternatively, to also achieve high scalability, our proposal could alse be easily
implemented assuming the leading-edge nanophotonic technology [123].

5.5 Evaluation

In this section, we firstly expose the experimental setup utilized in this chapter in
order to evaluate the performance benefits derived from our ECONO mechamism.
Next, in the evaluation part, we conduct a number of experiments to determine
the best-performing configurations for ECONO, and from the resulting settings,
we carry out a performance comparison against the two contemporary coherence
protocols considered in this chapter: Hammer and Directory.

5.5.1 Experimental Setup

The evaluation of ECONQO has been carried out by using the full-system simula-
tion fool explained in Section 2.2.2: Virtutech Simics [118] (Turming Solaris 10)
extended with Wisconsin GEMS toolset [98], and we also use its GARNET [107]
component to obtain a precise modeling of the interconnection network. Table 5.2
summarizes the values of the main configurable paramefers assumed in this
chaptfer. In short, we simulate a 16-tile CMP with a 2D-mesh fopology and a
two-level inclusive hierarchy.
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Table 5.3: Benchmarks and input sizes.

| Benchmarks | Input Size
SPLASH-Z (5)

Barnes 8192 bodies, 4 time steps
FFT 64K complex doubles
Ocean 258258 ocean

Radix 1,048 576 radix

Raytrace-opt | Teapot
Scientific Applications (3)

EM3D 38,400, degree 2, 15%, 50 time steps
Tomeatv 256 points, 5 time steps
Unstructured | Mesh.2K, 5 time steps

PARSEC (1)
Swaptions | simmedium

As benchmarks, we use nine mulfi-threaded applications: five from the
SPLASH-2 benchmark suite [128], one from the PARSEC benchmark suite [18],
and three scienfific applications. Table 5.3 shows them and their respective
problem sizes. These applications were chosen because they exhibit different
communication patterns ranging from small coherence activity like in Bames to
high activity like in Swaptions, as we will see in Section 5.5.3. All experimental
results reported in this chapter are for the parallel phase of the benchmarks under
study.

To quantify the performance benefits derived from our proposal we conduct
two sorts of experiments. First, we deternune the best-performing cenfigurations
for ECONO according to the extensions presented in Section 5.3.2. And second,
the resulting ECONO implementations are compared against the two contempo-
rary coherence protocols considered in thas chapter: Hamtmer [2] and Directory [88].
To ensure a fair comparison in terms of performance, all protocols share a com-
mon specification that consists of write-invalidate policy, MESI stafe machines
for the first-level caches, and inclusive cache hierarchies with write-back caches
and an invalidation-on-eviction policy for L2 replacements. In consequence, the
Hammer implementation evaluated in this chapter is an optimized version of [2]
because it has precise knowledge about the memory blocks that are cached. Note
that, otherwise, broadcasts would always be sent to both on-chip caches and
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memory in order to obtain the requested data. This would generate extra traffic
into the interconmect when data is off-chip, and important performance degrada-
ton walting for off-chip responses when they are no needed. Moreover, Directory
has been implemented by using upgrade requests. This entails an optimization in
terms of network traffic because an upgrade is used to request write permussion
tor a cached block with only read permission. If the requester sfill remains as
a sharer at home’s coherence information, an acknowledgement message from
the latter would be sent instead of the home's copy of the block, thereby saving
network tratfic (i.e. 8 vs. 72 bytes according to Table 5.2). Note that, the rest of
the protocols evaluated in this chapter do not store any coherence information,
and therefore, this optimization cannot be applied.

5.5.2 Characterization of the ECONO Protocol

The different extensions to the baseline ECONO implementation presented in
Section 5.3.2 are evaluated in order to find out the best-perfornung configuration.

5.5.2.1 Number of GecNetworks

From the analytical study carried out in Section 5.4.1, we conclude that the
GecNetwork must be comprised of a 3-G-Line infrastructure since a greater num-
ber of G-Lines leads to marginal improvements. Now, we investigate if this
configuration is encugh te keep up with high perfoermance or, on the contrary, it
will require more GerNetworks in order to solve possible problems of contention
when dealing with real applications. Remember that contention is due to mutual
exclusion required by the transmission of an ACN message. For the experiment,
we consider the worst-case scenario in which the messages confain the largest
payload in the 4£-hop ECONO: the BlockAddress. Figures 5.8a and 5.8b show the
effect of contention on execution fime for the set of benchmarks under study,
when dealing with one or two GecNefworks, respectively. Besides, each bar is
broken down into six categories depending on the concurrent home files that
are waiting for the GecNetwork acquisition: 0 when the network is free; 1 when
there is one home tile which either is gaining access to the network, or its ACN
message 15 still being sent; and for example 2_4, where there are from two to four
home files waiting for sending the corresponding message. Note that, despite
considering a 16-tile CMP, if is possible that more than 16 concurrent petitions
may be in progress because once a particular home tile acquires the ownership
and sends the ACN message, in the interim, other served requests could requure
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another ACN operation. Nevertheless, this situation has not been reflected in the
experiments because of being a very infrequent event.

As we can observe in Figure 5.8a, 65% on average of the accesses encounter
that the GecNetwork is free, and considering up fo four pefitioners for low con-
tention an average of 90%. The excepfion is Unsfructured that presents a high
degree of contention since for 30% of the accesses more than nine petitioners are
waiting for sending their ACN message. Figure 5.8b discloses interesting results
when considering two GecNetworks because the degree of contention is reduced
considerably. For example, in Unstructured the percentage of accesses is now
marginal when considering more than nine petitioners.

The previous results were analyzed to determine the impact on execution
time when dealing with different numbers of GecNetworks. In consequence,
Figure 5.8¢ shows the normalized execution times that are obtained for the set
of benchmarks under study when dealing with one, two and infinite (Ideal)
networks. The execution times are normalized with respect to those obtained for
the worst case of having a single GecNetwork. Moreover, each bar has been plotted
by overlapping the normalized execution fimes of every case (1, 2 and Ideal).
This overlap is depicted by highlighting the shorter times firstly. For instance,
the bar for Unstructured shows: (.63 for Ideal (the shorfest time), next up a
fraction of 0.02 for 2 (actually 0.65), and 0.35 for 1 {(actually 1). As we can observe,
the reduced contention derived from using two networks as aforemenfioned
translates into important performance benefits in execution time. Note that, the
highest contended application, Unstructured, presents a reduction of 35% when
considering two GecNetworks. Another interesting result is that, even an infinite
number of GerNetworks reports almost the same improvements.

As a conclusion of this first set of experiments, we can affirm that two
GecNetworks 1s enough to achieve the highest performance for the 4hop ECONO.
This study was also conducted for the 3-op ECONO and the very same conclusion
was obtained.

5.5.2.2 Type of ACN messages

As discussed in Section 5.3.2, we proposed imprecise ACN messages to shorten
propagation delays but at the expense of atfecting more cached blocks than
necessary (wrong blocks). The next set of experiments are aimed at quantifying
the performance degradation due to the presence of wrong blocks. To reduce the
number of wrong blocks, we alse proposed to make use of two kinds of filters: the
state and sharing filters. In this section, we assume that both filters are activated
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and later on, in Section 5.5.2.3, we will complete the study by quantifying the
performance penalties derived from not applying either a single or both of such
filters.

To conduct this exploration, we consider the three types of imprecise ACN
messages discussed in Section 5.3.2: BlockfAddress, Index and Index+ExtraBits.
In addition, we focus on the 4-hop ECONO implementafion since imprecise
ACN messages for the 3-hop implementation falls into unmanageable complexity
(further details in Section 5.3.2). Finally, as concluded in Section 5.5.2.1, the
results are obtained relying on two 3-G-Line GecNetworks.

In Figure 5.9a, we show the performance implications on execution fime
for the applications under study. For that, we normalize execufion fimes with
respect to Index because it presents the highest imprecision and then, the highest
performance degradation. Remember that this message only stores the bifs
required to idenfify the particular set in the L1 caches where the requested
block would be. Therefore, for the simulated 4-way set-associative caches, up to
three blocks per cache may be wrong blocks. It is worth noticing that imprecise
information reports shorter ACN latencies what may lead to overcome the precise
configuration of BlockAddress. As for previous Figure 5.8¢, we plot overlapped
results for each bar.

Comparing Index to the precise BlockAddress configuration, Figure 5.9a
shows an average performance improvement of 4% in favor of the second option,
though in Swaptions the performance gap increases up to 22%. This motivates
the use of less imprecise schemes such as Index+ExtraBits. For that, we study
Index+2 and Index+5 confipurations. The reason why we decided to use two and
five exfra bits is that these numbers maximize the information transmitted in
every ACN message, and their message sizes are a multiple of three (the number
of G-Lintes per GecNetwork). As we can see in the figure, lower imprecision
leads to lower values in execufion time. In consequence, Index+5 is able fo
achieve similar results to the precise Blockfddress and 1s even slightly better for
Unstructured (the whate frachion of the bar 15 in front of the black one). Note that
this application presents the highest confenfion (Figure 5.8a) and takes benefit
from a lower propagation delay to outperform the precise configuration. More
specifically, Index+5 involves ACN messages that are 46% shorter (15 vs 28 bits),
which implies a propagation delay which is 41% lower (7 vs 12 clock eycles) as
shown in Figure 5.7, In addition, we observed that a greater number of extra bits
does not report better results.

In Figure 5.9b we illustrate the performance implications on network traffic
that results from using imprecise ACNs. The results shown in this figure are
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Figure 5.10: Effect on L1 cache misses depending on the use of the state and
sharing filters.

derived from the extra L1 cache misses when wrong blocks are affected by the
ACN operations (i.e. more requests and data movements). We depict overlapped
results and normalized with respect to Index. As we can observe, the precise
Block&ddress reports the best results and obfains improvements ot 13%, on
average. Moreover, Index+5 reports roughly the same resulfs than the precise
configuration. Finally, we quanfify in Figure 5.9¢ the extra L1 cache misses
derived from wrong blocks. As we can observe, the magnitude of these results is
directly related to the extents of the results in network traffic previously reported.

As a conwclusion, we can say that the Index+5 configuration will be the pre-
ferred choice because it behaves as the precise BlockAddress as shown on average
results, but it may get to the point of cutperforming the latter because of the
shorter propagation delays that it implies. Therefore, we choose Index+5 for the
4-hop ECONO implementation evaluated later on.

5.5.2.3 Application of Filters

The state and sharing filters have been proposed to impede invalidating more
blocks than necessary (wrong blocks) when using imprecise ACN messages, thereby
saving extra L1 cache misses and improving execution timne. Te quantify the ben-
efits from applying the filters, Figure 5.10 shows the extra L1 cache misses when
the filters are or not activated using the Index+2 configuration as a case study.
For that, we normalize L1 cache misses with respect to the worst confipuration in
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which both filters are disabled. Moreover, the legend of the figure shows different
configurations for k&Y meaning that either state (%) or sharing (Y) filters are on (T)
or off (F). Notice that, we plot overlapped results for each bar.

As we can observe in the figure, a maximum improvement of 25% (10% on
average) is obtained when applying both filters (the T&T configuration), and
they separately represent roughly half the total benefit achieved. Therefore, as a
canclusion of this section we can say that, due to the significant reduction in L1
cache misses that the applicability of both filters achieves, the best-performing
configuration for +hop ECONO using imprecise ACN messages evaluated in next
section will incorporate both filters.

5.5.3 Performance Resulls

In this section we compare the best-perfornmng configurations for 4-hop and 3-hop
ECONO against Hammer and Directory in ferms of execution time and network
traffic for the benchmarks under study.

Before starting with the evaluation part, we depict in Figure 5.11 a charac-
terization of the different coherence actions performed by the Directory protocol
in order to help understand where improvements come from i the next two
sections. We choose Directory because this protocol distinguishes a more diverse
set of coherence actions to perform, what provides more informafion tor the
performance comparison (further details in Section 5.2.2).

As we can observe in the figure, each bar is broken down inte four categories
depending on the percentage of coherence actions devoted to: forward messages,
that comprehend all coherence messages transmitted from the home tiles to the
owners in order to recover the simgle valid copy of the requested block (Fwd in the
figure); upgrade actions, that result from granting write permission to a request-
ing core that has a read-only copy of a cached block (Le. it implies invalidation
of sharers and an acknowledgement sent to the requester, or Invikack); coherence
acfivity devoted fo grant wrife permission to a requester that does not have a
block that is shared at the home tile (i.e. it involves invalidation of sharers and
delivery of the home’s block copy to the requester, or Inv&Data); and finally,
those actions that only require sending the requested data to the requesting core
{Le. Data).

A preliminary analysis of the results shown in Figure 5.11 reveals that we can-
not expect to find significant performance differences among the four protocols
for benchmarks that are dominated by coherence actions belonging to the Data
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Figure 5.11: Characterization of coherence activity in the Directory protocol.

category (ie. all but Raytrace, Swaptions and Unstructured), because in such
benchmarks all the protocols would behave in the same way.

5.5.3.1 Execution Time

Figure 5.12 shows the nermahzed execution times with respect to those obtamned
when Hammer is considered. As expected, Direcfory achieves important reduc-
Hons in execution time (14% on average) because of using precise coherence
informafion which entails less coherence messages to be fransmitted (e.g. In-
validations) and to waif for (i.e. Acknowledgements). More specifically, the
magmitude of these savings depends on the number of coherence operations opti-
mized by Directory (i.e. those that fall inte Fud, InvkAck and InvkData categories
in Figure 5.11). This is the reason why negligible performance improvements are
obtained in all but Raytrace, Swaptions and Unstructured benchmarks as alluded
fo above in our preliminary analysis. Besides, the highest improvements are
achieved in Swaptions because in this benchmark roughly 50% of the coherence
actions involve a single point-to-point forward message (see Fud category in
Figure 5.11). Conversely, in Hammer, broadeast messages are employed, which
Increases execution time mainly for two reasons: first, due to higher contention at
the main interconnect; and second, more time spent at requesting cores waiting
for the corresponding acknowledgement messages.

Regarding our ECONO mplementations, by relying on a single ACN message
fransmitted in broadcast over a dedicated very fast G-Line-based on-chip network,
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Figure 5.12: Normalized execution times.

both implementations outperform the Hammer protocol. Newvertheless, 4-hop
ECONO requires one more hop when data recovery is necessary as we discussed
in Figure 5.3b, and then, it cannot outperform Direcfory, that manages this
situation much more efficiently than Hammer does as follows. First, similar fo
ECONO, Directory would require a single coherence message sent to the particular
owner that eventually would be in charge of sending the data to the requester.
Second, similar to ECONO, the requester would not spend any time waiting for
acknowledgement messages. In particular, Raytrace and Swaptions report the
higher performance gap between 4-hop ECONO and Directory because, as shown
in Figure 5.11, these benchmarks have a fraction of approximately 30% and 50%
devoted to forward messages, respectively (see the Fud category). Finally, when
analyzing the execufion times reported by 3-hop ECONO, we can observe that
this new implementation takes benefit from using less number of hops thereby
even achieving slightly better results than Directory (2% on average).

5.5.3.2 Network Traffic

Figure 5.13 shows the fotal network fraffic depending on the implementations
discussed above, normalized with respect to Hammer. In particular, each bar
plots the number of bytes transmitted through the intercormmection network (the
total number of bytes transmuitted by all the switches of the interconmect). As ex-
pected, Directory outperforms Harmmer (27% on average) because of using precise
information of cached blocks that removes all unnecessary coherence messages
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Figure 5.13: Normalized network traffic.

from the interconnect. According fo our characterization in Figure 5.11, these
Improvements come as consequence of the aggregate fraction of Fud, InvikAck and
InvkData categories, since for such coherence actions Directory always performs
better than Hammer: Fud and InvkData would requure broadcast operations; and
InviAck would be implemented as InvkData since upgrade operations are not
implemented in Hammer because of lack of sharing information at home tiles.

Regarding the ECONCO implementations, recall that our protocol removes an
important amount of coherence-related fratfic from the main CMP's network
(ie. the home files transmit ACN messages over ECONO's special network
rather than invalidation or forward messages over the main interconnect, and no
acknowledgements are necessary), so that it must lead to significant reductions
in network traffic.

Considering the 4-hop ECONO implementation, we can observe that it does
not outperform Directory (degradation of 3% on average). The reason is that
requiring indirection to the home tiles for data recovery (see Figure 5.3b) implies
more hops and then, more messages are injected info the main interconnect fo
convey data blocks to the requesting cores. Note that, according to the simulated
pararrieters shown in Table 5.2, control messages are one-9th of the size of data
messages, and then injecting more data messages to reach the requester’s cache
nullifies the benefits of removing all coherence requests and acknowledgements
for almost all the benchmarks.
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As to the 3-hop ECONO protocol, due to the fact that forwarding operations
are enabled important reductions are reported. As we can observe in Figure 5.13,
this implementation saves network traffic by 3% compared to Directory. In particu-
lar, applications such as Swaptions or Raytrace, that present frequent invalidation
of sharers and forward operations (see Inv&Data, Invi&Ack and Fud categories in
Figure 5.11), report the highest improvements. Moreover, Unstructured reports
similar results to Directory because, in this benchmark almost 40% of the coher-
ence activity observed in Directory is optimized by using upgrade petitions that
replace data responses with the shorter acknowledgement messages (see Invkick
category in Figure 5.11).

As a final observation, from the reductions in execution fime and network
traffic that ECONO entails, and due fo the negligible extra power dissipation
required by the required infrastructure estimated in Section 5.4.3, we can also
affirm that the 4-hop ECONO 1s more energy efficient than Hammer, and that the
3-hop ECONO implementation is the most energy efficient design.

5.6 Related Work

The mainfenance of cache coherence in shared-memory parallel systems has
been a first-order design issue for many years [91]. Nowadays, many-core
CMPs demand new coherence protocols that provide the required efficiency and
scalability to successfully harness their peak computational power as core count
increases and technology scaling improves. In this section, we describe the main
modern coherence protocols developed to date in the context of shared-memory
many-core CMPs. Typically there are two main categories of coherence protocols:
snooping-based protocols and directory-based protocols.

Sneoping-based coherence protocols have been devised to maintain coherence
in a simple way by broadcasting coherence requests to all cores in the system.
Although these protocols work well in small-scale systems, their performance
is highly compromised beyond a handful of cores, due to their prohibitive
requirements of network bandwidth. There are three main proposals aimed
at optimizing this category of protocols relying on snoop filters. Destination
filters [147] remove probes at the receiver to reduce tag lookups but do not reduce
messaging overhead. Source filters [60] eliminate network messages for unshared
data, but sfill require broadcasts for lines with few sharers. And innefwork
filters [106], that remove probes at routing points in the network so that probes
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only reach destination caches that are sharers of the memory block. However,
this technique incurs the cost of additional complexity in the network.

In comparisen to our proposal, ECONQO manages coherence traffic mmuich more
efficiently than snooping-based protocols because it is not bandwidth intensive
mainly for two reasons. First, by operating in a similar way to directory-based
protocols, the requesting cores send an unicast message towards the home tile for
every cache miss, hence not broadeasting this kind of messages. And second, as
discussed in previous sections, the use of a very efficient G-Line-based lightweight
infrastructure fo broadcast ACN messages removes a considerable amount of
coherence-related traffic from the main interconnect.

The second category of coherence protocols is based on sforing an en-chip
directory structure with coherence information about block sharers (e.g. a full-
map sharing code [4]), so that coherence actions affect just the necessary caches,
thereby leading to important traffic and energy savings. Nonetheless, directory-
based protocols devote on-chip area overhead and energy consumption to store
and search information about block sharers what may jeopardize efficiency and
scalability of future many-core CMPs. That 15 the reason why there are a number
of proposals that attempt to minimize the directory overhead. For instance,
Tagless directory [84] uses an implicit, conservafive representation of sharing
information based on a grid of small bloom filters. The bloom filters concisely
summarize the tags for each set, representing a superset of all of the block sharers
(1.e. false positives occur), hence they completely elininates the associative search
on lookups of a conventional directory. Moreover, SPATL [51] adopts the same
Tagless directory’s approach of compressing the sharing information using bloom
filters. SPATL 1s alse based on identifying the sharing patterns of memory blocks
that appear in the parallel applications, that is, the subset of cores that access to
a memory block. This protocol holds every of the unique pattems found in a
table’s entry where multiple bloom filters with the same pattern point to. This
leads to even further compression of the sharing information. Finally, SCD [36]
exploits the insight that directories need to track a fixed number of sharers, not
addresses, by representing sharer sets with a variable number of tags: lines with
one or few sharers use a single tag, while widely shared lines use additional tags.
SCD also leverages recent highly-associative caches (Zeaches [35]) to obfain a
very efficient replacement process.

It is important to point out that unlike directory-based protocoels, our ECONO
protocol does not devote any storage overhead to track information about sharers,
thereby saving on-chip area and energy. Moreover, the use of a dedicated on-chip
network removes an important amount of coherence-related traffic from the main
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interconnection network. This translates into higher efficiency in network traffic
than directory-based protocels, as we concluded in the experiments conducted in
Section 5.5.3.2.

Additionally, we can also idenfify another category of coherence protocols
that resulfs from removing the directory in the latter directory-based category
and resorfing to broadceasts. That is, we refer to broadcast-based protocols like
the Hannmer protocol discussed in this chapter. These protocols are appealing as
they eliminate most of the space overhead when compared to directory protocols.
However, they suffer from the problem of being bandwidth intensive because of
requiring broadcast messages from the home tile when coherence maintenance
is necessary. To alleviate such an issue, Lodde et al. [96] advocate the use of an
heterogeneous NoC design that is composed of the conventional interconnection
network coupled with a dedicated gather control network. The latter network 1s
used to collect all the acknowledgement messages that Hantmer protocol produces.
In this way, a significant reduction in network tratfic is achieved that also entails
reductions in execution time.

While our proposal also relies on a dedicated on-chip network, ECONO is
more efficient since our special network is based on G-Lines technology for ex-
tremely fast broadeasts. Moreover, our proposal 1s simpler for the use of atomicity
that guarantees correctness without requiring acknowledgement messages thus
reducing network traffic.

After discussing the main categories of coherence profocols and comparing
them against our ECONO protocol, in the following part of this section we
describe a set of efficient state-of-the-art coherence protocols that show novel
ideas, mechamsms, efficient infrastructures or alternative technologies, that could
be applied in ECONO due to their orthogonal nature.

Recent advances in nanophotenic device manufacturing have developed opti-
cal technology, allowing for high-bandwidth low-latency energy-efficient global
links. This fechnology has encouraged a refurn fo broadcast-based coherence
protocols such as ATAC [44] or [154]. More specifically, ATAC operates in the
same way as a conventional himited directory, but when the capacity of the sharer
list is exceeded, it resorts to very efficient optical-based broadcasts to invalidate
all possible block sharers. While ECONO also relies on very efficient broadcasts,
albeit using G-Lines technology, we remove all storage overhead of a directory
as well as all broadeast and acknowledgement messages from the main infer-
connect. Moreover, Xu et al. [154] take benefit from the high bandwidth density
of optical technology to integrate in their coherence protocol an optical ring in
order to realize global broadeasts efficiently for a large-secale clusterized system.
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Differently, ECONO does not require high bandwidth to broadeast messages
and rather than broadcasting upon every cache miss, we do so when coherence
activity is required, thereby saving power. Another significant advance in the
use of nanophotonic technology is simplitying protocol design and verification
to the pomt of approximating to the concept of the maintenance of coherence in
bus-based machines. An example in this category could be Atomic Coherernce [37].
In Atomtic Coherence, all coherence requests perform atermically and hence, all pos-
sible racing requests are removed. To do so, a very efficient optical-based mutex
is implemented. In contrast, ECONO enables races from the requesting cores to
home files, and serialization is only employed to atomically broadceast express
coherence notifications, thus increasing concurrency. Moreover, we do not inject
an important amount of coherence-related tratfic into the CMP’'s inferconnect,
hence saving on-chip traffic and energy.

Our ECONO protocol could be also integrated using nanophotonic technology
that we could explore to provide very efficient broadcasts for the ACN messages,
as well as concurrent broadcasting for different memery blocks without resorting
to replication of resources (e.g. the two GecNetworks implemented).

Conscious about the ever-increasing complexity of hardware-based coherence
maintenance, other proposals advocate to transfer some cache coherence man-
agement fo software, mainly to the OS5, The key idea behind these proposals is
the flexibility achieved by software to modify the profocol, or even to fix bugs,
without costlier hardware changes in exchange of a reduced performance in most
cases. For instance, Fensch and Cintra [22] rely on minimal hardware extensions
and the O5’s virfual memory system, to map dafa fo files at the granularity of
pages under O5 control and to support remote cache accesses in hardware. By
doing so, all L1 caches are freated as a single logical cache and the proposed
mechanism avoids duplicate copies of a single cache line since every memory
line can only reside in one L1 cache (the home cache), and processors in other
tiles must perform remote cache reads and writes to access the data. Other pro-
posals leverage OS capabilities to improve performance of cohererice protocols.
Cuesta et al. [13] obtain remarkably eftectiveness of directory-based protocols,
particularly directory caches, by avoiding the tracking of private blocks because
they do not need coherence. For that, the O5 dynamically detects shared blocks
at page grarularity by taking advantage of existing hardware structures such
as Translafion Lookaside Buffers (TLBs), page tables, and Miss Status Holding
Registers (MSHRs). Moreover, Subspace Snooping [33] enhances efficiency of
snooping-based protocols by leveraging page tables to keep track of sharers of a
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memory block at page granularity, so that snoop requests are issued only to the
required cores, thereby improving network traffic, power and performance.

Our ECONO proposal also makes use of OS5 support in order to determine
the sharing status of memory blocks (ie private or shared blocks), similar fo
the defection mechanism proposed by [13]. In this way, coherence activity is
performed just for shared blocks.

There are other protocels that leverage the possibilities that bring the infer-
connection networks used fo convey the coherence-related traffic. For instance,
Cheng et al. [89] advocate heterogeneous en-chip networks, through parbitbening
available metal area across ditferent wire implementations featuring distinct
latency, bandwidth and energy properties. So, every fype of coherence-related
traffic is mapped onto the most suited type of wire thereby yielding improved
performance and energy. Moreover, Chaves ef al. [144] explore to hamess the
physical services provided by NoC, such as multicast and priorities, to optimize
a directory-based coherence profocol. In exploiting the multicast capability, a
single multicast message is injected into the NoC to invalidate all block sharers
in L1 caches, what saves traffic and consequently energy consumption. The
use of priorities implemented in the NoC can be exploited to increase memory
throughput by imjecting long and short messages into high and low priority
channels, respectively.

Our proposal could take advantage of this kind of optimizations to enhance
performance by transmitting the coherence-telated fraffic, other than the ACN
messages, through different wires. Moreover, we could exploit mulficast ca-
pabilifies in order to reduce the effect on power dissipation derived from the
broadcast-based transmissions for the ACN messages.

Alternative schemes adopt different strategies for the maintenance of coher-
ence by dynamically selecting the most appropriate coherence protocel based on
application behavior. For example, ARCe [112] seamlessly combines directory
and shared-NUCA based cohererice protocols that co-exist in hardware. The
former protocoel is always the preferred choice and after a sampling period of
time, in which an in-hardware analytical model menitors application characteris-
tics, it may decide a change fo the latter protocol. Moreover, Chitioui et al. [45]
present an hybrid update /invalidate coherence protocol that dynamically adapts
its functioning mode according to the application needs. This protocol analyzes
the kind of operations sent to memory (i.e. read or write) as well as the intensity
of such operations to estimate a suitable threshold fo use that determines the
best-performing protocol at that moment.
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ECONO could also co-exist with another protocol like, for example, a directory-
based protocel, which we dynamically could choose if the cost of broadeasting an
ACN message 1s higher than transmitting a few point-to-point messages over the
main interconnect. This could be the case of memory blocks with a few sharers.

To conelude this section, we expose a final group of inferesting state-of-the-
art solutions for coherence maintenance. This may suggest new solufions to
be explored that may lead to even higher performance improvements for our
coherence protocol.

For instance, Barrow-Williams et al. [108] present Proximity Coherence, a
directory-based coherence protocol that exploits the physical locality of shared
data before sending a cache muiss request to the directery, hence reducing L1 cache
miss latencies and network traffic. For that, the private caches of neighboring
cotes are probed upon the cache miss, and only if all their caches do not have
a copy of the data the request is sent towards the directory. To implement this
proposal, the authors employ new lightweight dedicated links to interconnect a
core and its neighbors, and a graph struchure embedded into every private cache
to avoid inconsistencies with the directory information.

Moreover, Ros et al. [11] present direct coherence, a cache ccherence protocol
that reduces the number of hops in directory-based protocols to solve cache
misses, thereby achieving shorter cache miss latencies. Specifically, by using
special hardware structures with manageable on-chip area, requests are directed
to the owner cache that provides the block in a cache miss, thus removing
indirection to access the directory. To keep up-to-date coherence information, the
authors also propose several policies, based on hint messages and signatures,
that lead to significant performance improvements in terms of execution time
and network traffic.

Besides, Huang et al. [157] identify the problem of the uneven distribution
of blocks that are actually cached and tend to produce severe conflicts in sparse
directories on a few homes (hof-homes). To solve that, the authors propose
to extend the capacity of hot-homes by using an alternative home where state
and locations of a block can be recorded. As a result, this approach achieves a
significant reduction in block invalidations and in cache misses per instruction.

Finally, SWEL [129] is a coherence protocol aimed at reducing the rumber
of coherence operations by placing data in their optimal location. For that, the
protocol classifies blocks into two categories: private or read-only blocks, and
shared-wriften blocks. As the former group does not require coherence and
represent the majority of memory references, the corresponding blocks are placed
at the L1 caches. The latter group are forced to reside at the shared L2 level, what
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removes indirection in directory-based protocols for many commeoen write-sharing
patters like the producer-consumer pattern. In this way, the protocol is more
about classitying blocks than tracking their sharing information, thereby leading
to a simpler and storage-efficient protocol.

5.7 Conclusions

In1 this chapter we propose ECONO, a simple and efficient coherence protocol
tor many-core CMPs. To keep coherence, ECONO relies on express coherence
notifications (ACN messages) which are broadeast atomically over a dedicated
lightweight on-chip network leveraging G-Lines technology for superior efficiency.

We study a baseline implementation for ECONO and propose two different
extensions. First, &-hop ECONO with imprecise coherence information to shorten
the size of ACN messages, hence operation latency. And second, we alse consider
a 3-hop optimization to reduce the number of hops and save network traffic.

Through detailed execution-driven simulations of a 16-tile CMP, we determine
that the best option to implement ECONO consists of two 3-G-Line-based net-
works. Moreover, when considering imprecise coherence information, Index+5
is the preferred choice. To quantify the benefits of our proposal, we compare
the performance achieved with ECONO against two contemporary coherence
protocols, Hammer and Directory. This study reveals that ECONO features the
simplest design, requires an on-chip area overhead similar to Hammer, reports
similar performance to Directory, and constitutes the most energy efficient design.

Due to the novelty of our proposal, from the discussion provided in the
last section (related work), we also conclude that our ECONO protocol could
take advantage of a number of optimizations incorporated in other coherence
protocols, so that we could even enhance the promising performance results
obtained in our experiments, that would be of paramount importance when
considering larger many-core CMDs.
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CHAPTER 6

Conclusions and Future Ways

6.1 Conclusions

Until the last decade the driving force to improve performance for each new
generation of computing systems was the virtuous cycle of minimizing transistors
and increasing operation frequency. As a result, uniprocessors machines became
more and more complex to exfract the maximum instruction-level parallelism
as possible by relying on wide-issue and deep pipelines, highly-speculative and
out-of-order execution, or elaborate branch predictors, reaching to the point of
diminishing returns. In consequence, new architectural designs were proposed
to overcome such diminishing returns and the best option was to integrate a
mulfiprocessor in a single chip, constituting the mulficore architectures (chip-
mulfiprocessors or CMPs). CMPs were conceived to exploit thread-level par-
allelism (TLP) rather than instruction-level parallelism (ILP) by incorporating
simpler and lower frequency cores than those complex uniprocessors systems,
yielding superior efficiency considering a similar floorplan.

More and more cores are being added to these throughput-oriented machines
on a single chip resulting in systems knowns as many-core CMPs. To increase
scalability and to obtfain a manageable complexity, many-core CMPs arte built
upon a tiled composition, where basic building blocks called tiles are comprised
of a processing core, private levels of caches with a slice of a global shared cache,
and also routing logic to intercommect all tiles to a global point-to-point network,
generally following a 2D-mesh fopology. To reduce programming, efforts, an
intuitive shared-memory programming model is commonly used where commu-
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nication and synchronization operations ameng threads are performed by means
of conventional memory access instructions using a global address space over a
shared memory. Nevertheless, since 2004, there has beenidentified a slowdown in
the exponential growth of performance because of the thermal-power constraints
that preclude computer architects from relying on the virtuous cycle successfully
applied in uniprocessor systems as atorementioned. To continue with an inces-
sant performance growth, new architectural innovations are being devised and
the integration of nen-digital technologies along with CMOS transistors is being
considered in the latest roadmap of technology, what is typically known as the
More-than-Moore trend.

In this thesis, we have identified three fundamental performance bottlenecks
in the context of many-core CMPs. Highly contended synchronization in barriers
and locks constitute a big challenge to manage as the number of cores increases in
many-core CMPs. Moreover, traditional implementations for the cache coherence
protocol, which guarantees coherence across all levels of a memory hierarchy,
have also fo be reconsidered to keep up with efficiency for the communication
and synchronization operations amongst threads based on the use of shared
variables. We have proposed three distinct and complementary hardware-based
solutions to overcome such performance bottlenecks. Moreover, we have also
considered the use of non-digital technology to help us break such limitations
obtaining superior efficiency and scalability. To do so, we have leveraged the
tull-custom state-of-the-art G-Lintes technology, although we have also explored
the efficiency of our proposals using a current standard cell design methodology.
Next, we expose the main conclusions derived from our three proposals in this
thesis: GEgrrier, GLock and ECONQ.

The first of our proposals (namely GBarrier) is aimed to overcome performance
limitations of barrier operations in many-corve CMPs. GBarrier 1s a novel hardware-
based barrier mechanism specifically designed to enable efficient barriers by
removing all performance limitations of software-based barrier implementations,
and even in all hardware-barrier mechanisms to date. In particular, our GBarrier
mechanism consists of two main components: First, a very lightweight dedicated
on-chip network that could be deployed in a hierarchical layout for scalability.
The second is a simple and very fast synchronization protocol implemented
atop the previous infrastructure. The reason why our proposal is much more
efficient is that differently to software approaches based on the use of atomic
read-modify-write instructions operating on shared -memory positions, GBarrier
does not have any influence on the memory system, hence saving fratfic and
energy. More specifically, we have avoided all coherence activity, barrier-related
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network traffic and the involved energy consumption, that software approaches
intfroduce and that restrict scalability. We have alse proposed how to extend
GBarrier to be easily adapted in other scenarios and system configurations: several
GBarriers, barriers among group of cores, larger many-core CMPs and SMT
processor cores. To evaluate GBarrier, we have considered two implementations
of our infrastructure by leveraging G-Lines and Standard technologies. Our
study in terms of raw performance statistics reveals that differences in on-chip
area overhead and power dissipation can be considered negligible between
both technologies, although, as expected, the former technology reports the
minimum synchronization latency, whereas the latfer leads to a cost-effective
implementation. We infegrate both GBarrier implementafions info a detailed
execution-driven simulator (Sim-PowerCMP) of a 32-core CMP running a set of
benchmarks: kernels and scientific applications. From this study, both GBarrier
implementations report very similar reductions in execution fime, thus not
making our proposal so dependent on a full-custom technology to achieve
extremely efficient synchronization in many-core CMPs. In particular, for the
kernels and the scientific applications under study our proposal brings average
reductions of 54% and 21%, respectively, in fofal execution time, resulting in
improved scalability for the applications. We also have obtained reductions of
53% and 18%, respectively, in network fraffic. The reason is that our proposal
does not rely on shared memory posifions and the cache coherence protocol
saves a significant amount of messages on the main infercormection network.
Finally, all these gains lead to improverments of 76% and 31%, respectively, in the
energy-delay’ product (EDPP) metric for the full CMP,

Regarding lock synchronization, we have identified that contention is a key
constraint to performance and scalability when there are a significant amount of
threads willing to access into the same C5 at once. To achieve a fair, very efficient
and scalable solution for locks that are highly contended, we have proposed
GLock. GLock is based on a dedicated on-chip network and relies on a simple
token-based messaging-protocol. Due to the fact that the actual problem of this
kind of synchronization mechanism occurs for high contention, our proposal
could be combined with a software-based implementation for low contention (e.g.
Simple Locks enhanced with the test-and-test&set optimization). Moreover,
a deep analysis of some relevant benehmarks discloses a reduced number of
highly-contended locks in most cases, so that replication of the GLock’s resources
is nof expected to be a constraint. As for GBarrier, to evaluate GLock, we have
made use ot G-Lines and Standard technology coming to the very same conchu-
sions in terms of raw performance: negligible on-chip area overhead and power
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dissipation in both technologies, cost-effective implementation for Standard, and
faster synchromzation latency for the G-Lines technology. We integrate both GLock
implementations inte Sim-PowerCME, and discuss synchronization efficiency
results as compared to the most efficient software-based lock implementation.
To do so, we have simulated a 32-core CMP with a 2D-mesh data network and
employ a set of microbenchmarks and real applications. Both GLork implemen-
tations report very similar reductions in execution fime, hence not making ocur
proposal so dependent on a full-custom technology. From our evaluation, the
next significant average reductions for the microbenchmarks and the real apphea-
tions respectively are achieved: 42% and 14% in execution time; 76% and 23% in
network traffic; and 78% and 258% in the ED?P metric for the full CMP

Finally, we have also proposed a novel implementation for a coherence proto-
col in the context of many-core CMPs, namely ECONO. Our proposal makes use
of express coherence notifications (ACN messages) which are atomically broad-
cast over a dedicated lightweight on-chip network. We have only considered
the G-Lines technology since the Standard one has severe technical constraints
to provide the required scalability and lightweight implementation to build a
broadcast-based network on chip. ECONO has been studied starting with a
baseline implementation, called 4-frop ECONO. This implementation recquures four
hops in the critical path to resolve an L1 cache write miss that a processing core
gets and several sharers of the block exist so that their copies must be invalidated.
In addition, we have proposed two different extensions of this first version tor
superior efficlency. First, imprecise coherence information to shorten the size of
ACN messages and operation latency of a 4-hop ECONO implementation. And
second, we have reduced the number of hops in the critical path of ECONO fo
implement a 3-hop optimization, thereby leading to savings in network traffic and
energy. To evaluate ECONO we have employed the full-system simulation foel
Simics-GEMS, and we have considered a 16-file CMP. From our experimental
study in terms of rTaw performance statistics, we have concluded that the best
option to implement ECONO consists of two 3-G-Linte-based network, and when
considering imprecise coherence information, Index+5 is the preferred choice.
We have quantified performance benefits from our proposal by comparing per-
formance results against two confemporary coherence protocols, Hammer and
Directory. The main outcomes of this study are the following: ECONO features
the simplest desipm, requires an on-chip area overhead similar to Hammer, reports
similar performance to Directory, and conshtutes the most energy efficient design.
Due to the simplicity of our proposal, we have identified that diverse orthogenal
optimizations could be easily applied that are present in contemporary protocols
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such as filtering, to mummize the impact on energy of the atorrue broadeast trans-
missions, or avoiding the indirection to home tiles by adding extra information
into the ACN messages (the next block owner), so that all the L1} sharers always
know who is the next owner for the memory block.

As a final conclusion from all above, we can affirm that our proposals represent
a step forward fowards the resolution of the challenges that many-core CMP
architectures will pose to computer architects.

6.2 Future Ways

The results presented in this thesis open a number of new research paths fo
explore. Amongst them, we identify the following.

We could investigate the natural extension of the work carried out in this
thesis by the combination of all of the proposals presented here to improve
the efficiency of many-core CMPs. In this way, synchronizafion operafions for
barriers and highly-contended locks would be implemented by using GBarrier
and GLock, whereas the coherence protocol to be used would be ECONO. Notice
that, the contenfion of the ECONO's network fo fransmit the ACN messages
would be reduced, since the maintenance of coherence for all shared variables
affected by the software-based barriers and locks considered in our evaluation
would be removed. It could be also very interesting quantifying the magnitude
of these savings and the resulting performance improvements.

Moreover, while our hardware-based synchronization mechanisms success-
fully work for a 32-core CMP architecture, an appealing question to answer as
future work could be: What is the maximum scalability that the current versions of
GBarrier and GLock could reach? In this way, we would defermine the limits of
our proposals and whether it {s possible to keep up with scalability in a future
1000-core CMF platform, like many other recent proposals are already attempting
fo envision (e.g. in the context of cohererce protocols [44, 61]). For that, as
proposed in the corresponding chapters of this thesis that explain how fo deal
with larger many-core CMPs, we could adopt a clusterization strategy and/or
build hierarchical layouts.

Another important question to answer could be: What is the limit of replication
for GBarrier and GLock? For the representafive set of benichmarks that we have
employed to evaluate our propoesals and for the simulated 32-core CMFP, we have
been required to replicate resources only once to achieve the masximum efficiency.
The reason i1s that our proposals have been specifically devised to operate in high
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contention scenarios either to perform a barrier, or to take exclusive access into
a critical section protected by a lock, where all threads /cortes are involved in
the operation. An inferesting research path could be evaluafing performance
when considering subsets of the total amount of CMI’s cores. Here, replication
of resources is strictly necessary to make possible the concurrency of barriers or
locks in the same or among different applications.

Other important ways to explore in the future are those related to extend the
applicability of GBarrier and GLock in other contexts or scenarios:

* Other Programming Models. To design and evaluate our proposals, we rely on
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a shared-memory programming model and the benchmarks are written us-
g Pthreads. This requires a hand-made process to insert the correspending
function calls in the benchmark’s code to the library that encapsulates the
functionality that communicates with our hardware infrastructures. In the
same way that we presented in [71] for GBarrier, we could also integrate our
GLock mechanism into the widespread OpenME. By doing so, parallelism is
specified at a very high level by inserting directives (pragmas) to a sequen-
hal C program, and a compiler 1s respensible for translating these directives
into parallel threads of execution. Then, cur synchronization functionality
would be implemented within the OpenMP’s runtime library, that would
be queried by the parallel threads. In this way, programmers could take
benefit from our propoesals directly without any further programmung effort.
Moreover, we could also evaluate how to deal with synchronization opera-
Hons in nested parallelism for a clusterized system. In nested parallelism, a
first level of parallelism 1s used to distribute coarse-grained tasks to clusters,
and these tasks are comprised of one or more inner levels of fine-grained
(e.g. loop-level) parallelism that is distributed to cores within a cluster [7].
In particular, fine-and-coarse-grained barrier synchronization would be
implemented by using different GBarriers. Besides, the distribution of the
different tasks could be implemented by using a GLock, where different
computing units (cores) could take exclusive access into the pool of tasks to
fetch a new task to process.

Furthermore, we could integrate our proposals in the context of the StarSs
programming model [137]. Here, the programmer use OpenMP-like prag-
mas to define tasks and their inputs and cutputs. A source-to-source trans-
lator and a runfime system are respornsible for scheduling the tasks to be
executed preserving dependencies among them. There are multiple instan-
Hations for StarSs that include GRIDSs [153] (for the Grid), Cell5s [113] (for
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the Cell B.E. [62]), SMPSs [134] (for multicore processors) and GPUSs [38]
(for GP-GPPUs). Since there could be ditferent groups of tasks that need
to be synchronized, we could extend this task-based programming model
to make use of our GBarrier. Besides, for the pool of tasks submitted to
every particular computing unit, similar to commented above, the process
of fetching a new task could be implemented by using a GLock. In this
new scenario, the CS to be protected would be the pool of tasks, and the
different cores would fetch a rnew task in mufual exclusion through our
GLock.

Another programming model in which we could integrate our synchroniza-
Hon mechanisms would be a message-passing programmuing model [29]. In
particular, the standardized and portable implementation called Message
Passing Interface [102] (MPI). In this programming model, each process
executes in its own address space and communication and synchroniza-
tion operations among processes are based on explicit send and recefve
messages. In ifs simplest from, send specifies a local data buffer that is
to be transmitted and a receiving process, and recefve specifies a sending
process and a local data buffer info which the fransmifted data is to be
placed. Then, the matching send and receive causes a data transfer from one
process to another. Notice that, since our synchronization mechanisms also
operate on a message-passing protocoel, we could easily integrate them into
MPL For example, GBarrier could be used to enhance performance of the
MPT's barrier primitive called MPI_Barrier, or GLock could be employed
to improve locks in a threaded MPI library [105]. Additionally, we could
also consider to improve some of the algorithms used in the MPI's com-
munication operations to send eollective and individual messages among
processes. For example, the MPI_Bcast function, that implicitly involves a
barrier operation to determine whether all the destination buffers at all the
receiver processes are available to start with the broadeast communication,
could be improved by using our GBarrier proposal. Moreover, since our
on-chip infrastructures are composed of pomnt-to-peint links, we could map
the MFT’s point-to-peint communication primitives ente them, for example
to improve the blocking MPI_Send function.

Other Platforms. In this thesis, we have focused on tiled many-core CMPs
but we could have considered other type of architectures such as GP-GPU
(Tesla [111]), asymmetric or heterogeneous processors (Cell B.E.) and clus-
terized systems (Platform 2012 [135]), amongst others. To do so, the imple-
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mentation of the controllers and the library-level code required by GBarrier
and GLock presented in this thesis have to be properly adapted to the target
platform.

* Other Technologies. With the advent of the More-than-Moore era [150], chip-
makers will incorporate non-digital technology in next-generation many-
cote CMPs. In this thesis, we have also ufilized non-digital technology
(G-Lintes) to implement all our proposals. As future work, we could also
take into account the benefits provided by emerging nanephotenic technol-
ogy [123] to implement our proposals, The high bandwidth density and
very low latency that feature this technelogy would preclude our mecha-
nisms from replication of resources when it is necessary to share the use
of them at the same time. Limits of scalability could be other inferesting
study to be done using this technology.

* Other Purposes. We could also consider to extend the applicability of GLock
in the context of hardware transactional memory. In particular, we would
provide a hardware-based implementation of the precommit phase of a Lazy-
Lazy system, by efficiently and fairly selecting just one of the transactions
aimed to commit using an infrastructure similar to the GLock, so that this
transaction could safely proceed to make their changes visible.

In regards to the coherence protocol we have proposed in this thesis, ECONO,
there are also a number of future directions to investigate., To minimize impact
on energy consumption for the atomic broadcast messages transmitted to ensure
coherence (ACN messages), we could apply different types of filters other than
those that have been considered. For instance, destination filters, like that employed
in snooping protocols [147], could save cache-tag look-up power dissipation at
the L1 caches when the corresponding L1 controllers receive the ACN message
and the requested block is not present in their L1 cache. Moreover, innetwork
filters [106] could also be applied in order to enable unicast or mulficast frans-
missions in the ECONO's network. This considerably would save energy in case
of maintaining coherence for a reduced number of block’s sharers.

Other extensions for ECONO could be the following:

* Clusterization of ECONO. We could employ a hierarchical strategy to scale
the infrastructure of ECONO and then, there could be disjoint coherence
domains at both inter-and intra-cluster levels to manage, running different
applications (multiprogrammed workloads) or different virtual machines
for server consolidation [101].
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* Direct-ECONO. We also propose to extend ECONO by removing indirection
to home nodes that exhibit Directory protocols. In this way, like [11], cores
that suffer an L1 cache miss would send a point-to-point request towards
the owner cache, rather than sending the corresponding message to the
home tile. For that, when a core gets a wrife cache miss and fransmits
the corresponding message fo the home file, the latter would add to the
broadeast ACN message the core’s ID. Then, all the remaining L1 caches
would know who would become the next block owner, and fufure cache
misses would be directed to the owner.

* Other Technologies. As for GBarrier and GLock, we could also explore the
mplementation of ECONO using alternative technologies such as nanopho-
tonic technology. In addition, we could determine maximum scalability for
the resulting infrastructure.

* Hybrid Coftererrce. We could make use of an hybrid coherence protocol [45]
that would employ different protocols depending for example on the degree
of dafa sharing present in the parallel application. A runfime would be
implemented in order to dynamically choose the best protocol in each case.
For example, by combining Directory and ECONO, the former protocol
would be the preferred choice when there are a few sharers, thus avoiding
the costlier ACN broadcast.
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